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AN L2[0, 1] INVARIANCE PRINCIPLE FOR
LPQD RANDOM VARIABLES

P.E. Oliveira and Ch. Suquet

Abstract: Using an explicit isometry between Hilbert spaces and an embedding of

the space of signed measures we prove an invariance principle with weak convergence

in L2[0, 1] for random variables which are linearly positive quadrant dependent under a

Lindeberg type condition and some regularity on the covariance structure.

1 – Introduction

Let (Xn)n≥1 be random variables with EXn = 0 and finite variances. Write

Sn =
∑n

i=1 Xi and define the partial sums processes Wn and W ∗
n by

(1) Wn(t) =
1√
n

S[nt] and W ∗
n(t) =

1

σn
S[nt] , t ∈ [0, 1]

where σ2
n = ES2

n and [x] denotes the integral part of x. When the Xn are inde-

pendent and identically distributed the Donsker–Prokhorov invariance principle

says that W ∗
n (resp. Wn) converges weakly to the Brownian motion W (resp. σW

where σ2 = EX2
i ) in the Skorokhod space D[0, 1] [1]. This invariance principle

has been intensively extended under various assumptions of dependence. The

D[0, 1] weak convergence of a sequence of processes (ξn)n≥1 to a limiting pro-

cess ξ implies the convergence in distribution of random variables T (ξn) to T (ξ)

for any functional T : D[0, 1] → IR continuous in the Skorokhod topology (a

typical example being the supremum, T (f) = ‖f‖∞). Nevertheless, for a large
class of functionals defined by integral of paths of the type

∫ 1
0 f(t) ξn(t) dt or

∫ 1
0 G(ξn(t)) dt the weaker L2[0, 1] continuity of T is sufficient. The first L2[0, 1]

invariance principle goes back to Prokhorov [15] who studied the independent
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case. More recently, the L2[0, 1] framework was used by Khmaladze [6] for the

convergence of the empirical process and by Mason [7] for the quantile process,

both in the case of independent underlying variables (Xn)n≥1. For dependent

sequences, Oliveira and Suquet [12] obtained the L2[0, 1] weak convergence of the

empirical process under milder assumptions than in D[0, 1]. The authors proved

also an L2[0, 1] invariance principle for non stationary ϕ-mixing sequences [11].

The present paper proposes to study invariance principles in L2[0, 1] under pos-

itive dependence conditions. Before describing some of the results obtained so

far we will recall the notions of positive dependence that we will be interested in.

For a more complete study of positive dependence we refer to Newman [8].

Definition 1. A sequence (Xn)n≥1 is

• pairwise positive quadrant dependent (pairwise PQD) if, given any reals s,
t, for i 6= j

P (Xi > s, Xj > t) ≥ P (Xi > s)P (Xj > t) .

• linearly positive quadrant dependent (LPQD) if for any disjoint A,B ⊂ IN
and positive (ri)i≥1 the variables

∑

i∈A riXi and
∑

i∈B riXi are PQD;

• associated if for any finite choice of indexes i1, ..., in and coordinatewise

nondecreasing functions f , g defined on IRn, we have

Cov
(

f(Xi1 , ..., Xin), g(Xi1 , ..., Xin)
)

≥ 0 .

As the functions 1I(r,+∞)(x) = 1 if x > r and 0 otherwise are nondecreasing

it is easy to derive that association implies LPQD which in turn implies pair-

wise PQD. Newman and Wright [9] obtained an invariance principle for strictly

stationary associated random variables.

Theorem 2 (Newmann, Wright [9]). Let (Xn)n≥1 be strictly stationary

associated random variables with EXn = 0 and finite second moments verifying

0 < σ2 = Var(X1) + 2
+∞
∑

n=2

Cov(X1, Xn) <∞

then W ∗
n(t) converges weakly to a standard Brownian motion in D[0, 1].

Birkel [2] extended this result dropping the stationarity. For this Birkel in-

troduced

u(n) = sup
k≥1

∑

j: |j−k|≥n
Cov(Xj , Xk) .
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Theorem 3 (Birkel [2]). Let (Xn)n≥1 be associated random variables such

that EXn = 0 and E(X2
n) <∞. If

u(n)→ 0 , u(1) <∞ ,(2)

∀ ε > 0 ,
1

σ2
n

n
∑

j=1

∫

{|Xj |≥ε σn}
X2
j dP → 0 ,(3)

inf
n≥1

1

n
σ2
n > 0 ,(4)

1

σ2
n

σ2
nk → k , k ≥ 1 ,(5)

then W ∗
n(t) converges weakly to a standard Brownian motion in D[0, 1].

Recently Birkel [3] strengthening conditions (2) and (3) proved an invariance

principle for LPQD random variables.

Theorem 4 (Birkel [3]). Let (Xn)n≥1 be LPQD random variables with

EXn = 0. Suppose that

∃ ρ1 > 0: u(n) = O(n−ρ1) ,(6)

∃ ρ2 > 0: sup
n≥1

E
(

|Xn|2+ρ2

)

<∞ ,(7)

(4) and (5) are verified. Then the conclusion of the previous theorem holds.

From this theorem it is derived the following corollary.

Corollary 5 (Birkel [3]). Let (Xn)n≥1 be a wide sense stationary LPQD

sequence with E(Xn) = 0 and E(X2
n) < ∞. If (6) and (7) are verified then W ∗

n

converges weakly to a standard Brownian motion in D[0, 1].

2 – Results

For the proof of the L2[0, 1] weak convergence we will be interested in dealing

with integrals of the form
∫ 1
0 Wn(t) f(t) dt, where f ∈ L2[0, 1] and

Wn(t) =
1√
n

S[nt] =
1√
n

n
∑

i=1

Xi 1I[i/n,1](t) .
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Then, we find
∫ 1

0
Wn(t) f(t) dt =

1√
n

n
∑

i=1

Xi

∫ 1

i/n
f(t) dt .

That is, we are naturally driven to consider the space of functions

H =
{

h(s) =

∫ 1

s
f(t) dt, f ∈ L2[0, 1]

}

.

This space of functions may be equipped with an inner product such that it

becomes isometric to L2[0, 1]. Of course, the Lipschitz functions are in H and it

is easy to verify that they are dense in H.

The following theorem gives a sufficient condition for the relative compactness

of the sequence (Wn)n≥1. This result may be found in [10] or [11]. For the reader’s

convenience we include here a proof better adapted to the present framework.

Theorem 6. If there exists a constant C > 0 such that

(8)
1

n

∑

j,m=1

|E Xj Xm| ≤ C

then the sequence (Wn)n≥1 is weakly relatively compact in L2[0, 1].

Proof: Let (ei)i≥0 be an orthonormal basis of L
2[0, 1] and define fi(s) =

∫ 1
s ei(t) dt, the corresponding basis of H. According to Prokhorov’s moment

condition ([15], Th. 1.13) it is enough to prove that

lim
N→+∞

sup
n∈IN

∫ ∞
∑

i=N

(

∫ 1

0
Wn(t) ei(t) dt

)2
dP = 0

and

sup
n∈IN

∫ ∞
∑

i=0

(

∫ 1

0
Wn(t) ei(t) dt

)2
dP <∞ .

We have

sup
n∈IN

∫ ∞
∑

i=N

(

∫ 1

0
Wn(t) ei(t) dt

)2
dP = sup

n∈IN

∞
∑

i=N

E

(

1

n

n
∑

j=1

fi
( j

n

)

Xj

)2

= sup
n∈IN

∞
∑

i=N

1

n

n
∑

j,m=1

fi

(

j

n

)

fi

(

m

n

)

E Xj Xm

≤ sup
n∈IN

(

sup
x∈[0,1]

∞
∑

i=N

f2
i (x)

) 1

n

n
∑

j,m=1

|E Xj Xm|
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which converges to zero according to (8) and Dini’s theorem. The second condi-

tion is trivially verified by choosing N = 0 in the previous calculation.

Corollary 7. Suppose the sequence (Xn)n≥1 is LPQD. Then the sequence

(W ∗
n)n≥1 is weakly relatively compact in L2[0, 1].

Proof: Using the calculation as in the previous theorem we would find the

upper bound

sup
n∈IN

(

sup
x∈[0,1]

∞
∑

i=N

f2
i (x)

) 1

σ2
n

n
∑

j,m=1

|E Xj Xm| .

Now, as the random variables are LPQD, their covariances are non negative, so

the last factor is equal to 1. Finally, Dini’s theorem gives the convergence to zero

we sought.

Next follows a technical lemma needed in the proof of Theorem 9.

Lemma 8. Let (un)n≥1 be a sequence of real numbers such that

lim
n→+∞

1

n

n
∑

k=1

uk = τ

then, for each h ∈ H,

lim
n→+∞

1

n

n
∑

k=1

h2
(

k

n

)

uk = τ ‖h‖22 .

Proof: We verify the convergence for h a Lipschitz function. Denote vn =
∑n

k=1 uk. We may write n−1 vn = τ + εn where εn → 0. Then it follows

uk = k(τ + εk)− (k − 1) (τ + εk−1) = τ + k εk − (k − 1) εk−1 ,

so to prove the lemma it suffices to prove

lim
n→+∞

1

n

n
∑

k=1

h2
(

k

n

)

(

k εk − (k − 1) εk−1

)

= 0 .

As h is Lipschitz there exists a constant α > 0 such that |h(x)−h(y)| ≤ α |x−y|,
so

∣

∣

∣

∣

1

n

n
∑

k=1

h2
(k

n

) (

k εk − (k − 1) εk−1

)

∣

∣

∣

∣

=
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=

∣

∣

∣

∣

1

n

n−1
∑

k=1

k εk

(

h2
(k

n

)

− h2
(k + 1

n

)

)

+ εn h2(1)

∣

∣

∣

∣

≤ 2α ‖h‖∞
n

n−1
∑

k=1

|εk|+ |εn|h2(1) → 0 ,

according to Cesaro’s theorem. For the general case remark that ‖h‖2 ≤ ‖h‖∞ ≤
C ‖h′‖2 (where h′ denotes the almost everywhere derivative of the absolutely
continuous function h) and use standard density arguments.

We now state an invariance principle in L2[0, 1] for the sequence (Wn)n≥1.

As for the result proved by Birkel, the main problem is to have some control on

the covariances placed outside of the principal diagonal of the covariance matrix.

The essence is to impose conditions that imply that the sum of those covariances

became negligible. We achieve this in a somewhat different way than that used

by Birkel [3], which saves us from imposing some speed convergence to zero of

the above mentioned sums, as Birkel was forced to do with u(n) (cf. condition

(6) on Theorem 4). Besides, we will need only the existence of moments of order

2, instead of (7), which supposes the existence of moments of order greater than

2.

Theorem 9. Let (Xn)n≥1 be LPQD random variables with EXn = 0.

For each p ∈ IN put k = [np ] and ξj,p =
∑jp

i=(j−1) p+1 Xi, j = 1, ..., k − 1, and
ξk,p =

∑n
kp+1 Xi. Suppose the following conditions are verified

lim
n→+∞

1

n
E(S2

n) = σ2 > 0 ,(9)

lim
k→+∞

1

k

k
∑

j=1

E ξ2
j,p = ap and lim

p→+∞
ap
p
= σ2 ,(10)

∀ δ > 0 ,
1

n

n
∑

i=1

∫

{|Xi|>δ
√
n}

X2
i dP → 0 .(11)

Then (Wn)n≥1 converges weakly in L2[0, 1] to σW , where W is a standard Brow-

nian motion.

Proof: As the random variables are LPQD, the condition (8) may be written

as

sup
n∈IN

1

n
E(S2

n) ≤ C <∞ ,
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for some constant C > 0. But this is an immediate consequence of (9), so we

have the relative compactness of the sequence (Wn)n≥1. To prove the invariance

principle we must verify the convergence in distribution

∫ 1

0
Wn(t) f(t) dt =

1√
n

n
∑

i=1

Xi

∫ 1

i/n
f(t) dt →

∫ 1

0
σW (t) f(t) dt , f ∈ L2[0, 1] .

It is well known that for f ∈ L2[0, 1] the random variable
∫ 1
0 σW (t) f(t) dt is

Gaussian with mean 0 and variance ‖h‖2 where h(x) =
∫ 1
x f(t) dt. Using the

space H, this means we are interested in the random variables

Sn(h) =
1√
n

n
∑

i=1

h

(

i

n

)

Xi , h ∈ H ,

and we may consider functions h which are Lipschitz. Notice that we are inter-

ested in proving a central limit theorem for a triangular array. To accomplish this

we will use a method similar to the proof of Theorem 3 by Newman and Wright

[9], which consists in approximating ϕSn(h), the characteristic function of Sn(h),

by the product of the characteristic functions of the blocks ξj,p, j = 1, ..., k. As a

first step

(12)
∣

∣

∣ϕSn(h)(t)− ϕSkp(h)(t)
∣

∣

∣ ≤ |t|Var1/2
(

Sn(h)− Skp(h)
)

which converges to zero as k → +∞, using (9) and the fact that h is Lipschitz.
Next we approach h by a simple function keeping an approximation of the corre-

sponding characteristic functions

∣

∣

∣

∣

ϕSkp(h)(t)− E exp

(

it√
kp

k
∑

j=1

h

(

j

k

)

ξj,p

)∣

∣

∣

∣

≤

≤ |t|Var1/2
(

Skp(h)−
1√
kp

k
∑

j=1

h

(

j

k

)

ξj,p

)

.

Expanding the variance and using the Lipschitz property of h, that is

|h(x)− h(y)| ≤ α |x− y|, we easily find

Var

(

Skp(h)−
1√
kp

k
∑

j=1

h

(

j

k

)

ξj,p

)

≤ α2

k3l

kp
∑

j,m=1

E Xj Xm ,

hence, from (9), there exists a constant C1 > 0, independent from p, such that

(13)

∣

∣

∣

∣

E exp(it Skp(h))− E exp

(

it
1√
kp

k
∑

j=1

h

(

j

k

)

ξj,p

)∣

∣

∣

∣

≤ C1 α |t|
k



374 P.E. OLIVEIRA and CH. SUQUET

which converges to zero as k → +∞. The next step is to approximate the charac-
teristic function of (kp)−1/2∑k

j=1 h(j/k) ξj,p by what we would find if the blocks

where independent. Using Theorem 1 of Newman and Wright [9], it follows, using

(9) and (10), that for k large enough and some constant C2 > 0,

(14)

∣

∣

∣

∣

E exp

(

it
1√
kp

k
∑

j=1

h

(

j

k

)

ξj,p

)

−
k
∏

j=1

E exp

(

it√
kp

h

(

j

k

)

ξj,p

)∣

∣

∣

∣

≤

≤ 1
2

k
∑

j,m=1

j 6=m

t2

kp

∣

∣

∣

∣

h

(

j

k

)

h

(

m

k

)∣

∣

∣

∣

E(ξj,p ξm,p)

≤ t2 ‖h‖2∞
2 kp

k
∑

j,m=1

j 6=m

E(ξj,p ξm,p) ≤
t2 ‖h‖2∞
2

C2

(

σ2 − al
l

)

.

So it remains to prove that the product
∏k
j=1 E exp(it(kp)

−1/2 h(j/k) ξj,p) con-

verges to the characteristic function of a Gaussian distribution where the ξj,p,

j = 1, ..., k, may be supposed independent. Using Lemma 8 it follows from (10)

that

s2
n(h) =

1

kp

k
∑

j=1

h2
(

j

k

)

E ξ2
j,p →

ap
p
‖h‖22 .

So to prove the Lindeberg condition for the triangular array (kp)−1/2 h(j/k) ξj,p,

j = 1, ..., k, k ∈ IN, it is enough to prove that, for every ε > 0,

(15)
k
∑

j=1

∫

{|h( j

k
)| |ξj,p|>ε sn(h)

√
kp}

1

kp
h2
(

j

k

)

ξ2
j,p dP → 0 .

An upper bound for this integral is, for k large enough and using Lemma 4 from

Utev [17],

(16)
‖h‖2∞

k

k
∑

j=1

jp
∑

i=(j−1) p+1

∫

{|Xi|> ε
2

√

ap

p

‖h‖2
‖h‖∞

√

k
p
}
X2
i dP ≤

≤ ‖h‖2∞
k

kp
∑

j=1

∫

{|Xi|> ε
2p

√

ap

p

‖h‖2
‖h‖∞

√
kp}

X2
i dP ,

which converges to zero, according to (11). Now summing up the inequalities

(12), (13), (14) and (16), we get, for p fixed

lim sup
n→+∞

∣

∣

∣

∣

E exp(it Sn(h))− exp
(

−σ2

2
t2 ‖h‖22

)∣

∣

∣

∣

≤ C t2 ‖h‖2∞
(

σ2 − ap
p

)
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and now letting p→ +∞ we have the central limit theorem that ends the proof.

It is easily verified that, supposing the wide sense stationary, condition (10)

is superfluous, thus we have the following result.

Corollary 10. Let (Xn)n≥1 be a wide sense stationary LPQD sequence of

random variables with EXn = 0. If (9) and (11) are verified then Wn(t) converges

weakly in L2[0, 1] to σW , where W is a standard Brownian motion.

It is evident that (6) implies (9) and (7) implies (11).

The method of proof used by Birkel [2] for associated random variables may

be adapted to the LPQD case providing a result with the same conditions of our

previous theorem in what concerns the existence of moments.

Theorem 11. Let (Xn)n≥1 be LPQD random variables with EXn = 0.

Assume

u(n) = sup
k≥1

∑

j: |j−k|≥n
Cov(Xj , Xk)→ 0 , u(1) <∞ ,(17)

inf
n∈IN

1

n
σ2
n > 0 and

1

σ2
n

σ2
nk → k, k ≥ 1 ,(18)

∀ ε > 0 ,
1

σ2
n

n
∑

j=1

∫

{|Xi|>εσn}
X2
i dP → 0 .(19)

Then the sequence W ∗
n(t) converges weakly in L2[0, 1] to a standard Brownian

motion.

Proof: According to Corollary 7 the sequence (W ∗
n)n≥1 is relatively compact,

so we need only to consider the convergence of
∫ 1
0 W ∗

n(t) f(t) dt, f ∈ L2[0, 1]. The

proof follows from an adaptation of Lemma 3, Lemma 4 and Theorem 3 in Birkel

[2], to which we refer the reader. We mention only the steps which are not already

contained in Birkel’s proof.

First, the identification of the limit, that is, we must prove that

s2
n(h) =

1

σ2
n

k
∑

j=1

h2
(

j

k

)

E ξ2
j,p → ‖h‖22 .

For this put τk,p =
∑k

j=1 E ξ2
j,p, where the random variables are defined as in The-

orem 9, and define the probability measures µk,p = τ−1
k,p

∑k
j=1 E ξ2

j,p δj/k, where δx
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denotes the Dirac mass at point x. Then

s2
n(h) =

τ2
k,p

σ2
kp

∫

h2 dµk,p .

According to the proofs of Lemma 4 and Theorem 3 in Birkel [2] it is possible

to construct a sequence pn (hence, a sequence kn) such that pn → +∞ and

τ2
k,p σ

−2
kp → 1. Now we check that µn = µkn,pn

converges weakly to the uniform

distribution on [0, 1]. Here it is enough to prove µn[0, t]→ t, t ∈ [0, 1]. In fact

µn[0, t] =
1

τ2
k,p

[nt]
∑

j=1

E ξ2
j,p =

σ2
kp

τ2
k,p

1

σ2
kp

(σ2
[kpt] − γk,p,t) ,

and, from Lemma 1 in [2], it follows σ−2
kp σ2

[kpt] → t. On the other hand

0 ≤ γk,p,t
σ2
kp

≤
σ2
kp − τ2

k,p

σ2
kp

→ 0 .

That is, µn[0, t] → t. The function h being bounded and continuous, it follows

s2
n(h)→ ‖h‖22.
Second problem, the use of the Lindeberg condition. Instead of the expression

in Lemma 4 of [2], we find in our setting

p

s2
n(h)σ

2
n

n
∑

j=1

∫

{|Xj |>ε s2n(h)σn p−1}
X2
i dP ,

that is, we have the factor sn(h) that did not appear in Birkel’s setting. We have

just proved that s2
n(h) → ‖h‖22, so this integral reduces to the one considered in

Lemma 4 of [2] up to a constant, which naturally does not affect the convergence

to zero.

3 – An example

We give now an example showing that our Theorem 9 is not contained in

the Birkel’s Theorem 4, nor even in Theorem 3 when the Xn are associated. It

illustrates the fact that Birkel’s conditions are more sensible to perturbations

than the assumptions of Theorem 9.

Let (Xn)n≥1 be a stationary and LPQD sequence with EXn = 0 and EX2
n = 1.

We write Cov(Xi, Xj) = γ(|j−i|) and assume that∑n≥1 γ(n) <∞ together with
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γ(n) > 0 for each n ∈ IN. It is easily verified that (Xn)n≥1 satisfies the conditions

(9), (10) and (11) of Theorem 9. Let us define the perturbed sequence (X ′
n)n≥1

by

X ′
n = cnXn where cn =

{

q1/2 if n = 2q, q ∈ IN,
1 else .

The perturbed sequence remains LPQD. Its Birkel coefficient u′(n) is now

u′(n) = sup
k≥1

u′k(n) with u′k(n) =
∑

j: |j−k|≥n
cj ck Cov(Xj , Xk) .

For each n we can find k large enough such that k + n = 2q and q1/2 γ(n) ≥ 1 so
supk≥1 u

′
k(n) ≥ 1 and u′(n) does not converge to zero.

Next we check conditions (9) to (11) for (X ′
n)n≥1. Write S′n =

∑n
i=1 X

′
i, and

ξ′j,p for the blocs relative to the X ′
i.

To (9): By stationarity of (Xn)n≥1, we have

1

n
E S2

n → σ2 = Var(X1) + 2
∑

k≥1

γ(k) <∞ .

In the decomposition

E S′2n = E S2
n +

∑

1≤i,j≤n
cicj>1

(ci cj − 1)E XiXj ,

the second term is bounded above by

∑

1≤i,j≤n
cicj>1

ci cj E XiXj =
∑

1≤i,j≤n
ci>1, cj>1

ci cj E XiXj+2
∑

1≤i≤n
ci=1

∑

1≤j≤n
cj>1

cj E XiXj = T1+T2 ,

where

T1 ≤
∑

1≤i,j≤n
ci>1, cj>1

ci cj =
(

n
∑

i=1, ci>1

ci
)2
= O(ln3 n)

and

T2 ≤ 4σ2
n
∑

j=1, cj>1

cj = O(ln3/2 n) .

Hence n−1(T1 + T2)→ 0 and n−1ES′2n converges to σ2.

To (10): Observing that the number of blocs ξ ′j,p having at least one perturbed
term is dominated by log2(kp) and that the variance of such a perturbed bloc is
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bounded by p2 log2(kp), we have the estimate

0 ≤
k
∑

j=1

E ξ′2j,p −
k
∑

j=1

E ξ2
j,p ≤ p2(log2 n)

2 ,

so limk→∞ k−1∑k
i=1 E ξ′2j,p = ap = E S2

p .

To (11): Use the crude estimate

n
∑

i=1, ci>1

∫

{ci |Xi|>δ
√
n}

c2
i X

2
i dP ≤

n
∑

i=1, ci>1

c2
i E X2

i =
n
∑

i=1, ci>1

c2
i = O(ln2 n) .

Remark. If we choose the sequence (Xn)n≥1 associated, the same conclusion

hold: (X ′
n)n≥1 verify the L2[0, 1] invariance principle by Theorem 9 but (Xn)n≥1

does not satisfy the conditions of Theorem 3.

REFERENCES

[1] Billingsley, P. – Convergence of probability measures, Wiley, 1968.

[2] Birkel, T. – The invariance principle for associated processes, Stoch. Proc. and
Appl., 27 (1988), 57–71.

[3] Birkel, T. – A functional central limit theorem for positively dependent random
variables, J. Multiv. Anal., 44 (1993), 314–320.

[4] Guilbart, C. – Etude des produits scalaires sur l’espace des mesures. Estimation
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