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CONVERGENCE OF APPROXIMATION PROCESSES
ON CONVEX CONES

M.S.M. Roversi, A.O. Chiacchio and M.L.B. Queiroz

Abstract: The purpose of this paper is to establish convergence results for sequences

of convex conic operators on C(X; C) which are regular, i.e., sequences {Tn}n≥1 such that

for some positive linear operator Sn on C(X; IR) we have Tn(g ⊗K) = Sn(g) ⊗K, for

every continuous real valued function g and every element K of the convex cone C.

1 – Introduction

We start by reviewing some of the properties of convex cones.

Definition 1. An (abstract) convex cone is a non-empty set C such that

to every pair of elements, K and L, of C, there corresponds an element K + L,

called the sum of K and L, in such a way that addition is commutative and

associative, and there exists in C a unique element 0, called the vertex of C, such

that K+0 = K, for every K ∈ C. Moreover, to every pair, λ and K, where λ ≥ 0

is a non-negative real number and K ∈ C, there corresponds an element λK,

called the product of λ and K, in such a way that multiplication is associative:

λ(µK) = (λµ)K; 1.K = K and 0.K = 0 for every K ∈ C; and the distributive

laws are verified: λ(K+L) = λK+λL, (λ+µ)K = λK+µK, for every K,L ∈ C

and λ ≥ 0, µ ≥ 0.

Definition 2. Let C be an (abstract) convex cone and let d be a metric on

C. We say that the pair (C, d) is a metric convex cone if the following properties

are valid:
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a) d
( m∑

i=1

Ki,
m∑

i=1

Li

)
≤

m∑

i=1

d(Ki, Li),

b) d(λK, λL) = λd(K,L),

for every Ki, Li (i = 1, ...,m), K, L in C and every λ ≥ 0.

Let (C, d) be a metric convex cone. Then:

c) d(λK, µL) ≤ |λ− µ| d(K, 0) + µd(K,L),

for every K and L in C and every λ ≥ 0 and µ ≥ 0.

Definition 3. A non-empty subset K of an (abstract) convex cone C is called

a convex subcone if K,L ∈ K and λ ≥ 0 imply K + L ∈ K and λK ∈ K. When

equipped with the induced operations, a convex subcone K ⊂ C becomes a convex

cone.

Example 1: If E is a vector space over the reals then the set C = Conv(E)

of all convex non-empty subsets of E is a convex cone with the operations defined

by: if K,L ∈ Conv(E) and λ ≥ 0

K + L = {u+ v; u ∈ K, v ∈ L} ,

λK = {λu; u ∈ K} ,

0 = {θ}, where θ is the origin of E .

When E is a normed vector space, the set K consisting of those elements of

Conv(E) that are bounded sets is a convex subcone of Conv(E).

Definition 4. Let C1 and C2 be two convex cones. An operator T : C1 → C2

is called a convex conic operator, if

T (F +G) = T (F ) + T (G)

T (λ.F )λ.T (F )

for every pair F,G ∈ C1 and every λ ≥ 0.

2 – Spaces of continuous functions

Let X be a compact Hausdorff space. Let (C, d) be a metric convex cone.

We denote by C(X; C) the convex cone consisting of all continuous mappings

F : X → C. In C(X; C) we consider the topology of uniform convergence over X,
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determined by the metric defined by

d(F,G) = sup
{
d(F (x), G(x)); x ∈ X

}

for every pair F,G of elements of C(X; C). Hence Fn → F in C(X; C) if, and

only if, d(Fn, F )→ 0.

When (C, d) is IR equipped with the usual distance d(x, y) = |x − y|, then

C(X, C) is the classical Banach space C(X) of all continuous real-valued functions

f : X → IR, equipped with the sup-norm ‖f‖ = sup{|f(x)|; x ∈ X}.

Assume that (X, d̃) is a metric compact space. We say that F : X → C is a

Lipschitz function if there exists a positive constant MF such that

d(F (x), F (y)) ≤MF d̃(x, y)

for all x, y∈X. The subset of C(X; C) of such functions is denoted by Lip(X; C).

When (C, d) is IR equipped with usual distance d(x, y) = |x − y| we denote

Lip(X; IR) = Lip(X) and Lip+(X) = {f ∈ Lip(X); f ≥ 0}. Notice that

Lip(X; C) is a convex subcone of C(X; C).

For each K ∈ C, we denote by K∗ the element of C(X; C) defined by K∗(t) =

K, for all t ∈ X.

For each f ∈ C+(X) and K ∈ C we denote by f ⊗K the function of C(X; C)

defined by (f ⊗K)(x) = f(x).K, for all x ∈ X. The convex subcone of C(X; C)

generated by the functions f ⊗K, where f ∈ Lip+(X) and K ∈ C, is denoted by

Lip+(X)⊗ C.

Definition 5. Let K be a convex subcone of a convex cone C. Let T :

C(X; C)→ C(X; C) be a convex conic operator. We say that T is regular over K

if there exists a linear operator T̂ : C(X; IR)→ C(X; IR) such that

T (f ⊗K) = T̂ (f)⊗K

for all f ∈ C+(X) and K ∈ K.

When K = C and T is regular over K, we say simply that T is regular.

Definition 6. Let T : C(X; C) → C(X; C) be a convex conic operator. We

say that T is monotonically regular if there exists a monotone linear operator

T̂ : C(X; IR)→ C(X; IR) such that

T (f ⊗K) = T̂ (f)⊗K

for all f ∈ C+(X) and K ∈ C.
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We recall that an operator S on C(X; IR) is called monotone if S(f) ≤ S(g),

whenever f ≤ g. For linear operators, to be monotone is equivalent to be positive,

i.e., S(f) ≥ 0, for all f ≥ 0.

Remark 1. Notice that if T is regular and T̂ preserves the constant functions,

i.e., T̂ (e0) = e0, where e0 denotes the real function e0(t) = 1, for all t ∈ X, then

T also preserves the constant functions, since T (K∗) = T (e0⊗K) = T̂ (e0)⊗K =

e0 ⊗K = K∗, for every K ∈ C.

Definition 7. Let T be a regular operator on the convex cone C(X; C).

Define

α(x) =
(
T̂ (d̃x), x

)

for all x ∈ X, where d̃x is defined by d̃x(y) = d(x, y), for all y ∈ X.

Lemma 1. Let (X, d̃) be a metric compact space and (C, d) be a metric

convex cone. Then:

a) If F ∈ Lip+(X)⊗ C, then F ∈ Lip(X; C).

b) If g ∈ Lip+(X) and F ∈ Lip+(X) ⊗ C, then the function x 7→ g(x)F (x),

x ∈ X, belongs to Lip+(X)⊗ C.

Proof: a) Let F ∈ Lip+(X) ⊗ C be given. There exist gi ∈ Lip+(X) and

Ki ∈ C, for i = 1, ...,m, such that F =
∑m

i=1 gi⊗Ki. Let Mi > 0 be the Lipschitz

constant for gi, i = 1, ...,m. Then

d(F (x), F (y)) = d
( m∑

i=1

gi(x)Ki,
m∑

i=1

gi(y)Ki

)
≤

≤
m∑

i=1

d
(
gi(x)Ki, gi(y)Ki

)
≤

m∑

i=1

|gi(x)− gi(y)| · d(Ki, 0) ≤

≤
m∑

i=1

Mi d̃(x, y) d(Ki, 0) =
( m∑

i=1

Mi d(Ki, 0)
)
d̃(x, y)

for all x, y ∈ X. Hence F ∈ Lip(X; C).

b) Let g ∈ Lip+(X) and F ∈ Lip+(X)⊗C be given. Put ‖F‖ = sup{d(F (x), 0);

x ∈ X}. Since F ∈ C(X; C) it follows that ‖F‖ < ∞. Let Mg and MF be the

positive constants such that

|g(x)− g(y)| ≤Mg d̃(x, y) and d(F (x), F (y)) ≤MF d̃(x, y) ,
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for all x, y ∈ X. Then

d
(
g(x)F (x), g(y)F (y)

)
≤ |g(x)− g(y)| d(F (x), 0) + g(y) d(F (x), F (y))

≤Mg d̃(x, y) ‖F‖+ ‖g‖MF d̃(x, y)

=
(
‖F‖Mg + ‖g‖MF

)
d̃(x, y)

for all x, y ∈ X. Hence gF ∈ Lip(X; C).

Now, if g ∈ Lip+(X) and F =
∑m

i=1 gi ⊗Ki, where gi ∈ Lip+(X) and Ki ∈ C,

then gF =
∑m

i=1 hi ⊗Ki where hi = g · gi ∈ Lip+(X). It follows that gF belongs

to Lip+(X)⊗ C.

Lemma 2. Let (X, d̃) and (C, d) be as in Lemma 1. Then Lip+(X) ⊗ C is

dense in C(X; C). Consequently, Lip(X; C) is dense in C(X; C).

Proof: Let x, y ∈ X, x 6= y be given. Let g : X → IR be defined by

g(z) = d̃(x, z), for all z ∈ X. Since |g(z) − g(t)| = |d̃(x, z) − d̃(x, t)| ≤ d̃(z, t),

for all z, t ∈ X, it follows that g ∈ Lip+(X). Therefore h = g/‖g‖ belongs to

Lip(X; [0, 1]). Moreover, h(y) > 0 = h(x), i.e., h separates x and y. By Lemma 1,

if F,G ∈ Lip+(X) ⊗ C then hF + (1 − h)G belongs to Lip+(X) ⊗ C. Since

Lip+(X)⊗C contains the constant functions, the result follows from Corollary 3,

Prolla [3].

Lemma 3 (Andrica and Mustata [1]). Let (X, d̃) be a metric compact space

and let S : C(X; IR) → C(X; IR) be a positive linear operator. If f ∈ Lip(X)

then there exists a positive constant Mf such that

∣∣∣(Sf, x)− f(x) (Se0, x)
∣∣∣ ≤Mf α(x)

for all x ∈ X.

Proof: Let f ∈ Lip(X) and let Mf > 0 be a Lipschitz constant for f , i.e.,

|f(x)− f(y)| ≤Mf d̃(x, y)

for all x, y ∈ X. It follows that

−Mf d̃(x, ·) ≤ f(·)− f(x) e0 ≤Mf d̃(x, ·)

for all x ∈ X. Since S is linear and positive we have

−Mf (S(d̃x), x) ≤ (Sf, x)− f(x) (Se0, x) ≤Mf (S(d̃x), x)
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for all x ∈ X. Therefore
∣∣∣(Sf, x)− f(x) (Se0, x)

∣∣∣ ≤Mf (S(d̃x), x)

for all x ∈ X.

Corollary 1. Let (X, d̃) and S be as in Lemma 3. Assume that Se0 = e0.

If f ∈ Lip(X) then there exists a positive constant Mf such that

∣∣∣(Sf, x)− f(x)
∣∣∣ ≤Mf α(x)

for all x ∈ X.

Proof: It follows immediately from Lemma 3 since (Se0, x) = 1, for all

x ∈ X.

Remark 2. A positive linear operator S on C(X; IR) such that Se0 = e0,

i.e., S preserves the constant functions, is called a Markov operator on C(X; IR).

Andrica and Mustata [1] proved Lemma 3 assuming that S is a Markov operator.

Proposition 1. Let (X, d̃) be a metric compact space and (C, d) be a metric

convex cone. Let T be a monotonically regular operator on C(X; C) and let

F ∈ Lip+(X)⊗C be given. There exist positive constants MF and AF such that

d
(
(TF, x), F (x)

)
≤MF α(x) +AF |(T̂ e0, x)− 1|

for all x ∈ X.

Proof: Let F =
∑m

i=1 gi ⊗Ki be given, where gi ∈ Lip+(X) and Ki ∈ C, for

i = 1, ...,m. Since T is convex conic and regular, we have

(TF, x) =
( m∑

i=1

T (gi ⊗Ki), x
)
=

m∑

i=1

(T̂ (gi), x)Ki

for all x ∈ X.

For each i = 1, ...,m, by Lemma 3, there exists a constant Mi > 0 such that
∣∣∣(T̂ (gi), x)− gi(x) (T̂ e0, x)

∣∣∣ ≤Mi α(x)

for all x ∈ X. Let MF and AF be the positive constants defined by

MF =
m∑

i=1

Mi d(Ki, 0) and AF =
m∑

i=1

‖gi‖ d(Ki, 0) .
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Then,

d
(
(TF, x), F (x)

)
≤

m∑

i=1

d
(
(T̂ (gi), x)Ki, gi(x)Ki

)
≤

m∑

i=1

∣∣∣(T̂ (gi), x)−gi(x)
∣∣∣ d(Ki, 0) ≤

≤
m∑

i=1

[
Mi α(x) + ‖gi‖ · |(T̂ e0, x)− 1|

]
d(Ki, 0) ≤MF α(x) +AF |(T̂ e0, x)− 1|

for all x ∈ X.

Corollary 2. Let (X, d̃), (C, d) and T be as in Proposition 1. Assume that T̂

preserves the constant functions. If F ∈ Lip+(x)⊗ C then there exists a positive

constant MF such that

d
(
(TF, x), F (x)

)
≤MF α(x)

for all x ∈ X.

Proof: The result follows from Proposition 1 since T̂ (e0) = e0.

Definition 8. Let {Tn}n≥1 be a sequence of operators on C(X; C). We say

that {Tn}n≥1 is uniformly equicontinuous if for each ε > 0 there exists δ > 0 such

that d(F,G) < δ implies d(TnF, TnG) < ε, for all n = 1, 2, 3, ... .

Let {Tn}n≥1 be a sequence of regular operators on C(X; C). For each n ≥ 1

we denote by αn the function defined by

αn(x) = (T̂n(d̃x), x)

for all x ∈ X.

Theorem 1. Let (X, d̃) be a metric compact space and (C, d) be a metric

convex cone. Let {Tn}n≥1 be a sequence of monotonically regular operators on

C(X; C). Assume that {Tn}n≥1 is uniformly equicontinuous. If T̂ne0 → e0 and

{αn(x)}n≥1 converges to zero, uniformly in x ∈ X, then TnF → F , for every

F ∈ C(X; C).

Proof: Let G ∈ Lip+(X)⊗C be given. By Proposition 1, there exist positive

constants MG and AG such that, for each n ≥ 1,

d
(
(TnG, x), G(x)

)
≤MG αn(x) +AG|(T̂ne0, x)− 1|

for all x ∈ X. Since αn(x) → 0, uniformly in x ∈ X and T̂ne0 → e0 it follows

that d(TnG,G)→ 0. Hence TnG→ G, for each G in Lip+(X)⊗ C.
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Let F ∈ C(X; C) and ε > 0 be given. By the uniform equicontinuity of the

sequence {Tn}n≥1, there is some δ > 0, which we may assume to verify δ < ε/3,

such that d(F,H) < δ implies d(TnF, TnH) < ε/3, for all n ≥ 1. By Lemma 2,

there exists G in Lip+(X)⊗ C such that d(F,G) < δ. Since TnG→ G as proved

above, there is n0 such that n ≥ n0 implies d(TnG,G) < ε/3. It follows that, for

n ≥ n0

d
(
(TnF, x), F (x)

)
≤ d

(
(TnF, x), (TnG, x)

)
+ d

(
(TnG, x), G(x)

)
+ d

(
G(x), F (x)

)

≤ d(TnF, TnG) + d(TnG,G) + d(G,F ) < ε

for all x ∈ X. Hence TnF → F .

Remark 3. If each T̂n preserves the constant functions, then the proof of

Theorem 1 implies that

d(TnF, F ) ≤MF ‖αn‖

for all n ≥ 1 and all F ∈ Lip+(X)⊗ C, where ‖αn‖ = sup{|αn(x)|; x ∈ X}.

If we define βn(x) = (T̂n(d̃x)
2, x), for all x ∈ X, then we have that ‖αn‖ ≤

‖βn‖
1

2 , for all n ∈ IN, and the following result holds:

Corollary 3. Let {Tn}n≥1 be as in Theorem 1. Assume that each T̂n

preserves the constant functions. If {βn(x)}n≥1 converges to zero, uniformly in

x ∈ X, then TnF → F , for every F ∈ C(X; C). Furthermore, if F ∈ Lip+(X)⊗C

then there exists a constant MF > 0 such that

d(TnF, F ) ≤MF ‖βn‖
1

2

for all n ≥ 1.

Proof: Apply Theorem 1 and Remark 3.

Example 2: Let J be a finite set, and for each k ∈ J , let tk ∈ X and

ψk ∈ C
+(X) be given. The convex conic operator T defined on C(X; C) by

(TF, x) =
∑

k∈J

ψk(x)F (tk)

for all F ∈ C(X; C) and x ∈ X is called an operator of interpolation type. If

F = f ⊗K, where f ∈ C+(X) and K ∈ C, then

(TF, x) =
∑

k∈J

ψk(x) [f(tk)K] =
[∑

k∈J

ψk(x) f(tk)
]
K .
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Hence, T is regular and T (f ⊗K) = T̂ (f)⊗K where, for each f ∈ C(X; IR),

(T̂ f, x) =
∑

k∈J

ψk(x) f(tk) .

Let us assume that, for every x ∈ X,

∑

k∈J

ψk(x) = 1 .

It follows that T̂ e0 = e0. The operators of Bernstein and of Hermite–Fejér type

are examples of operators satisfying such condition.

Remark 4. If (C, d) is a convex cone and T is a regular operator on C(X; C)

then TK∗ = T (e0 ⊗K) = T̂ (e0)⊗K, for every K ∈ C, and we have

d
(
(TK∗, x),K∗(x)

)
= d

(
(T̂ e0, x)K, e0(x).K

)

≤ |(T̂ e0, x)− 1| d(K, 0)

for all x ∈ X. It follows that if {Tn}n≥1 is a sequence of regular operators on

C(X; C) such that T̂ne0 → e0, then TnK
∗ → K∗, for every K ∈ C.

Lemma 4. Let (X, d̃) be a metric compact space and (C, d) be a convex

cone. Let {Tn}n≥1 be a sequence of regular convex conic operator on C(X; C).

Assume that T̂ne0 → e0. If F ∈ C(X; C) then (Tn[F (x)]
∗, x) → F (x), uniformly

in x ∈ X.

Proof: Let F ∈ C(X; C) and ε > 0 be given. Since T̂ne0 → e0 there is n0

such that n ≥ n0 implies

∣∣∣(T̂n(e0), x)− 1
∣∣∣ <

ε

2 ‖F‖

for all x ∈ X, where ‖F‖ = sup{d(F (x), 0); x ∈ X}. It follows that, for n ≥ n0

d
(
(Tn[F (x)]

∗, x), f(x)
)
≤

∣∣∣(T̂n(e0), x)− 1
∣∣∣ d(F (x), 0)

≤

(
ε

2 ‖F‖

)
· ‖F‖ < ε

for all x ∈ X. Therefore, (Tn[F (x)]
∗, x)→ F (x), uniformly in x ∈ X.
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3 – Hausdorff convex cones

Definition 9. An ordered convex cone is a pair (C,≤), where C is an (ab-

stract) convex cone and ≤ is an ordering of its elements, i.e., ≤ is a reflexive,

transitive and antisymmetric relation on C, in such a way that

a) K ≤ L implies K +M ≤ L+M , for every M ∈ C,

b) K ≤ L, λ ≥ 0 implies λK ≤ λL,

c) λ ≤ µ implies λK ≤ µK, for every K ≥ 0.

Definition 10. Let (C,≤) be an ordered convex cone and let dH be a semi-

metric on C. We say that dH is a Hausdorff semi-metric on C if there exists an

element B ≥ 0 on C such that:

a) For every pair K,L ∈ C and λ ≥ 0, the following is true: dH(K,L) ≤ λ if,

and only if, K ≤ L+ λB and L ≤ K + λB,

b) λB ≤ µB implies λ ≤ µ.

If dH is a Hausdorff semi-metric on C, we say that (C, dH) is a Hausdorff

convex cone.

Example 3: If C = IR with the usual operations and ordering, the usual

distance dH(x, y) = |x− y| is a Hausdorff metric on IR, with B = 1.

Example 4: Let C be the convex subcone of Conv(E) of all elements of

Conv(E) that are bounded sets and let B be the closed unit ball of E. Define on

C the usual Hausdorff semi-metric dH by setting

dH(K,L) = inf
{
λ > 0; K ⊂ L+ λB, L ⊂ K + λB

}

for every pair K,L ∈ C. Then (C, dH) is a Hausdorff convex cone.

Let (X, d̃) be a metric compact space and (C, dH) be a Hausdorff convex cone.

In C(X; C) we consider the topology determined by the metric defined by

d(F,G) = sup
{
dH(F (x), G(x)); x ∈ X

}

for every pair F,G in C(X; C).

Remark 5. If (C, dH) is a Hausdorff convex cone and {Tn}n≥1 is a sequence

of regular operators on C(X; C) then TnB
∗ → B∗ implies T̂ne0 → e0. Indeed, let
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ε > 0 be given. Since B∗ = e0⊗B and Tn(e0⊗B)→ e0⊗B, it follows that there

is n0 such that n ≥ n0 implies

dH

(
(T̂n(e0), x)B, e0(x)B

)
< ε

for all x ∈ X. By the definition of dH we have

(
T̂n(e0), x

)
B ≤ B + εB = (1 + ε)B

and

B ≤ (T̂n(e0), x)B + εB

for all x ∈ X. By condition b) of Definition (10) we have (T̂n(e0), x) < 1 + ε and

1− ε < (T̂n(e0), x), for all x ∈ X. Hence |(T̂n(e0), x)− 1| < ε, for all x ∈ X and

so T̂ne0 → e0.

We recall that an operator T on C(X; C) is called monotone, if F ≤ G implies

TF ≤ TG for every pair F,G in C(X; C).

Remark 6. If (C, dH) is a Hausdorff convex cone and T is a regular operator

on C(X; C) that is monotone then T̂ is also monotone. Indeed, for f, g ∈ C(X; IR)

such that f ≤ g we have f ⊗ B ≤ g ⊗ B. It follows that T (f ⊗ B) ≤ T (g ⊗ B),

and since T is regular, we get (T̂ (f), x)B ≤ (T̂ (g), x)B, for all x ∈ X. Therefore

T̂ f ≤ T̂ g.

Theorem 2. Let (X, d̃) be a metric compact space and (C, dH) be a Hausdorff

convex cone. Let {Tn}n≥1 be a sequence of regular continuous operators on

C(X; C). Assume that each Tn is monotone and TnB
∗ → B∗. If {αn(x)}n≥1

converges to zero, uniformly in x ∈ X, then TnF → F , for every F ∈ C(X; C).

Proof: By Theorem 1 it suffices to show that the sequence {Tn}n≥1 is uni-

formly equicontinuous. Let ε > 0 be given. Choose δ0 > 0 such that δ0(1+δ0) < ε.

Since TnB
∗ → B∗, there is n0 so that n > n0 implies dH((TnB, x), B) < δ0, for

all x ∈ X. It follows from the definition of dH that

(TnB
∗, x) ≤ B + δ0B = (1 + δ0)B

and

B ≤ (TnB
∗, x) + δ0B

for all x ∈ X, and n > n0.
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Let F,G ∈ C(X; C) be such that d(F,G) < δ0. We claim that d(TnF, TnG) <

ε, for all n > n0. Indeed, since dH(F (x), G(x)) < δ0, for all x ∈ X, it follows

that F ≤ G+ δ0B
∗ and G ≤ F + δ0B

∗.

Since each Tn is convex conic and monotone, we have, for each n ≥ 1, TnF ≤

TnG+ δ0 TnB
∗ and TnG ≤ TnF + δ0 TnB

∗. Therefore, for each n ≥ 1, (TnF, x) ≤

(TnG, x) + δ0(TnB
∗, x), for all x ∈ X. It follows that, for n > n0

(TnF, x) ≤ (TnG, x) + δ0(1 + δ0)B < (TnG, x) + εB

for all x ∈ X. Similarly, for n > n0

(TnG, x) < (TnF, x) + εB

for all x ∈ X. Hence, for all n > n0

dH

(
(TnF, x), (TnG, x)

)
< ε

for all x ∈ X. It follows that, for all n > n0

d(TnF, TnG) < ε .

On the other hand, since each Tn is continuous, there exist δ1, ..., δn0
such

that d(F,G) < δk implies d(TkF, TkG) < ε, for k = 1, 2, ..., n0. Let δ =

min{δ0, δ1, ..., δn0
}. Clearly d(F,G) < δ implies d(TnF, TnG) < ε, for all n =

1, 2, 3, ... .

Corollary 4. Let (X, d̃), (C, dH) and {Tn}n≥1 be as in Theorem 2. As-

sume that Tn preserves the constant functions. If {βn(x)}n≥1 converges to zero,

uniformly in x ∈ X, then TnF → F , for every F ∈ C(X; C). Furthermore, if

F ∈ Lip+(X)⊗ C then there exists a constant MF > 0 such that

d(TnF, F ) ≤MF ‖βn‖
1

2

for all n = 1, 2, 3, ..., where βn(x) = (T̂n(d̃x)
2, x), for all x ∈ X.

Let us recall that the modulus of continuity of F ∈ C(X; C) is defined as

w(F, δ) = sup
{
d(F (x), F (t)); x, t ∈ X, d̃(x, t) ≤ δ

}

for every δ > 0. By uniform continuity of F , we have w(F, δ)→ 0 as δ → 0.

Let us consider the following condition:
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(*) There exists a constant p with 0 < p ≤ 1 such that w(F, λδ) ≤ [1 +

λ
1

p ]w(F, δ), for all F ∈ C(X; C) and all δ, λ > 0.

If X is a compact convex subset of a q-normed linear space with 0 < q ≤ 1,

then (*) holds for p = q.

The following result is proved in [4]:

Lemma 5. Assume that (*) holds. Let F ∈ C(X; C) and δ > 0 be given.

Then

dH(F (x), F (t)) ≤

[
1 +

(
d̃(x, t)

δ

)1

p
]
w(F, δ)

for every pair, x and t, of elements of X.

If {Tn}n≥1 is a sequence of convex conic operators on C(X; C) that are regular,

let

an(x) =
(
T̂n((d̃x)

1

p ), x
)

for all x ∈ X, where p is given by condition (*).

Proposition 2. Assume that (*) holds. Let {Tn}n≥1 be a sequence of convex

conic operators on C(X; C) such that each Tn is monotone and regular. Then

dH

(
(TnF, x), F (x)

)
≤

[
(T̂n(e0), x)+

1

δ
1

p

an(x)

]
w(F, δ)+dH

(
(Tn[F (x)]

∗, x), F (x)
)

for every F ∈ C(X; C), x ∈ X and δ > 0.

Proof: Let F ∈ C(X; C) and δ > 0 be given. By Lemma 5, for t, x ∈ X

F (t) ≤ F (x) +

[
1 +

(
d̃(x, t)

δ

) 1

p
]
w(F, δ)B

= F (x) + w(F, δ)

[
B +

1

δ
1

p

(d̃(x, t))
1

p B

]

Hence,

F ≤ [F (x)]∗ + w(F, δ)

[
B∗ +

1

δ
1

p

(d̃x)
1

p ⊗B

]
.

Since each Tn is monotone and regular we have

(TnF, x) ≤
(
Tn[F (x)]

∗, x
)
+ w(F, δ)

[
(T̂n(e0), x) +

1

δ
1

p

an(x)

]
B
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for all x ∈ X. Similarly,
(
Tn[F (x)]

∗, x
)
≤ (TnF, x) + w(F, δ)

[
(T̂n(e0), x) +

1

δ
1

p

an(x)

]
B

for all x ∈ X. Therefore

dH

(
(TnF, x), (Tn[F (x)]

∗, x)
)
≤ w(F, δ)

[
(T̂n(e0), x) +

1

δ
1

p

an(x)

]
.

for all x ∈ X.

Theorem 3. Let (X, d̃) be a compact metric space and (C, dH) be a Hausdorff

convex cone. Let {Tn}n≥1 be a sequence of convex conic operators on C(X; C)

such that each Tn is monotone and regular. Assume that (*) holds and that

i) TnB
∗ → B∗,

ii) an(x) = 0( 1
n
), uniformly in x ∈ X.

Then TnF → F , for every F ∈ C(X; C).

Proof: Let F ∈ C(X; C) and ε > 0 be given. By i), Remark 5 and Lemma 4

choose n1 so that n ≥ n1 implies

(1) (T̂n(e0), x) < 1 + ε/2,

(2) dH((Tn[F (x)]
∗, x), F (x)) < ε/2,

for all x ∈ X. By ii) there is some constant k > 0 such that

(3) nan(x) ≤ k,

for n = 1, 2, ... and all x ∈ X. Since w(F, δ)→ 0 as δ → 0, we can choose n2 such

that n ≥ n2 implies

(4) w(F, n−p) < (ε/2) (1 + k + ε/2)−1.

By Proposition 2 and (1)–(4), it follows that for n ≥ n0 = max{n1, n2}

dH

(
(TnF, x), F (x)

)
≤

[
(T̂n(e0), x) +

1

δ
1

p

an(x)

]
w(F, δ) + dH

(
(Tn[F (x)]

∗, x), F (x)
)

=
[
(T̂n(e0), x) + nan(x)

]
w(F, n−p) + dH

(
(Tn[F (x)]

∗, x), F (x)
)

< (1 + k + ε/2)w(F, n−p) + ε/2 < ε

for all x ∈ X. Hence TnF → F .
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