PENTAGONAL NUMBERS IN THE LUCAS SEQUENCE

Ming Luo

Abstract

In this paper we have proved that the only pentagonal number in the Lucas sequence $L_{n+2}=L_{n+1}+L_{n}, L_{0}=2, L_{1}=1$ is $L_{1}=1$, the only generalized pentagonal numbers in this sequence are $L_{0}=2, L_{1}=1$ and $L_{ \pm 4}=7$.

1 - Introduction

It is well known that for positive integers m, the numbers of the form $\frac{1}{2} m(3 m-1)$ are called pentagonal numbers. In the paper [1], the author had proved that $F_{ \pm 1}=F_{2}=1$ and $F_{ \pm 5}=5$ are the only pentagonal numbers in the Fibonacci sequence $F_{n+2}=F_{n+1}+F_{n}, F_{0}=0, F_{1}=1$, where n is an integer. The Lucas sequence $L_{n+2}=L_{n+1}+L_{n}, L_{0}=2, L_{1}=1$ is closely related to the Fibonacci sequence. The object of this paper is to show that the only pentagonal number in this sequence is $L_{1}=1$. In fact, the result obtained is more general. Using the method similar to [2] and [3], we can prove that $24 L_{n}+1$ is a perfect square only for $n=0,1$ or ± 4. It follows that only L_{0}, L_{1} and $L_{ \pm 4}$ can be of the form of $\frac{1}{2} m(3 m-1)$ with m integral, not necessarily positive, i.e., so-called generalized pentagonal numbers [4].

2 - Cases $n=0,1, \pm 4(\bmod 672)$
To prove our result, we shall use the following well known properties concerning the Lucas numbers (refer. [5] and [6])

$$
\begin{equation*}
L_{-n}=(-1)^{n} L_{n}, \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& L_{3 n}=L_{n}\left(L_{2 n}-(-1)^{n}\right), \tag{2}\\
& 2 \mid L_{n} \quad \text { iff } 3 \mid n . \tag{3}
\end{align*}
$$

For even m, let

$$
\mathcal{L}_{m}= \begin{cases}L_{m} & \text { if } m \equiv \pm 2(\bmod 6) \\ \frac{1}{2} L_{m} & \text { if } m \equiv 0(\bmod 6)\end{cases}
$$

then the congruence

$$
\begin{equation*}
L_{n+2 k m} \equiv(-1)^{k} L_{n}\left(\bmod \mathcal{L}_{m}\right) \tag{4}
\end{equation*}
$$

holds, where k is an integer.
In this paper we shall also use the Jacobi symbol $\left(\frac{24 L_{n}+1}{P}\right)$ to prove that $24 L_{n}+1$ is not a perfect square provided that for some positive odd P the value of this symbol is -1 .

Lemma 1. If $m \equiv 0(\bmod 24)$ and $n \neq 0$, then $24 L_{n}+1$ is not a perfect square.

Proof: Put $n=(12 k \pm 4) m$ such that $m=2 \cdot 3^{r}$ with $r \geq 1$, then, by (4) and (1),

$$
L_{n} \equiv L_{ \pm 4 m} \equiv-L_{\mp 2 m} \equiv-L_{2 m}\left(\bmod \frac{1}{2} L_{3 m}\right)
$$

Since (2) implies $\frac{1}{2} L_{3 m}=\frac{1}{2} L_{m}\left(L_{2 m}-1\right)$, so that

$$
24 L_{n}+1 \equiv-24 L_{2 m}+1\left(\bmod \left(L_{2 m}-1\right)\right)
$$

Thus we have

$$
\left(\frac{24 L_{n}+1}{L_{2 m}-1}\right)=\left(\frac{-24 L_{2 m}+1}{L_{2 m}-1}\right)=\left(\frac{-23}{L_{2 m}-1}\right)=\left(\frac{L_{2 m}-1}{23}\right)
$$

The residue sequence of $\left\{L_{n}\right\}$ modulo 23 has period 48 . Note that $2 m \equiv \pm 12$ $(\bmod 48)$, which imply $L_{2 m} \equiv 0(\bmod 23)$, so that

$$
\left(\frac{24 L_{n}+1}{L_{2 m}-1}\right)=\left(\frac{-1}{23}\right)=-1
$$

$24 L_{n}+1$ is not a perfect square.
Lemma 2. If $n \equiv 1(\bmod 32)$ and $n \neq 1$, then $24 L_{n}+1$ is not a perfect square.
Proof: Put $n=1+2 k m$ such that $m=2^{r}, r \geq 4$ and $2 \nmid k$, then $m \equiv \pm 16$ $(\bmod 48)$. Now (4) gives

$$
24 L_{n}+1 \equiv-24 L_{1}+1 \equiv-23\left(\bmod L_{m}\right)
$$

Since the residue sequence of $\left\{L_{n}\right\}$ modulo 23 has period 48 and $m \equiv \pm 16$ $(\bmod 48)$ imply $L_{m} \equiv-1(\bmod 23)$, so that

$$
\left(\frac{24 L_{n}+1}{L_{m}}\right)=\left(\frac{-23}{L_{m}}\right)=\left(\frac{L_{m}}{23}\right)=\left(\frac{-1}{23}\right)=-1
$$

Hence $24 L_{n}+1$ is not a perfect square.
Lemma 3. If $n \equiv \pm 4(\bmod 224)$ and $n \neq \pm 4$, then $24 L_{n}+1$ is not a perfect square.

Proof: Put $n= \pm 4+2 k m$ such that $2 \nmid k$ and $m=7 \cdot 2^{r}$ with $r \geq 4$, then it is easy to check $m \equiv \pm 112(\bmod 336)$. By (4) we get

$$
24 L_{n}+1 \equiv-24 L_{ \pm 4}+1 \equiv-167\left(\bmod L_{m}\right)
$$

and

$$
\left(\frac{24 L_{n}+1}{L_{m}}\right)=\left(\frac{-167}{L_{m}}\right)=\left(\frac{L_{m}}{167}\right)
$$

The residue sequence of $\left\{L_{n}\right\}$ modulo 167 has period 336 and $m \equiv \pm 112(\bmod 336)$ imply $L_{m} \equiv-1(\bmod 167)$. Thus

$$
\left(\frac{24 L_{n}+1}{L_{m}}\right)=\left(\frac{-1}{167}\right)=-1
$$

so that $24 L_{n}+1$ is not a perfect square.
Corollary. If $n \equiv 0,1, \pm 4(\bmod 672)$ then $24 L_{n}+1$ is a perfect square only for $n=0,1, \pm 4$.

Proof: Note that the least common multiple of the moduli in the above three lemmas is 672 , then the necessary for $n=0,1, \pm 4$ follows immediately. In fact, $24 L_{0}+1=7^{2}, 24 L_{1}+1=5^{2}, 24 L_{ \pm 4}+1=13^{2}$, which complete the proof.
$3-\operatorname{Cases} n \not \equiv 0,1, \pm 4(\bmod 672)$

Lemma 4. If $n \not \equiv 0,1, \pm 4(\bmod 672)$, then $24 L_{n}+1$ is not a perfect square.
Proof: We prove this lemma by showing that $24 L_{n}+1$ is a quadratic nonresidue modulo some prime for each residue class of n modulo 672 except for $n \equiv 0,1, \pm 4(\bmod 672)$. For brevity, we let $H_{n}=24 L_{n}+1$ and the calculations will be carried out directly to the sequence $\left\{H_{n}\right\}$, which satisfies recurrent relation $H_{n+2}=H_{n+1}+H_{n}-1, H_{0}=49, H_{1}=25$.
i) Modulo 29. The sequence of residues of $\left\{H_{n}\right\}$ has period 14 . We can exclude $n \equiv \pm 2,3, \pm 6,9,11(\bmod 14)$ since they imply respectively $H_{n} \equiv 15,10,27$, $27,21(\bmod 29)$, all of which are quadratic nonresidues modulo 29 . Hence there remain $n \equiv 0,1, \pm 4,5,7,13(\bmod 14)$.

To obtain the desired period $4 k$, we usually take a prime factor of L_{k} or F_{k} as the modulo.
ii) Modulo 13. We get the residue sequence of $\left\{H_{n}\right\}$ with period 28. Since $n \equiv 5,7, \pm 10,14,21(\bmod 28)$ imply respectively $H_{n} \equiv 5,8,2,5,7(\bmod 13)$, which are quadratic nonresidues modulo 13 , then may be excluded. Thus there remain $n \equiv 0,1, \pm 4,13,15,19,27(\bmod 28)$, which are equivalent to $n \equiv 0,1, \pm 4,13,15$, $19, \pm 24,27, \pm 28,29,41,43,47, \pm 32,55,57,69,71,75,83(\bmod 84)$.
iii) Modulo 421. The period of the residue sequence of $\left\{H_{n}\right\}$ is 84 . When $n \equiv \pm 24, \pm 28,43,47,55,71,83(\bmod 84), H_{n} \equiv 259,398,398,158,127,127,398$ $(\bmod 421)$ respectively, all of which are quadratic nonresidues modulo 421, so that these values of n may be excluded.

Modulo 211. The period is 42 , and $n \equiv 15,27,29, \pm 32(\bmod 42)$ imply respectively $H_{n} \equiv 32,181,157,210(\bmod 211)$, all of which are quadratic nonresidues modulo 211 , so that $n \equiv 15,27,29, \pm 32,57,69(\bmod 84)$ may be excluded.

Thus there remain $n \equiv 0,1, \pm 4,13,19,41,75(\bmod 84)$, which are equivalent to $n \equiv 0,1, \pm 4,13,19,41,75, \pm 80,84,85,97,103,125,159(\bmod 168)$.
iv) Modulo 281. The residue sequence of $\left\{H_{n}\right\}$ has period 56 . Since $n \equiv 19,28,29,41(\bmod 56)$ imply respectively $H_{n} \equiv 139,234,258,142(\bmod 281)$, which are quadratic nonresidues modulo 281 , then may be excluded. Hence we can exclude $n \equiv 19,41,75,84,85,97(\bmod 168)$.

Modulo 83. The residue sequence of $\left\{H_{n}\right\}$ has period 168. We can exclude $n \equiv 13, \pm 80,103,125(\bmod 168)$ since they imply $H_{n} \equiv 55,82,57,79(\bmod 83)$ respectively, all of which are quadratic nonresidues modulo 83 .

Modulo 1427. The period is also 168 , and $n \equiv 159(\bmod 168)$ implies $H_{n} \equiv 1031(\bmod 1427)$, which is a quadratic nonresidue modulo 1427. Therefore $n \equiv 159(\bmod 168)$ may be excluded.

Thus there remain $n \equiv 0,1, \pm 4(\bmod 168)$, i.e., $n \equiv 0,1, \pm 4, \pm 164,168,169$ $(\bmod 336)$.
v) Modulo 7. The residue sequence of $\left\{H_{n}\right\}$ has period 16. We can exclude $n \equiv 9(\bmod 16)$ since it implies $H_{n} \equiv 5(\bmod 7)$, a quadratic non residue modulo 7. Hence $n \equiv 169(\bmod 336)$ may be excluded.

Modulo 23. We get the period 48 , and $n \equiv \pm 20,24(\bmod 48)$ imply
$H_{n} \equiv 17,22(\bmod 23)$ respectively, both of which are quadratic nonresidues modulo 23 . Hence we can exclude $n \equiv \pm 164,168(\bmod 336)$.

Now there remain $n \equiv 0,1, \pm 4(\bmod 336)$, i.e., $n \equiv 0,1, \pm 4, \pm 332,336,337$ $(\bmod 672)$.

Modulo 1103. The period of the residue sequence of $\left\{H_{n}\right\}$ is 96 . If $n \equiv \pm 44$, $48,49(\bmod 96)$, then $H_{n} \equiv 936,1056,1080(\bmod 1103)$ respectively, all of which are quadratic nonresidues modulo 1103 . Hence $n \equiv \pm 332,336,337(\bmod 672)$ may be excluded.

Finally there remain $n \equiv 0,1, \pm 4(\bmod 672)$. The proof is complete.

4 - Result

Theorem. The Lucas number L_{n} is a generalized pentagonal number only for $n=0,1$, or ± 4; a pentagonal number only for $n=1$.

Proof: Since L_{n} is a generalized pentagonal number, i.e., of the form $\frac{1}{2} m(3 m-1)$ with m integral, if and only if $24 L_{n}+1=(6 m-1)^{2}$, then the first part of the theorem follows from Lemma 4 and the corollary in section 2. Moreover, a pentagonal number $\frac{1}{2} m(3 m-1)$ means m positive, so that, obviously, only $L_{1}=1$ is in this case. Then the second part of the theorem follows.

REFERENCES

[1] Luo, M. - Pentagonal Numbers in the Fibonacci Sequence, in "Proceedings of the Sixth International Conference on Fibonacci Numbers and Their Applications", Washington State University, Pullman, Washington, USA, July, 1994, to appear.
[2] Luo, M. - On triangular Lucas numbers, Fibonacci Quart., 27 (1989), 98-108.
[3] Luo, M. - On Triangular Lucas Numbers, in "Applications of Fibonacci Numbers", Vol. 4 (G.E. Bergum et. al., Eds.), Kluwer Academic Pub., 1991, pp. 231-240.
[4] Chandrasekharan, K. - Elliptic Functions, Springer-Verlag, New York, 1980, p. 124.
[5] Cohn, J.H.E. - On square Fibonacci numbers, J. London Math. Soc., 39 (1964), 537-541.
[6] Robbins, N. - Fibonacci numbers of the form $c x^{2}$, where $1 \leq c \leq 1000$, Fibonacci Quart., 28 (1990), 306-315.

Ming Luo,
Department of Mathematics, Chongqing Teachers College, Chongqing, Sichuan 630047 - PEOPLE'S REPUBLIC OF CHINA

