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DIFFERENTIAL OPERATORS WITH
GENERALIZED CONSTANT COEFFICIENTS

S. Pilipović and D. Scarpalézos

Abstract: The classical method of solving the equation P (D) g = f is adapted to

a method of solving the family of equations with respect to ε with a prescribed growth

rate. More precisely, the equation Pε(D)Uε = Hε where Hε is Colombeau’s moderate

function (H ∈ EM (IR
n)) and Pε(D) is a differential operator with moderate coefficients

in Colombeau’s sense, is solved. If P j(D) → P (D), j → ∞, in the sense that the

coefficients converge in the sharp topology, then there is a sequence Ej of solutions of

P j(D)U = H which converges in the sharp topology to a solution E of P (D)U = H

in G(IRn) = EM (IR
n)/N (IRn). The moderate functions Ej

ε ∈ EM (IR
n) which converge

sharply to Eε ∈ EM (IR
n), such that P j

ε (D)(E
j
ε |Ω) = Hε|Ω and Pε(D)(Eε|Ω) = Hε|Ω,

where Ω is a bounded open set, are constructed.

The main problems in presented investigations are the estimates with respect to ε

which makes this theory a non-trivial generalization of the classical one.

1 – Introduction

Let Pε(D) =
∑
|α|≤m aα,εD

α be a family of constant coefficients differential

operators and Hε, ε ∈ (0, 1), be a family of smooth functions which satisfy power

order estimates with respect to ε. Our purpose is to find a family of solutions Eε of

Pε(D)Uε = Hε which satisfy the prescribed power order estimates with respect to

ε. Such solutions are intersetting because they solve effective problems of applied

mathematics where we have differential operators with coefficients which depend

on a parameter ε.

More precisely, we solve the equation Pε(D)Uε = Hε where Hε is a given

Colombeau’s moderate function and Pε(D) is a differential operator with mod-

erate coefficients in Colombeau’s sense.
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Moreover, we prove that if P j(D) → P (D), j → ∞, in the sense that co-

efficients converge in the sharp topology ([8]; see also [2]) and H is a given

Colombeau’s generalized function, then there is a sequence Ej of solutions of

P j(D)U=H which converge in the sharp topology to a solution E of P (D)U=H

in G(IRn).

Let Ω ⊂ IRn be a bounded open set and Hε ∈ EM be a representative of

H ∈ G(IRn). We construct a sequence Ej
ε ∈ EM (IR

n) which satisfies

P j
ε (D)(E

j
ε |Ω) = Hε|Ω

and Ej
ε converges sharply to Eε in EM (IR

n), where Eε ∈ EM (IR
n) satisfies

Pε(D)(Eε|Ω) = Hε|Ω.

Our construction of solutions is similar to the construction of a classical dis-

tributional solution of P (D)u = h which is given in [5]; see also [6] for the

general theory. Our main problems appear in proving the necessary estimates

with respect to ε.

The computations and proofs will be made in the most simplified model of

Colombeau’s theory — the space of simplified generalized function. The trans-

lation of proofs and results to other models of Colombeau’s generalized function

spaces is straightforward but with the more complicated notation.

We refer to [1–4] and [9] for the general theory of Colombeau’s spaces and its

applications to non-linear problems.

2 – Basic definitions

Let V be a topological vector space whose topology is given by a countable set

of seminorms µk, k ∈ IN. We will define “the polynomially generalized extension”

of V , GV and its “sharp topology” ([8], see also [2]).

We define EM,V as the set of locally bounded function R(ε) = Rε : (0, 1)→ V

such that for every k ∈ IN there exists a ∈ IR such that

µk(R(ε)) = O(ε
a) ,

where O(εa) means that the left side is smaller than Cεa for some C > 0 and

every ε ∈ (0, ε0), ε0 > 0.

The upper bound of such reals a will be called the k-valuation of Rε and it is

denoted by vk(Rε).

We denote by NV the space of all elements Hε ∈ EM,V with the property that

for any k ∈ IN and for any a ∈ IR, µk(Hε) = O(ε
a).
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Note, NV is the space of elements Hε whose all valuations vk(Hε), k ∈ IN, are

equal to +∞.

The quotient space GV = EM,V /NV is called the polynomially generalized

extension of V . The elements of NV are called “negligible”.

Since vk(Rε) = vk(R
′
ε) for every k ∈ IN0 if Rε − R′ε ∈ NV , we can speak of

the k-valuation of a class R = [Rε], where brackets will be used to denote the

equivalence class in the quotient space.

If we put dk(Fε, Gε) = exp(−vk(Fε −Gε)), we obtain a semi-metric on EM,V ,

k ∈ IN and the corresponding metric on GV . The countable set of those semi-

metrics (resp. metrics) defines a uniform structure on EM,V (resp. GV ) which is

called the sharp uniform structure. The induced topology is called the sharp

topology. It is proved in [8] that GV is complete even when this is not the case

for V .

If the space V is an algebra whose products are continuous for all the semi-

norms, then NV is an ideal of the algebra EM,V and GV becomes a Hausdorff

topological ring.

If V = C, then GV is called the algebra of generalized constants and it is

denoted by C; EM,V is denoted by E
0 and NV is denoted by N

0.

If V = C∞(Ω), then GV is called the algebra of generalized functions on Ω and

it is denoted by G(Ω); EM,V is denoted by EM (Ω) and NV is denoted by N (Ω).

Let us remind that in order to define a set of seminorms on C∞(Ω) we consider

an exhaustive sequence of open sets Ωk such that
⋃∞
k=0Ωk = Ω, Ωk ⊂⊂ Ωk+1,

k ∈ IN0. We put

µk(f) =
∑

|α|≤k

(
sup
x∈Ωk

|∂αf(x)|
)
, k ∈ IN0 .

The uniform structure on C∞(Ω), defined by this family of seminorms does not

depend on the choice of the sequence Ωk.

It is easy to verify that G(Ω) is a differential topological ring where derivations

(∂x) are continuous for its sharp topology andC can be considered as a subalgebra

of G(Ω).

In order to embed D′(Ω) into G(Ω) we must first recall the fundamental lemma

of Colombeau’s theory:

Lemma 1. Let ϕ ∈ C∞c (IR
n) = D(IRn) and φ ∈ S(IRn) such that F(φ) =

φ̂ ∈ D(IRn) and φ̂ ≡ 1 on a neighbourhood of zero. Put φε(x) =
1
εn φ(

x
ε ), x ∈ IR

n,

ε ∈ (0, 1). Then, Nε(x) = (ϕ ∗ φε(x)− ϕ(x)), x ∈ Ω, belongs to N (Ω).

The proof follows by using Taylor’s expansion, since
∫
φ(x) dx = 1 and∫

xα φ(x) dx = 0 for |α| ≥ 1.
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We fix once for all the function φ of previous lemma and put Iφ(ϕ) = [ϕ ∗φε].

Using this lemma it can be easily verified that if ϕ and ψ belong to D(IRn), then

Iφ(ϕ · ψ) = Iφ(ϕ) · Iφ(ψ) .

If T ∈ D′c(Ω) ⊂ D
′
c(IR

n) we put Iφ(T ) = [T ∗ φε(x)].

After proving that the presheaf U → G(U) (U is open in IRn) is a sheaf,

one can prove that the above embeddings can be extended to embeddings of

C∞(Ω) and D′(Ω) into G(Ω) (cf. [9]). The support of a generalized function

H is defined as the complement of the largest open subset Ω′ ⊂ Ω such that

H|Ω′ = 0. This notion is coherent with the embedding Iφ because if T ∈ D
′(Ω),

then suppT = supp(IφT ).

If G is a generalized function with compact support K ⊂⊂ Ω (G ∈ Gc(Ω)) and

Gε(x) is a representative of G, then its integral is defined by
∫
Gdx =

[∫
ψ(x)Gε(x) dx

]
,

where ψ ∈ C∞0 (Ω), ψ = 1 on K. This definition does not depend on ψ.

Likewise, one defines the Fourier transform of G ∈ Gc(Ω) as being the class in

G(IRn) of the Fourier transform of Gε(x)ψ(x).

Let G,F ∈ G(Ω). It is said that they are equal in the distribution sense,

G
D′
= H, if

∫ (
G(x)− F (x)

)
ϕ(x) dx = 0, for any ϕ ∈ C∞c (Ω) .

3 – Tempered generalized functions

Let us first remind the definitions of Et,M (IR
n), the space of moderate (tem-

pered) families of C∞-functions. It is said that Rε belongs to Et,M (IR
n) if for any

k ∈ IN0 there exist a ∈ IR and m ∈ IN0 such that:

sup
|α|≤k

(
sup
IRn

∣∣∣∣
∂αRε(x)

(1 + |x|2)m/2

∣∣∣∣
)
= O(εa) .

The upper bound of such a, vk,m(Rε), is called the valuation of Rε.

The space of elementsHε of Et,M (IR
n) with the property that for every k ∈ IN0

there exists m ∈ IN such that for every a ∈ IR,

sup
|α|≤k

(
sup
IRn

∣∣∣∣
∂αRε(x)

(1 + |x|2)m/2

∣∣∣∣
)
= O(εa) ,
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is denoted by Nt(IR
n). It is an ideal of Et,M (IR

n). The quotient space Gt(IR
n) =

Et,M (IR
n)/Nt(IR

n) is called the space of tempered generalized functions. It is

not a metric space but we can define its sharp topology by using the valuations

vk,m and a procedure of injective and projective limits (cf. [8]). Note that Gt is

not a subspace of G because N (IRn) ∩ Et,M (IR
n) 6= Nt(IR

n) ([4]), but there is a

canonical mapping Gt(IR
n)→ G(IRn) (cf. [9]).

In order to embed S ′(IRn) into Gt(IR
n) we consider as before the mapping

Iφ : T → [T ∗φε]. This embedding respects the products of elements of OM (IR
n).

If G,F ∈ Gt(IR
n) then they are equal in the sense of tempered distributions,

G
S′
= F , if

∫ (
Gε(x)− Fε(x)

)
ψ(x) dx ∈ N 0 for any ψ ∈ S(IRn) ,

Gε and Fε being the representatives of G and F , respectively.

Let G ∈ Gt(IR
n) be represented by Gε. We define the Fourier and inverse

Fourier transformations F(G)(ξ), ξ ∈ IRn and F−1(G)(t), t ∈ IRn by the repre-

sentatives
∫
eixξ Gε(x)φ(εx) dx and (2π)−n

∫
e−itξ Gε(ξ)φ(ε ξ) dξ ,

respectively. Though in general, F−1F G 6= G, we can prove that F−1F G
S′
= G.

4 – Generalized polynomials

A formal generalized polynomial in n real variables is an element of

C[x1, ..., xn]. A generalized polynomial function, in short, a generalized poly-

nomial, is a tempered generalized function of the form

∑

|α|≤m

aα x
α , aα ∈ C .

We say that such a generalized function is of degree m if aα = 0 for |α| > m

and there exists β, |β| = m, such that aβ 6= 0. The corresponding differential

operator is of the form

(1) P (D) =
∑

|α|≤m

aαD
α, aα ∈ C, where Dα = (i ∂)α .

If
∑
|β|≤m[bβ,ε]x

β = Nε(x) ∈ Nt(IR
n), then by making successive derivations

and by putting x = 0 we obtain that bβ,ε ∈ N
0, |β| ≤ m. This implies:
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Lemma 2. If [H i
ε(x)] =

∑
|α|≤m[a

i
α,ε]x

α, i = 1, 2, are representatives of a

generalized polynomial then

a1α,ε − a
2
α,ε ∈ N 0 , |α| ≤ m .

Let Pm be the set of generalized polynomials P of degree at most m (degP ≤

m). If P j is a sequence of generalized polynomials belonging to Pm, we say that

P j m-sharply converges to P ∈ Pm (j →∞) if P j
ε , j ∈ IN and Pε being polyno-

mial representatives of P j and P , respectively, satisfy the following condition:

(*) For any a > 0 there exists j0 ∈ IN such that for every j > j0,

sup
x∈IRn

∣∣∣∣
P j
ε (x)− Pε(x)

(1 + |x|2)m/2

∣∣∣∣
def
= µm

(
P j
ε (x)− Pε(x)

)
= O(εa) .

Note that we can choose the representatives P j
ε and Pε such that for every

a > 0 there exist j(a) ∈ IN and ε(a) > 0 such that µm(P
j
ε −Pε) < εa for j > j(a)

and ε < ε(a).

More generally, we say that a sequence P j of generalized polynomials con-

verges sharply to a generalized polynomial P if there exists some m such that (*)

holds.

This convergence implies the sharp convergence of coefficients:

Lemma 3. Let P j converge sharply to P , i.e. let (*) hold. Moreover, let

degP ≤ m. Then there exists j0 such that deg(P
j) ≤ m for j > j0 and the

coefficients ajα,ε of Pj converge sharply to the corresponding coefficients [aα,ε],

|α| ≤ m, of P .

Proof: By assumptions, there exists j0 ∈ IN such that for every j > j0 there

exists εj > 0 such that

(2)
|P j
ε (x)− Pε(x)|

(1 + |x|2)m/2
< 1, for all x ∈ IRn and ε < εj .

Suppose that the degree d of [Hj
ε ] = [P

j
ε −Pε] is greater than m and take ε1 < εj

and j1 > j0. Let x0 ∈ IR
n be such that the homogeneous part of degree d of H j1

ε ,

is not zero at x0. There exist C > 0 and t0 > 0 such that

∣∣∣∣
P j1
ε1 (t x0)− Pε1(t x0)

(1 + |x0|2)m/2

∣∣∣∣ > C td−m , t > t0 .

This contradicts assumption (2) if d > m.
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Let us note that the vector space of classical polynomials of degree at most

m has finite dimension. Thus, all the norms on this space are equivalent. Since

µm(P ) = sup
x∈IRn

∣∣∣∣
P (x)

(1 + |x|2)m/2

∣∣∣∣

is a norm, there exists a constant C > 0 such that for every polynomial h of

degree ≤ m, ‖h‖ ≤ C µm(h), where

‖h‖ = sup
|α|≤m

|aα| , h =
∑

|α|≤m

aα x
α .

Thus, µm(P
j
ε − Pε) = O(ε

n) for every a > 0, is equivalent to

|ajα,ε − aα,ε| = O(ε
a), for every a > 0 .

5 – The solution of P (D)U = H

Theorem 1, in the setting of distribution theory, is a famous classical result.

In its proof we follow the ideas of Friedman’s proof, [5], Ch. 11, Sec. 5. Our main

problems are estimations with respect to ε.

Theorem 1. Let P be a differential operator with coefficients in C of the

form (1) such that

(3)
∣∣∣
∑

|α|=m

aα,ε c
α
∣∣∣ > C εr , ε ∈ (0, 1) ,

holds for some c ∈ IRn, C > 0 and r ∈ IR. Then for every Hε ∈ EM (IR
n) there

exists a solution Eε ∈ EM (IR
n) of the equation

Pε(D)Uε = Hε .

In particular, [Eε] is the solution of P (D)U = H.

Proof: Case I – Let

Pε

(
i
∂

∂x

)
= Pε(D) = am,εD

m
1 +

m−1∑

k=0

Pk,ε(D
′)Dk

1 .

Therefore,

(4) Pε(s1, s
′) = am,ε s

m
1 +

m−1∑

k=0

Pk,ε(s
′) sk1 , s = (s1, s

′) ∈ Cn ,
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and condition (3) means that there exist C > 0 and r > 0 such that

(5) |am,ε| > C εr , ε ∈ (0, 1) .

Let hν be a C
∞ partition of unity

hν =
g(x− ν)∑

µ∈Zn g(x− µ)
, ν ∈ Zn ,

where Z is the set of integers and g ∈ C∞ such that g(x) ≥ 0, g(x) = 1 if |xj | ≤
1
2 ,

j = 1, ..., n, g(x) = 0 if |xj | ≥ 1, j = 1, ..., n. Put

Hν,ε = hν Hε , ν ∈ Zn, ε ∈ (0, 1) .

For every α ∈ INn
0 and ν ∈ Z

n, there exist Cα,ν > 0 and rα,ν > 0 such that

sup
{
|DαHν,ε(x)|; |xk − νk| ≤ 1, k = 1, ..., n

}
≤
Cα,ν
εrα,ν

, ε ∈ (0, 1) .

Put Λα = {ν∈ IR
n; max |νi| ≥ |α|, i = 1, ..., n}. Let h∈ IN and ε∈(0, 1). Define

Bh,ε = 3 +max

{
Cα,ν
εrα,ν

; 0 ≤ αk ≤ h, |νk| ≤ h, k = 1, ..., n

}
,

δν,ε = δν1,ε · · · δνn,ε, ν ∈ Zn, where δj,ε =
1

B|j|,ε(1 + |j|2)
, j ∈ Z .

Put tj,ε = − log δj,ε, j ∈ Z. Note that for ν = (ν1, ..., νn) ∈ Λα,

Cα,ν
εrα,ν

δν,ε ≤
1

(1 + |ν1|2) · · · (1 + |νn|2)
, ε ∈ (0, 1) .

Let rα = max{rα,ν ; max{|ν1|, ..., |νn|} < |α|}. Then, there is Cα > 0 such that

∑

ν∈Zn

Cα,ν
εrα,ν

δν,ε <
Cα
εrα

, ε ∈ (0, 1) .

Fix ν = (ν1, ..., νn) ∈ Z
n, and ε ∈ (0, 1). Put

τk,ε,νk = tνk,ε sgn νk , k = 1, ..., n ,

where

sgn t =

{
1, t ≥ 0,

−1, t < 0 .
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Fix (σ2, ..., σn) = σ′ and τν,ε = (τ1,ν,ε, ..., τn,ν,ε). We have

(6) Pε
(
s1 + iτ1,ν,ε, ..., σn + iτn,ν,ε

)
= am,ε

m∏

k=1

(
s1 − s

(k)
1 (σ

′, τν,ε)
)
, s1∈C

1.

Let f(σ′, τν,ε) be a step function with values in the set {
1
m ,

2
m , ..., 1}, if ν1 ≥ 0

and in {−1,−m−1
m , ...,− 1

m}, if ν1 < 0, such that for s1 = σ1 + if(σ
′, τν,ε) + iτ1,ν,ε

(7) | Im(s1 − s
(k)
1 )| ≥

1

2m
, k = 1, ...,m, σ1 ∈ C .

Thus, (6) implies that there is C > 0 such that
∣∣∣Pε
(
σ1+if(σ

′, τν,ε)+iτ1,ν,ε, σ2+iτ2,ν,ε, ..., σn+iτn,ν,ε
)∣∣∣ ≥ C εr, for σ1 ∈ IR .

If we take σ̃′ instead of σ′ (with the same ν) we have

Pε
(
s1+iτ1,ν,ε, σ̃2+iτ2,ν,ε, ..., σ̃n+iτn,ν,ε

)
= am,ε

m∏

k=1

(
s1−s

(k)
1 (σ̃

′, τν,ε)
)
, s ∈ C .

There exists δ(ε, ν) such that
∣∣∣s(k)1 (σ̃

′, τν,ε)− s
(k)
1 (σ

′, τν,ε)
∣∣∣ ≤ 2−(m+1) for |σ̃′ − σ′| < δ(ε, ν) .

This implies that there is a cube
∏
ν,σ′,ε (open) around σ

′ contained in the

ball with radius δ(ε, ν) such that if σ1 ∈ IR and (σ̃2, ..., σ̃n) ∈
∏
ν,σ′,ε, then by (7)

∣∣∣Im
(
s1 − s

(k)
1 (σ̃

′, τν,ε)
)∣∣∣ ≥

1

4m
, k = 1, ...,m ,

where s1 = σ1+ iτ1,ν,ε+ if(σ
′, τν,ε), σ1 ∈ IR. This implies that there exists C > 0

(which depends on m but not on ν and ε) such that
∣∣∣Pν,ε

(
σ1 + if(σ

′, τν,ε) + iτ1,ν,ε, σ̃2 + iτ2,ν,ε, ..., σ̃n + iτn,ν,ε
)∣∣∣ ≥ C εr ,

where s1 = σ1 + iτ1,ν,ε + if(σ
′, τν,ε), σ1 ∈ IR.

We cover IRn−1 by
∏
ν,σ′,ε, σ

′ ∈ IRn−1. The Heine–Borel theorem implies that

this covering admit a refinement ∆ν,k,ε, k ∈ IN, consisting of cubes. Put

Γν,1,ε=∆ν,1,ε, Γν,2,ε=∆ν,2,ε\∆ν,1,ε, ..., Γν,k,ε = ∆ν,k,ε\
(k−1⋃

i=1

∆ν,i,ε

)
, k∈ IN ,

Tν,k,ε =
{
s ∈ Cn; s1 = σ1 + i(τ1,ν,ε + f), σ1 ∈ IR

1, s2 = σ2 + iτ2,ν,ε, ...,

sn = σn + iτn,ν,ε, (σ2, ..., σn) ∈ Γν,k,ε
}
,
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where f takes values in { 1
m ,

2
m , ..., 1}, if ν1 ≥ 0 and in {−1,−m−1

m , ...,− 1
m} if

ν1 < 0 and is such that (7) holds.

Let Tν,ε =
⋃∞
k=1 Tν,k,ε. We put

Eε(x) =

(
1

2π

)n ∑

ν∈Zn

∫

Tν,ε

e−ixs Ĥν,ε(s)

Pε(s)
ds

=
1

(2π)n

∑

ν∈Zn

∞∑

k=1

∫

IR1
dσ1

∫

Γν,k,ε

e−i[x1(σ1+i(τ1,ν,ε+f))+...+xn(σn+iτn,ν,ε)]

Pε
(
σ1 + i(τ1,ν,ε + f), ..., σn + iτn,ν,ε

)

·Hν,ε

(
σ1 + i(τ1,ν,ε + f), ..., σn + iτn,ν,ε

)
dσ2 · · · dσn , x ∈ IRn .

One can prove by straightforward computations that Pε(D)Eε = Hε. We are

going to prove that Eε ∈ EM .

Let α ∈ INn
0 and K ⊂⊂ IRn be given. We will show that there exist C =

C(K,α) and r = r(K,α) such that

sup
x∈K

|E(α)
ε (x)| ≤

C

εr
, ε ∈ (0, 1) .

Since Hν,ε ∈ C
∞
0 , the Paley–Wiener theorem implies that there is C > 0 such

that

|sα Ĥν,ε(s)| ≤ C
Cα,ν
εrα,ν

exp
(
−

n∑

i=1

tνi,ε(|νi| − 1)
)

for s ∈ Tν,ε .

(The Paley–Wiener type theorem for Colombeau’s generalized functions are in-

vestigated in [7].) Let β = [2] + α, where [p] = (p, p, ..., p). Then

|sαĤν,ε(s)| ≤ C
Cβ,ν
εrβ,ν

1

(σ21+(τ1,ν,ε+f)
2)
∏n
i=2(σ

2
i +τ

2
i,ν,ε)

exp
(
−

n∑

j=1

tνj ,ε(|νj | − 1)
)
.

One can simply verify that (τ1,ν,ε + f)
2 ≥ 1, τ2j,ν,ε ≥ 1, ε ∈ (0, 1), j = 2, ..., n.

This implies that there is C > 0 which does not depend on ν such that

sup
ε∈(0,1)

∞∑

k=1

∫

IR1

∫

Γν,k,ε

dσ1 · · · dσn
(σ21 + (τ1,ν,ε + f)

2)
∏n
i=2(σ

2
i + τ

2
i,ν,ε)

< C .

Since

Re(−i x s) ≤
n∑

i=1

|xi| (|tνi,ε|+ 1), for s ∈ Tν,ε ,
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it follows

|E(α)
ε (x)| ≤ C

∑

ν∈Z

Cα+[2],ν

εrα+[2],ν
· exp

( n∑

i=1

|xi| (tνi,ε + 1)− tνi,ε(|νi| − 1)
)

≤ C
∑

ν∈Z

Cα+[2],ν

εrα+[2],ν

n∏

i=1

δ|νi|−|xi|−1νi,ε , x ∈ K .

The set ΛK of indices ν = (ν1, ..., νn) with the property

max
x∈K

(
|νi| − |xi| − 1

)
≤ 1

is finite. We divide the above sum into two parts over ν∈Zn\
⋃
ΛK and ν∈

⋃
ΛK .

The second one satisfies the estimate of the form C/εr. It remains to bound the

second part. In this case the exponent in (δνi,ε)
a satisfies a ≥ 1 and, as δνi,ε ≤ 1,

it follows (δνi,ε)
a ≤ δνi,ε.

This implies that there exist C = C(K,α) > 0 and r = r(K,α) > 0 such that

sup
x∈K

|E(α)
ε (x)| ≤

C

εr
, ε ∈ (0, 1) .

Case II – Let Pε(D) be a representative of P (x) such that its principal symbol

Pm,ε =
∑
|α|=m aα,ε x

α satisfies (3) for some C > 0 and r > 0.

Put sj =
∑
cjk tk, s =Mt, where the members of the matrixM cjk are chosen

such that c1 = c11, ..., cn = cn1 and detM 6= 0. Recall, c ∈ IRn is from (3). Then,

Pε(s) = P̃ε(t) = am,ε t
m
1 + lower order terms ,

where

|am,ε| = |Pm,ε(c)| ≥ C εr , ε ∈ (0, 1) .

Let Ẽε be a solution of

P̃ε(D) Ẽε(x) = Hε(
tM−1x)

(tM is the transpose matrix) constructed in the same way as in Case 1. Then,

by using

F(R(Ax))(s)
S′
=

1

detA
F(R(x)) (tA−1s) , s ∈ IRn, R ∈ S ′ ,

where A is a regular linear transformation and P̃ε(t) = Pε(s), we obtain that the

solution of Pε(D)Eε = Hε is Eε(x) = Ẽε(
tMx), x ∈ IRn.
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6 – On the sequence of equations P j(D)U = H

Let P j be a sequence of polynomials in G(IRn) which m-sharply converges to

P as j →∞, where m is the order of P . For the next theorem we have to analyze

the behaviour of zeros of P j and P . Let σ′ = (σ2, ..., σn) and τε = (τ1,ε, ..., τn,ε),

ε ∈ (0, 1), be fixed and P and P j be written in the canonical form

Pε
(
s1 + iτ1,ε, σ2 + iτ2,ε, ..., σn + iτn,ε

)
= am,ε

m∏

p=1

(
s1 − s

(p)
1 (σ

′, τε)
)
,(8)

P j
ε

(
s1 + iτ1,ε, σ2 + iτ2,ε, ..., σn + iτn,ε

)
= ajm,ε

m∏

p=1

(
s1 − s

j(p)
1 (σ′, τε)

)
=(9)

= ajm,ε s
m
1 + C

j
m−1,ε(σ

′, τε) s
m−1
1 + ... ,

where s1 ∈ C, j ∈ IN, ε ∈ (0, 1).

First we prove the following lemma.

Lemma 4. For every p ∈ {1, ...,m} and a > 0 there exist C0 > 0, ε0 > 0

and j0 ∈ IN such that for every j > j0 and ε < ε0 there exists p(j, ε) ∈ {1, ...,m}

such that

(10)
∣∣∣sj(p(j,ε))1 (σ′, τε)− s

(p)
1 (σ

′, τε)
∣∣∣ ≤ C0 ε

a(1 + |τε|
m) (1 + |σ′|m) , σ′∈ IRn−1.

This lemma implies that there exists j0 such that for every j > j0, ε < ε0 and

σ′ ∈ IRn−1 we may rearrange zeros s
j(p(j,ε))
1 (σ′, τε) such that on the p-th place in

the above representation of P j
ε stands s

j(p(j,ε))
1 (σ′, τε).

Proof: Let us first prove the following assertion for a polynomial of one

variable g(x) = bm x
m + bm−1 x

m−1 + ...+ b0. There holds

g(x) 6= 0 if |x| ≥ m sup

{
k

√∣∣∣∣
bm−k
bm

∣∣∣∣, k ∈ {1, ...,m}
}
.

(All the zeros are inside the ball of radius m · sup{ k

√
bm−k
bm
, k ∈ {1, ...,m}} and

the centre at 0.) To see this we just have to write

|g(x)| =

∣∣∣∣bm x
m
[
1 +

bm−1
bm

1

x
+ ...+

b0
bm

1

xm

]∣∣∣∣

≥ |bm x
m|

[
1−

(∣∣∣∣
bm−1
bm

∣∣∣∣
∣∣∣∣
1

x

∣∣∣∣+ ...+
∣∣∣∣
b0
bm

∣∣∣∣
1

|x|m

)]
> 0 .
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Fix p ∈ {1, ...,m}. By using [5], Lemma 4.1.1, in one dimension, (for fixed σ′) we

obtain that for every a1 > 0 there are C1 > 0, ε1 > 0 and j1 ∈ IN such that for

j > j1 and ε < ε1 there holds
∣∣∣sj(p(j,ε))1 (σ′, τε)− s

(p)
1 (σ

′, τε)
∣∣∣ < C1 ε

a1

(
1 + |s

j(p(j,ε))
1 |

)m
,

where C1 does not depend on j; a1 is a constant which will be chosen later as big

as we need.

The first part of the proof implies that for p = 1, ..., n,

|s
j(p)
1 (σ′, τε)| ≤ m sup

{
k

√√√√
∣∣∣∣
Cj
m−k,ε(σ

′, τε)

ajm,ε

∣∣∣∣, k ∈ {1, ...,m}
}
.

Since the coefficients of P j converge sharply to the corresponding ones of P , it fol-

lows that the polynomials Cj
m−k,ε(σ

′, τε) converge (m−k)-sharply to Cm−k,ε(σ
′, τε)

and ajm,ε converge sharply to am,ε as j →∞.

Note if Cj
m−k,ε is written as a polynomial with respect to σ

′, then the cor-

responding coefficients are polynomial functions of coefficients of P j and powers

of τε. By extracting from all of these coefficients (1 + |τε|
m), we obtain that for

every a2 > 0 there exist j2 ∈ IN, ε2 > 0 and C2 > 0 such that for j > j2 and

ε < ε2,
∣∣∣Cj

m−k,ε(σ
′, τε)− Cm−k,ε(σ

′, τε)
∣∣∣ ≤ C2(1 + |τε|

m) εa2(1 + |σ′|m),

σ′ ∈ IRn−1, k = 1, ...,m− 1 ,

where a2 will be chosen later as big as we need.

Likewise, for every d > 0 there exist jd ∈ IN and εd > 0 such that

|ajm,ε − am,ε| < εd for j > jd, ε < εd ,

where d > r will be chosen later as big as we need. Thus, there are j3 ∈ IN,

ε3 > 0 and C3 > 0 such that if j > j3 and ε < ε3, then |a
j
m| > C3 ε

r and

Ik =
k

√√√√
∣∣∣∣
Cj
m−k(σ

′, τε)

ajm,ε

∣∣∣∣ <
(

k

√√√√ |Cm−k,ε(σ
′, τε)−C

j
m−k,ε(σ

′, τε)|+ |Cm−k,ε(σ′, τε)|

|ajm,ε|

)

≤ C
−1/k
3 ε−r/k k

√
C2 εa2(1+|τε|m) (1+|σ′|m) + |Cm−k,ε(σ′, τε)| , σ′∈ IRn−1.

There exist N ∈ IN and CN > 0 such that for any k ∈ {1, ...,m}

|Cm−k,ε(σ
′, τε)| ≤

1

εN
CN (1 + |τε|

m) (1 + |σ′|m) .
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Thus, by taking d and a2 big enough, we can estimate Ik by

C4 (1 + |τε|
m)

1
k (1 + |σ′|m)

1
k ε−

N+r
k ,

where C4 > 0 is a suitable constant. This implies (with suitable C5 > 0) that for

every j > j3 and ε < ε3
∣∣∣sj(p(j,ε))1 (σ′, τε)−s

(p)
1 (σ

′, τε)
∣∣∣ ≤ C5 (1+|τε|

m) εa1−(N+r)/m (1+|σ′|m) , σ′∈ IRn−1.

If we choose a1 such that a1− (N + r)/m = a, ε0 = ε3 and j0 = j3 we obtain the

required inequality.

Theorem 2. Let H ∈ G(IRn) and P j be a sequence of generalized poly-

nomials in G(IRn) which m-sharply converges to P as j → ∞, where P satisfies

condition (3) of Theorem 1. Then there is a sequence Ej of generalized functions

satisfying the equations P j(D)Ej = H, j ∈ IN, which converges sharply to a

solution E of P (D)U = H.

Moreover, if Ω is open bounded set and Hε is a given representative of H,

then there exist Eε and a sequence E
j
ε in EM (IR

n) such that

P (D)Eε|Ω = Hε|Ω , P j(D)Ej
ε |Ω = Hε|Ω (pointwise equalities)

and Ej
ε → Eε, j →∞, sharply in EM (IR

n).

Note that the first part also can be proved with Ω instead of IRn. Since the

proof is already technically complicate, we omit this generalization.

Proof: As in Theorem 1, Case II, we transfer the general case to the one when

P is of the form (4) such that (5) holds. The sharp convergence of a sequence of

polynomials is invariant with respect to the transformation of arguments s =Mt,

detM 6= 0. Thus, it is enough to prove the theorem in this case.

We will assume that P and P j are of the form (8), (9) for which (10) holds.

We will use the notation of Theorem 1. Let h > 0, ε ∈ (0, 1) and ν ∈ Zn be

fixed. We put

Bh,ε = 3 +max

{
Cα,ν
εrα,ν

; 0 ≤ αk ≤ h, |νk| ≤ h, k = 1, ..., n

}
,

δj,ε=
1

B|j+[m+3]|,ε(1+|j|2)
, j∈Z, δν,ε=

n∏

k=1

δνkε, tj,ε=− log δνkε, k=1, ..., n.

This implies

Cβ+[m+3],ν

εrβ+[m+3],ν
δν,ε ≤

1∏n
i=1(1 + |νi|

2)
, if max

i=1,...,n
|νi| ≥ |β|+ n(m+ 3) .
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Put

τk,ε(νk) = tνk,ε sgn νk , k = 1, ..., n .

Fix σ′ = (σ2, ..., σn) and put

τε(ν) = τν,ε = (τ1,ν,ε, ..., τn,ν,ε) , τ ′ε(ν) = (τ2,ν,ε, ..., τn,ν,ε) .

Let f(σ′, τν,ε) (resp. f
j(σ′, τν,ε)) be a step function with values in the set

{ 1
m ,

2
m , ..., 1} if ν1 ≥ 0, and {−1, ...,−

1
m} if ν1 < 0, with the property that for

ε ∈ (0, 1)

s1 = σ1+i
(
τ1,ν,ε+f(σ

′, τν,ε)
) (
resp. s1 = σ1+i

(
τ1,ν,ε+f

j(σ′, τν,ε)
))
, σ1 ∈ IR ,

∣∣∣f(σ′, τν,ε)− Im(s(p)1 (σ
′, τν,ε))

∣∣∣ ≥
1

2m
, p = 1, ...,m

(
resp.

∣∣∣f j(σ′, τν,ε)− Im(sj(p)1 (σ′, τν,ε))
∣∣∣ ≥

1

2m
, p = 1, ...,m, j ∈ IN

)
.

Note, for given a > 0 there are ja ∈ IN and εa > 0 such that |ajm,ε − am,ε| < εa

if j ≥ ja and ε < εa (Lemma 3). By taking a > r, this implies that there are

C > 0, j0 and ε0 such that for σ1 ∈ IR and ε < ε0,

∣∣∣∣Pε
(
σ1 + i(f(σ

′, τν,ε) + τ1,ν,ε), σ2 + iτ2,ν,ε, ..., σn + iτn,ν,ε
)∣∣∣∣ ≥ C εr ,

(resp., for j > j0, ε < ε0,

∣∣∣∣P
j
ε

(
σ1 + i(f

j(σ′, τν,ε) + τ1,ν,ε) + τ1,ν,ε, σ2 + iτ2,ν,ε, ..., σn + iτn,ν,ε
)∣∣∣∣ ≥ C εr . )

We consider solutions Ej
ε of P

j
ε (D)Uε = Hε (resp. Eε of Pε(D)Uε = Hε) which

are of the form

Ej
ε(x) =

1

(2π)

∑

ν∈Zn

∞∑

k=1

∫

IR1

∫

Γj
ν,k,ε

e−ixs Ĥν,ε(s)

P j
ε (s)

dσ1 · · · dσn

(resp.

Eε(x) =
1

(2π)

∑

ν∈Zn

∞∑

k=1

∫

IR1

∫

Γν,k,ε

e−ixs Ĥν,ε(s)

Pε(s)
dσ1 · · · dσn ) , x ∈ IRn ,

where s = (σ1 + i(f j(σ′, τν,ε) + τ1,ν,ε), σ2 + iτ2,ν,ε, ..., σn + iτn,ν,ε), σ1 ∈ IR,

σ′ ∈ Γjν,k,ε and Γ
j
ν,k,ε are disjunct cubes which cover IR

n−1 (in the case Eε we

omit j), j ∈ IN, ε ∈ (0, 1).
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One can prove that Pε(D)E
j
ε = Hε and [E

j
ε ] ∈ G, j ∈ IN, as in the proof of

Theorem 1.

The main idea of the proof is that we will construct inductively sets Γν,k,ε and

Γjν,k,ε in a way that when j tends to infinity we can identify Γ
j
ν,k,ε with Γν,k,ε and

f j with f in increasingly large domains.

Note that the Γν,k,ε’s were constructed in such a way that the step function

f is constant in a small cube (for given ν and ε) and that for any σ′ in such a

cube we have, with suitable C ′ > 0

∣∣∣Pε
(
σ1+i(τ1,ν,ε+fν), σ

′+iτ ′ν,ε

)∣∣∣= |am,ε|
m∏

p=1

∣∣∣
(
σ1+i(τ1,ν,ε+fν)−σ

(p)(σ′, τ ′ν,ε)
)∣∣∣≥C ′εr,

where fν = f(σ′, τν,ε) in Γν,k,ε. It is easy to verify that we can construct the

Γν,k,ε’s in a way that for any ν, ε there exists an increasing sequence k(M),

M ∈ IN, such that
k(M)⋃

k=1

Γν,k,ε = B∞(0, 1/ε
M ) ,

where on the right hand side is the ball with respect to the “sup” norm, i.e.

|σ′| = supi∈(2,...,n) |σi|. This will be the only norm we will use in the sequel.

We have proved in Lemma 4 that for any a there is j0,a ∈ IN and ε0,a > 0

such that for j > j0,a and ε < ε0,a,
∣∣∣σ(p)1 (σ

′, τε)− σ
j(p)
1 (σ′, τε)

∣∣∣ ≤ εa(1 + |σ′|m) (1 + |τε|
m) , σ′ ∈ IRn−1 .

Thus, the left side is ≤ C εa ε−Mm(1 + |τν,ε|
m) for σ′ ∈ B∞(0, 1/ε

M ).

By construction, |τν,ε| = O(| log ε|). This implies that for every ν ∈ Z there

exists εν > 0 such that

(1 + |τν,ε|
m) ≤ ε−m for ε < εν .

If ε < ε0,a j > j0,a and ε < εν , then
∣∣∣σ(p)1 (σ

′, τν,ε)− σ
j(p)
1 (σ′, τν,ε)

∣∣∣ ≤ C εa−Mm−m .

Let a = mM+m+r′, with r′ > r. We can easily conclude that there are jM ∈ IN

and εM > 0 such that if |σ′| ≤ 1/εM , j > jM , ε < εM and ε < εν , then

∣∣∣P j
(
σ1 + i(τ1,ν,ε + fν), σ

′ + iτ ′ν,ε

)∣∣∣ ≥ C εr
(
1

4m

)m
.

The fact that we have above an infinite number of ν’s and that the previous

inequality depends on εν could seem to be a serious problem. In order to solve
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the equations in the frame of G(IRn) we overcome the quoted problem by choosing

representatives of H such that

Hν,ε = 0, for ε > εν .

We can suppose without loss of generality that the sequence jM is strictly

increasing and that the sequence εM is strictly decreasing.

Let jM < j ≤ jM+1 and εM+1 ≤ ε < εM . We complete for any ν, the covering

(Γν,k,ε)k≤k(M), of the ball B∞(0, 1/ε
M ) ⊂ IRn−1 by a covering

Γj
ν,̃k,ε

, k̃ ∈ Λ̃ ⊂ IN, of the set IRn−1\B∞(0, 1/εM ) .

We put

f j(σ′, τν,ε) = f(σ′, τν,ε) = fν for σ′ ∈ B∞(0, 1/ε
M )

and for σ′ /∈ B∞(0, 1/ε
M ) we choose f j(σ′, τν,ε) in such a way that in the cor-

responding covering the above step functions satisfy the prescription in the con-

struction of the solution of P j
ε (D)U

j
ε = Hε as it is explained in the proof of

Theorem 1.

We split the expressions of Ej
ε and Eε as follows:

Ej
ε(x) =

1

(2π)n

∑

ν∈Z

k(M)∑

k=1

∫

σ1∈IR

∫

σ′∈Γν,k,ε

e−ixs Ĥν,ε(s)

P j
ε (s)

dσ

+
1

(2π)n

∑

ν∈Zn

∑

k̃∈Λ̃

∫

σ1∈IR

∫

σ′∈Γν,k,ε

e−ixs Ĥν,ε(s)

P j
ε (s)

dσ

= Ij1,ε(x) + I
j
2,ε(x) , x ∈ IRn ,

and likewise

Eε(x) =
1

(2π)n

∑

ν∈Zn

k(M)∑

k=1

∫

σ1∈IR

∫

σ′∈Γν,k,ε

e−ixs Ĥν,ε(s)

Pε(s)
dσ

+
1

(2π)n

∑

ν∈Zn

∑

k̃∈Λ̃

∫

σ1∈IR

∫

σ′∈Γ
ν,̃k,ε

e−ixs Ĥν,ε(s)

Pε(s)
dσ

= I1,ε(x) + I2,ε(x) , x ∈ IRn .

Note that for I1,ε, I2,ε, s = (σ1 + i(f + τ1,ν,ε), σ
′ + iτ ′ν,ε), while for I

j
1,ε, I

j
2,ε,

s = (σ1 + i(f
2 + τ1,ν,ε), σ

′ + iτ ′ν,ε).

We can choose the sequence εν to be strictly decreasing with respect to |ν|.

Thus, for a given ε there is a finite set Znε of indices ν for which Ĥν,ε 6= 0. (Recall
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that we have taken Hν,ε = 0 for ε > εν .) Let β ∈ IN
n. Then

|Ej(β)
ε (x)− E(β)

ε (x)| ≤ |I
j(β)
1,ε (x)− I

(β)
1,ε (x)|+ |I

j(β)
2,ε (x)|+ |I

(β)
2,ε (x)| .

In order to estimate the right hand side of this inequality we use

(11) |sβ+[m+3] Ĥν,ε(s)| ≤
Cβ+[m+3],ν

εrβ+[m+3],ν

for s = (σ1 + i(τ1,ν,ε + f), σ
′ + iτ ′ν,ε) or s = (σ1 + i(τ1,ν,ε + f

j), σ′ + iτ ′ν,ε) and

(12) |t| >
1

εM
=⇒

1

1 + |t|
< εM .

Let us estimate |I
j(β)
2 (x)| (and likewise Iβ2 (x)), x ∈ IR

n.

We obtain by (11) (as in the proof of Theorem 1) that for ε small enough

∣∣∣∣
e−ixs sβ Ĥν,ε(s)

P j
ε (s)

∣∣∣∣ ≤
1

C ′ εr
·
Cβ+[m+3],ν

εrβ+[m+3],ν
·

∏n
1 δ
|νi|−|xi|−1
νi

(1 + |s1|3) (1 + |s2|)3 · · · (1 + |sn|)3
.

Then,

|I
j(β)
2,ε (x)| ≤

( ∑

ν∈Zn
ε

n∏

1

δ(|νi|−|xi|−1)νi

Cβ+[m+3],ν

εrβ+[m+3],ν

)

·
∫

dσ

(1 + |σ1|)3

∫
dσ′

(1 + |σ2|)3 · · · (1 + |σn|)3

(because 1/(1 + |si|)
3 < 1/(1 + |σi|)

3).

As in Theorem 1, when x belongs to a compact set, say x ∈ B∞(0, p) ⊂ IR
n,

the quantity in brackets can be estimated by C1/ε
sβ,p , for ε small enough, where

C1 > 0 and sβ,p > 0 are constants which depend on β and p but not on j.

Then, (12) implies that there exists a constant Cβ,p > 0 which does not depend

upon j such that:

sup
B∞(0,p)

|I
j(β)
2,ε (x)| ≤ Cp,β ε

(n−1)M−sβ,p .

In a similar way one can prove

sup
B∞(0,p)

|I
(β)
2,ε (x)| ≤ Cp,β ε

(n−1)M−sβ,p ,

for εM+1 ≤ ε < εM and jM < j ≤ jM+1.

Let Mp be such that

(n− 1)M − sup
|β|≤p

|sβ,p| ≥ p, for M ≥Mp .
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We obtain that for every p ∈ INn there are jM(p) > 0 and εM(p) > 0 such that

sup
|β|≤p, x∈B∞(0,p)

|I
j(β)
2,ε (x)| < Cp ε

p, for j ≥ jM(p) and ε < εM(p) .

A similar inequality holds for I
(β)
2,ε .

Let us estimate |I
j(β)
1,ε (x)− I

(β)
1,ε (x)|, x ∈ IR

n. We have

∣∣∣Ij(β)1,ε (x)− I
(β)
1,ε (x)

∣∣∣ ≤
1

(2π)n

∑

ν∈Zn

k(ν)∑

k=1

∫

σ1∈IR

∫

σ′∈B∞

∣∣∣∣
sβ Ĥν,ε(s) e

−ixs

Pε(s)

∣∣∣∣

·

∣∣∣∣
P j
ε (s)− Pε(s)

P j
ε (s)

∣∣∣∣ dσ .

We already proved that if j ≥ jM and ε ≤ εM , |σ
′| < 1/εM , then

(13) |P j
ε (s)| ≥ C ′′ εr where s =

(
σ1 + i(τ1,ν,ε + f), σ

′ + iτ ′ν,ε

)
.

(C ′′ depends only on M). On the other hand, since P j converges m-sharply to

P , it follows that for every a there exist j̃a (j̃a ≥ jM ) and ε̃a (ε̃a ≤ εM ) such that:

|P j
ε (s)− Pε(s)| ≤ εa(1 + |s|)m , ε < ε̃a, j > j̃a .

Thus, (13) implies
∣∣∣I(β)1,ε (x)− I

j(β)
1,ε (x)

∣∣∣ ≤

≤ ε−r+a 2π C ′′−1
(
∑

ν∈Zn
ε

∞∑

k=1

∫

σ1∈IR

∫

σ′∈Γν,k,ε

∣∣∣∣
e−ixs sβ(1 + |s|)m

Pε(s)
Ĥν,ε(s)

∣∣∣∣ dσ
)
.

Now, as in the last part of the proof of Theorem 1, we conclude that the quantity

in brackets is O(ε−r̃β,p), when x remains in the ball B∞(0, p). Choose

a = g(p) = p+ r′ + sup
|β|≤p

r̃β,p

with r′ > |r|. Since ε−r+a−r̃β,p < εp+(r′−r) it follows

sup
|β|≤p, x∈B∞(0,p)

∣∣∣I(β)1,2 (x)− I
j(β)
1,2 (x)

∣∣∣ = O(εp) .

All the above estimates imply that there is a decreasing sequence ε̂p and an

increasing sequence ĵp such that for j > ĵp and ε ≤ ε̂p

sup
|β|≤p, x∈B(0,p)

∣∣∣Ej(β)
ε (x)− E(β)

ε (x)
∣∣∣ < εp .



324 S. PILIPOVIĆ and D. SCARPALÉZOS

For a given p, the sequences εM and jM satisfy εM < ε̂p and jM > ĵp for large

enough M . This implies the sharp convergence of Ej to E in G(IRn).

Let us prove the second part of Theorem 2. Fix κ ∈ D(IRn) such that κ = 1

on Ω. Denote

(14) ZnΩ =
{
ν ∈ Zn, supphν ∩ suppκ 6= ∅

}
,

where hν is the partition of unity used in the proof of Theorem 1. Note that Z
n
Ω

is a finite set because suppκ is compact.

Put HΩ,ε = κHε. Clearly, HΩ,ε|Ω = Hε|Ω. Then, the solution of P
j
ε (D)Uε =

HΩ,ε on Ω is given by restriction to Ω of the solution E
j
ε of P

j
ε (D)Uε = HΩ,ε:

P j
ε (D)E

j
ε |Ω = HΩ,ε|Ω , j ∈ IN .

Since the set in (14) is finite, we construct the solutions Ej
ε and Eε of P

j
ε (D)Uε =

HΩ,ε and Pε(D)Uε = HΩ,ε, respectively, as in the previous part of the proof. The

sequence Ej
ε converges sharply to Eε in EM (IR

n).
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