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DIFFERENTIAL OPERATORS WITH
GENERALIZED CONSTANT COEFFICIENTS

S. PiLipovi¢é and D. SCARPALEZOS

Abstract: The classical method of solving the equation P(D)g = f is adapted to
a method of solving the family of equations with respect to € with a prescribed growth
rate. More precisely, the equation P.(D)U. = H. where H. is Colombeau’s moderate
function (H € £y (IR™)) and P.(D) is a differential operator with moderate coefficients
in Colombeau’s sense, is solved. If P/(D) — P(D), j — oo, in the sense that the
coefficients converge in the sharp topology, then there is a sequence E7 of solutions of
PI(D)U = H which converges in the sharp topology to a solution E of P(D)U = H
in G(R") = &y (R")/N(IR™). The moderate functions EJ € £;(IR") which converge
sharply to E. € &y (R™), such that PJ(D)(E!|q) = H.|q and P.(D)(E:|q) = H.|q,
where 2 is a bounded open set, are constructed.

The main problems in presented investigations are the estimates with respect to ¢
which makes this theory a non-trivial generalization of the classical one.

1 — Introduction

Let P.(D) = ngm A, D be a family of constant coefficients differential
operators and H, € € (0,1), be a family of smooth functions which satisfy power
order estimates with respect to e. Our purpose is to find a family of solutions F. of
P.(D) U. = H_ which satisfy the prescribed power order estimates with respect to
€. Such solutions are intersetting because they solve effective problems of applied
mathematics where we have differential operators with coefficients which depend
on a parameter €.

More precisely, we solve the equation P.(D)U. = H. where H. is a given
Colombeau’s moderate function and P-(D) is a differential operator with mod-
erate coefficients in Colombeau’s sense.
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Moreover, we prove that if P/(D) — P(D), j — oo, in the sense that co-
efficients converge in the sharp topology ([8]; see also [2]) and H is a given
Colombeau’s generalized function, then there is a sequence E7 of solutions of
PJ(D) U= H which converge in the sharp topology to a solution E of P(D)U =H
in G(R"™).

Let Q C IR™ be a bounded open set and H. € &)y be a representative of
H € G(IR™). We construct a sequence EJ € £,/(IR"™) which satisfies

P!(D)(Ella) = Hlo

and E! converges sharply to E. in &y (IR™), where E. € &y(IR™) satisfies
Pe(D)(Eela) = Helo.

Our construction of solutions is similar to the construction of a classical dis-
tributional solution of P(D)u = h which is given in [5]; see also [6] for the
general theory. Our main problems appear in proving the necessary estimates
with respect to .

The computations and proofs will be made in the most simplified model of
Colombeau’s theory — the space of simplified generalized function. The trans-
lation of proofs and results to other models of Colombeau’s generalized function
spaces is straightforward but with the more complicated notation.

We refer to [1-4] and [9] for the general theory of Colombeau’s spaces and its
applications to non-linear problems.

2 — Basic definitions

Let V be a topological vector space whose topology is given by a countable set
of seminorms pg, k € IN. We will define “the polynomially generalized extension”
of V, Gy and its “sharp topology” ([8], see also [2]).

We define €y, as the set of locally bounded function R(e) = R.: (0,1) = V
such that for every k € IN there exists a € IR such that

where O(c?) means that the left side is smaller than Ce® for some C' > 0 and
every ¢ € (0,&9), g0 > 0.

The upper bound of such reals a will be called the k-valuation of R. and it is
denoted by vi(R;).

We denote by Ny the space of all elements H, € £ m,v with the property that
for any k € IN and for any a € R, ui(H:) = O(e%).
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Note, Ny is the space of elements H. whose all valuations vi(H.), k € IN, are
equal to 4o0.

The quotient space Gy = Env /Ny is called the polynomially generalized
extension of V. The elements of Ny are called “negligible”.

Since vg(R:) = vi(RL) for every k € INg if R. — R. € Ny, we can speak of
the k-valuation of a class R = [R.], where brackets will be used to denote the
equivalence class in the quotient space.

If we put d(F:, G:) = exp(—vi(F; — G;)), we obtain a semi-metric on 7y,
k € IN and the corresponding metric on Gy. The countable set of those semi-
metrics (resp. metrics) defines a uniform structure on Eysy (resp. Gy) which is
called the sharp uniform structure. The induced topology is called the sharp
topology. It is proved in [8] that Gy is complete even when this is not the case
for V.

If the space V is an algebra whose products are continuous for all the semi-
norms, then Ny is an ideal of the algebra & v,y and Gy becomes a Hausdorff
topological ring.

If V. = €, then Gy is called the algebra of generalized constants and it is
denoted by ©; Eyry is denoted by £° and Ny is denoted by N,

If V = C€>(R), then Gy is called the algebra of generalized functions on Q and
it is denoted by G(€); Enr,v is denoted by Ep/(Q) and Ny is denoted by N (Q).
Let us remind that in order to define a set of seminorms on C°°(2) we consider
an exhaustive sequence of open sets € such that Up—qQr = Q, Qp CC Qg1
k € INg. We put

pr(f) = Z (sul) ]8“f(:c)|), k€ Ny .
lal<k €%
The uniform structure on C'*°(2), defined by this family of seminorms does not
depend on the choice of the sequence €2y,.

It is easy to verify that G(£2) is a differential topological ring where derivations
(0;) are continuous for its sharp topology and € can be considered as a subalgebra
of G().

In order to embed D’(€) into G(€2) we must first recall the fundamental lemma
of Colombeau’s theory:

Lemma 1. Let ¢ € C(IR") = D(R") and ¢ € S(IR") such that F(¢) =
¢ € D(R") and ¢ = 1 on a neighbourhood of zero. Put ¢.(z) = = ¢(%), z € R",

e € (0,1). Then, N.(z) = (¢ * ¢p-(x) — p(x)), € Q, belongs to N'().

The proof follows by using Taylor’s expansion, since [¢(z)dx = 1 and
Jz*¢(z)dx =0 for |a] > 1.
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We fix once for all the function ¢ of previous lemma and put Iy(¢) = [ * ¢c].
Using this lemma it can be easily verified that if ¢ and ¢ belong to D(IR"), then

Is(p - ) = Is(p) - Ip(¥) -

If T € D,(Q) C DL(R") we put I4(T) = [T * ¢-(x)].

After proving that the presheaf U — G(U) (U is open in R") is a sheaf,
one can prove that the above embeddings can be extended to embeddings of
C>*(Q) and D'(Q) into G(2) (cf. [9]). The support of a generalized function
H is defined as the complement of the largest open subset Q' C € such that
Hlg = 0. This notion is coherent with the embedding I because if T' € D'(Q),
then supp 17" = supp(/47T").

If G is a generalized function with compact support K CC Q (G € G.(Q2)) and
G-(x) is a representative of GG, then its integral is defined by

/Gdac = [/w(x) Ge(x) daz} ,

where ¢ € C5°(€2), v» = 1 on K. This definition does not depend on .
Likewise, one defines the Fourier transform of G € G.(2) as being the class in
G(IR"™) of the Fourier transform of G.(x) ¢ (x).
Let G,F € G(Q). It is said that they are equal in the distribution sense,

G2 H,if

/ (Ga) ~ F(x)) pla)de =0, for amy € CZ(Q) .

3 — Tempered generalized functions

Let us first remind the definitions of & »/(IR"), the space of moderate (tem-
pered) families of C°°-functions. It is said that R. belongs to & s (IR") if for any
k € INg there exist a € IR and m € IN( such that:

0“R.(x) a
T ) —0E-

sup (sup
la|<k \IR"
The upper bound of such a, vy, (R:), is called the valuation of R..

The space of elements H. of & p/(IR™) with the property that for every k € INg
there exists m € IN such that for every a € IR,

0“R.(x) a
(1 + |z]2)m/2 ) =0(),

sup (sup
lo|<k \IR"
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is denoted by M (IR"). It is an ideal of & a7 (IR™). The quotient space G;(IR") =
Ev(R™)/N(IR™) is called the space of tempered generalized functions. It is
not a metric space but we can define its sharp topology by using the valuations
Uk,m and a procedure of injective and projective limits (cf. [8]). Note that G; is
not a subspace of G because N (IR") N & (R™) # N (IR™) ([4]), but there is a
canonical mapping G;(IR") — G(IR") (cf. [9]).

In order to embed S'(IR") into G;(IR™) we consider as before the mapping
I;: T — [T'*¢c]. This embedding respects the products of elements of Oy (IR").

If G, F € G,(IR"™) then they are equal in the sense of tempered distributions,

GE R, if
[ (Ge@) = Fufa)) dia)ds € N for any ¥ € SR

G and F; being the representatives of G and F, respectively.

Let G € G(IR") be represented by G.. We define the Fourier and inverse
Fourier transformations F(G)(€), ¢ € R™ and F1(G)(t), t € R" by the repre-
sentatives

[ G@)dlenyde and  @2m)" [ G dleg)d

respectively. Though in general, F~! F G # G, we can prove that 7~ F G g a.

4 — Generalized polynomials

A formal generalized polynomial in n real variables is an element of
C[r1,...,7,). A generalized polynomial function, in short, a generalized poly-
nomial, is a tempered generalized function of the form

Z an %, aq€C.

laj<m

We say that such a generalized function is of degree m if a, = 0 for |a| > m
and there exists 3, |3| = m, such that ag # 0. The corresponding differential
operator is of the form

(1) P(D) = Z ao D%, a, € C, where D* = (i9)" .

laj<m

If 37 51<mlp.c] 2’ = N.(z) € N;(IR"), then by making successive derivations
and by putting x = 0 we obtain that bs. € N, |3| < m. This implies:



310 S. PILIPOVIC and D. SCARPALEZOS

Lemma 2. If [Hi(z)] = ngm[ag,e] x®, i = 1,2, are representatives of a
generalized polynomial then

ar.—a:. € N°, ol <m.

a,e a,e

Let Py, be the set of generalized polynomials P of degree at most m (deg P <
m). If P7 is a sequence of generalized polynomials belonging to P,,, we say that
PJ m-sharply converges to P € Py, (j — o00) if P, j € IN and P- being polyno-
mial representatives of P/ and P, respectively, satisfy the following condition:

(*) For any a > 0 there exists jo € IN such that for every j > jo,

Pl(z) — P()

(1+ |z[2)m/2 = Hm (Paj(l') - Pe(ﬂc)) =0(e) .

sup
zelR™

Note that we can choose the representatives P and P. such that for every
a > 0 there exist j(a) € IN and £(a) > 0 such that p,,(P/ — P.) < &2 for j > j(a)
and € < €(a).

More generally, we say that a sequence P’ of generalized polynomials con-
verges sharply to a generalized polynomial P if there exists some m such that (*)
holds.

This convergence implies the sharp convergence of coefficients:

Lemma 3. Let P/ converge sharply to P, i.e. let (*) hold. Moreover, let
deg P < m. Then there exists jo such that deg(P’) < m for j > jo and the
coefficients a&s of Pj converge sharply to the corresponding coefficients [aq ],

la| < m, of P.

Proof: By assumptions, there exists jo € IN such that for every j > jg there
exists €; > 0 such that
|P(z) — Pe(x)|

(T+ a2

(2)

<1, forall z€R" and e<¢;.

Suppose that the degree d of [HI] = [P/ — P.] is greater than m and take e1 < ¢;
and j; > jo. Let 19 € IR" be such that the homogeneous part of degree d of HJ!,
is not zero at xg. There exist C' > 0 and ¢y > 0 such that

Pgll (t.%'o) — Pgl (tm'())
(14 |2o|?)m/?

>0t >t .

This contradicts assumption (2) if d > m.



DIFFERENTIAL OPERATORS 311

Let us note that the vector space of classical polynomials of degree at most
m has finite dimension. Thus, all the norms on this space are equivalent. Since

P(x)

w(P) = sup |
)= SR G

zelR™

is a norm, there exists a constant C' > 0 such that for every polynomial h of
degree < m, ||h|| < C pm(h), where

|h|| = sup laa|, h= Z o T .

[ <m laf<m

Thus, pim(P? — P.) = O(e") for every a > 0, is equivalent to

\a&s — Gqel = O0(e"), forevery a>0.n

5 — The solution of P(D)U = H

Theorem 1, in the setting of distribution theory, is a famous classical result.
In its proof we follow the ideas of Friedman’s proof, [5], Ch. 11, Sec. 5. Our main
problems are estimations with respect to .

Theorem 1. Let P be a differential operator with coefficients in € of the
form (1) such that

(3) ‘ Z aa,eca’>C€T, e€(0,1),

|a)|=m

holds for some ¢ € R", C > 0 and r € R. Then for every H. € £y (IR") there
exists a solution E. € €y (IR"™) of the equation

P.(D)U. = H. .
In particular, [E;| is the solution of P(D)U = H.

Proof: Case I — Let

P. <z a) = P.(D) = ame D"+ Y Puo(D) Df
X k=0

Therefore,

m—1

(4) P.(s1, S/) = Qe ST + Z Pkﬁ(s') slf, s = (s1, S/) eC",
k=0
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and condition (3) means that there exist C' > 0 and r > 0 such that
(5) lame| > Ce", e€(0,1).
Let h, be a C* partition of unity

g(z —v)
Ypezn 9(T — 1)

h, = , verd,

where Z is the set of integers and g € C* such that g(z) > 0, g(z) = 1if |z;| < 3,
j=1,..,n,9(x)=0if |[z;| >1,j=1,...,n. Put

H,.=h,H., veZ' ec(0,1).

For every a € INy and v € Z", there exist C,, > 0 and r,, > 0 such that

Ca,u

gla,v

< , €€(0,1).

sup{| D Hye(2)l; |ox — v <1, k=1,...n} <

Put Ay = {veR"™; max|y;| > |a|, i =1,...,n}. Let h€IN and €€ (0, 1). Define

C
Bh,s :3+max{ aﬂ/; OS Qe S h; |l/k:| S ha k= 17"'7”} )

ghe
dve=0ume Oupe, VEZL", where 0;.= ;,, jE€Z.
Bije(1+15]%)
Put tj. = —logd,., j € Z. Note that for v = (v1,...,vp) € Aq,
R o e ELCRE
Let 7o = max{r, ,; max{|v1|,...,|vn|} < |a|}. Then, there is C, > 0 such that

> Ca’”5%a<%, e€(0,1).

vezr " e

Fix v = (v1,...,vn) € Z", and € € (0,1). Put

Thewv, =t esgnyg, k=1,...,n,

1, t >0,
sgnt =
-1, t<0.

where
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Fix (09,...,0n) = 0" and 7, = (T1pc, ..., Tnpe). We have

m
(6) P (81 +iTi ey ooy On + Z'Tml,ﬁ) = Qe H (31 — sgk) (O'I,TV’E)) ., s el

k=1
Let f(o’, 7'1,5) be a step function with values in the set {1, 2 1} ifv; >0
and in {—1 ——,..., —=1 if 11 <0, such that for s1 = o1 —i—zf(a Tye) FiT1 e

(7) | Im(sy — 81 ) k=1,...m, o1€C.

’_2m

Thus, (6) implies that there is C' > 0 such that

>Ce", for o € R.

. / . . .
E(O-l —I—’Lf(O' aTu,s)+ZTl,u,€> 02+1T2 pe; vy O'n"'m_n,u,z-:)

If we take o’ instead of ¢’ (with the same ) we have

m
. ~ . ~ . (k) f~1
P (51+171,y,sa 02+1T2 v ey -y 0n+”’n,u,s) = Qme H (51_51 (U ’7—145) , seC.
k=1

There exists d(e,v) such that
‘ ()

(&, 1) — 830 me)| <27 for |7 — o] < 8(e,v) .

This implies that there is a cube [], /. (open) around ¢’ contained in the
ball with radius (e, v) such that if 01 € R and (o2, ...,0,) € ], 5/ -, then by (7)

’Im(sl — Sgk)(&,,Tyﬁ))‘ > 4;@ k=1,...m,

where sy = o1 +i711 . +if(0',7¢), 01 € R. This implies that there exists C' > 0
(which depends on m but not on v and ¢) such that

>Ce"

. / . ~ . ~ .
Pu,a (Ul + Zf(U 77'V,a) + 1T ve, 02 +1T20e,y ooy On+ ZTn,V,e)

where s; =01 + 11, +if(0',7e), 01 € R.
We cover R"~! by [loeo' € IR"~!. The Heine Borel theorem implies that
this covering admit a refinement A, ., k € IN, consisting of cubes. Put

k—1
Fy,l,a:Au,l,sa Fu,Q,e:Au,Q,s\Au,l,sa ceey Fl/,k‘,E = Au,k,e\( U Ay,i,6)7 keIN )
=1

. 1 .
Tyykyg = {S € Cn; §1 =01 —‘I_Z(Tl?l/’g + f), o1 IR, 59 =09 F T2 pe, wony

Sp =0n + iTn,I/,Fh (027 -u;Un) € Fu,k,s} >
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L1}, if vy > 0 and in {—1,-71 L~} f

where f takes values in {m, = -

v1 < 0 and is such that (7) holds.
Let T, . = UpZ1 Ty ke We put

o ( DS e

veZn

—1 xl Ul+l(7_l v, E+f))+ +-737L(U7L+Z7—7L v 5)]
27'(' Z Z/ 1dU /uks )

veZn k=1 01 —'—Z(TJ.I/E +f) ceey Un+ZTn,V,5)

-H, . (01 +i(Tipe+ f), oy o0+ zrmj,e) doy---do,, x€IR".

One can prove by straightforward computations that P.(D) E. = H.. We are
going to prove that E. € &yy.

Let o € INy and K cC IR" be given. We will show that there exist C' =
C(K,a) and r = r(K, a) such that

C
s EO@ < . ce)
€K 3

Since H, . € C§°, the Paley-Wiener theorem implies that there is C' > 0 such
that

|s f[l,75(s)| <C exp( Zt,,wg lvil — 1) ) for seT,, .

5T v
The Paley—Wiener type theorem for Colombeau’s generalized functions are in-
y yp g

vestigated in [7].) Let 8 = [2] + «, where [p] = (p,p, ...,p). Then

~ Csu 1
“H, < i — » i —1)).
e & ey D1 e = e WO S C )

One can simply verify that (11, + f)2>1,72,.>1,e € (0,1), j =2,...,n

» e

This implies that there is C' > 0 which does not depend on v such that

. / / doy---doy, <C
up )
e€(0,1) p.—1 T'uk,e 7-1,1/75 + f)2) H?: (G + 7 1/5)

Since

n
(—izs) Z |zi| (|ty, | +1), for seT,.,
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it follows

a Coz 2),v =
EL(@) < C Y 2B exp (3 |l (e + 1) =ty e(ls] = 1))
veZ i=1

e’ v

Vi€ )

COL-}—[Q] v n

Zati2lv [vi|—l|zi| =1

<C E ot 2 1) rze K .
veZ =

The set Ax of indices v = (v, ..., V) with the property
ma (|ug] — foi] = 1) <1

is finite. We divide the above sum into two parts over v € Z™\ |JAx and v€|J Ak.
The second one satisfies the estimate of the form C/e". It remains to bound the
second part. In this case the exponent in (d,, .)® satisfies @ > 1 and, as §,, . < 1,
it follows (0y, )% < 0y e

This implies that there exist C = C(K,«) > 0 and r = (K, a) > 0 such that

C
sup [E@ @) < <, ee(1).
€K 3

Case II — Let P:(D) be a representative of P(z) such that its principal symbol
Pre = 3 jaj=m Gae T satisfies (3) for some C' > 0 and r > 0.

Put s; = > ¢ji ty, s = Mt, where the members of the matrix M cj, are chosen
such that ¢; = ¢11, ..., ¢, = ¢p1 and det M # 0. Recall, ¢ € R" is from (3). Then,

P.(s) = P.(t) = @y tT 4 lower order terms

where
|am,€| == |Pm,5(c)’ 2 C5T, € € (0, 1) .

Let EE be a solution of

PE(D) Es(x) = Hs(tM_ll')

(*M is the transpose matrix) constructed in the same way as in Case 1. Then,
by using

FR(AD)(5) L F(R@) (A7)s), scR", Res,

where A is a regular linear transformation and P.(t) = P.(s), we obtain that the
solution of P.(D)E. = H. is E-(x) = E.(*Mz), v € R". n
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6 — On the sequence of equations P/(D)U = H

Let P’ be a sequence of polynomials in G(IR") which m-sharply converges to

P as j — oo, where m is the order of P. For the next theorem we have to analyze

the behaviour of zeros of P/ and P. Let o/ = (09, ...,05) and 7z = (T1¢, ..., Tn ),
€ (0,1), be fixed and P and P7 be written in the canonical form

m
(8) P (31 + Z’7'1,67 o2 + iTQ,&‘a vy Op + iTn,a) = Am.e H (31 - Sgp)(01776)> ,
p=1

m
(9) P! (31 +iTie, O2 +1Tog, ...y Op + 2'7'7%5) =}, . H (51 — Sjl(p)(O'/,TE)> =
p=1

— . J m J / m—1
=aj, .81 + Cmfl’g(a JTe) ST

where s1 € €, j € N, ¢ € (0,1).
First we prove the following lemma.

Lemma 4. For every p € {1,...,m} and a > 0 there exist Cy > 0, g9 > 0
and jo € IN such that for every j > jo and € < gq there exists p(j,e) € {1,...,m}
such that

(10) ’S{(p(j’g))(al, TE) _ Sgﬁ)(()'/, Ta) < Oy é‘a(l + ’Ta’m) (1 + ’O_/’m) ’ O'IEIR,nil.

This lemma implies that there exists jo such that for every j > jo, € < €¢ and
o/ € R ! we may rearrange zeros s{(p U ’E))(O', , Te) such that on the p-th place in
{(p(j,&)) (

the above representation of P/ stands s o' 1e).

Proof: Let us first prove the following assertion for a polynomial of one
variable g(z) = by, 2™ + b1 2™ + ... + bg. There holds

bm—k

bm

g@)£0 if |x|2msup{k , ke{l,...,m}}.

(All the zeros are inside the ball of radius m - sup{ {/ b’g—;’“, ke {l,...,m}} and
the centre at 0.) To see this we just have to write

b1 1 bp 1
= |byx™|1 -+t — —
bm—11]]1 bo 1
> b, ™| |1 — — — | — 0.
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Fix p € {1,...,m}. By using [5], Lemma 4.1.1, in one dimension, (for fixed o’) we
obtain that for every a; > 0 there are C; > 0, €1 > 0 and j; € IN such that for
j > 71 and € < €1 there holds

j(p(j@))( ' (p)

‘31 o, 1) — s’ (o', 72)

<015a1< —Hs je))\) ,

where C7 does not depend on j; a1 is a constant which will be chosen later as big
as we need.
The first part of the proof implies that for p = 1,...,n,

\s{(p)(a’, Te)| < msup{ j

Since the coefficients of PJ converge sharply to the corresponding ones of P, it fol-
lows that the polynomials G}, , (¢, 7.) converge (m—Fk)-sharply to Cy, (0", 7c)
and a’, - converge sharply to a, . as j — oo.

C’J K E(O’ Te)

J
Am.e

ke {1,...,m}} .

Note it ¢7 o 1s written as a polynomial with respect to o', then the cor-
responding coefficients are polynomial functions of coefficients of PJ and powers
of 7.. By extracting from all of these coefficients (1 + |7:|™), we obtain that for
every as > 0 there exist jo € IN, eo > 0 and Cy > 0 such that for 7 > jo and
e < eg,

< Co(L+ |7 [™)e™(1 + |o'|™),
odeR"!, k=1,.m-1,

’ ke U Te) - Cm—k@(aja Tz—:)

where as will be chosen later as big as we need.
Likewise, for every d > 0 there exist j; € IN and €4 > 0 such that

i d . .
@y e — ame| <e®  for j>jag, e<eq,

where d > r will be chosen later as big as we need. Thus, there are j3 € IN,
e3 > 0 and C3 > 0 such that if j > j3 and € < €3, then |a/,| > C3¢” and

-

< Oy R ek 5Oy eo2 (14|72 ™) (14|07 ™) + |Coi (0, 72)|, o' €R™L.

C’J k(a Te)

< <<l |Cm—k,5(0/7TE)_Cgm—k,s(U/vTe)| + |Cm—k,a(0',a Ts)‘)

|aine|

Am,e

There exist N € IN and Cy > 0 such that for any k& € {1,...,m}

1
’Cmfk,s(o'laTa)’ < E_N CN(l + ‘Ta‘m) (1 + ‘O'/‘m) :
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Thus, by taking d and as big enough, we can estimate I by

N+r
k

Ca(L+ 7™ (14 |o'|™)k ™5
where Cy > 0 is a suitable constant. This implies (with suitable C5 > 0) that for

every j > j3 and € < €3

IS{(P(j,f))( < Cs (1+|7_E|m) E(11—(]\/—"-7’)/711 (1+|01’m) 7 O‘/EIR,n_l.

J’,Tg)—sgp)(a',ﬁg)

If we choose a; such that a; — (N +7r)/m = a, g = €3 and jy = j3 we obtain the
required inequality. m

Theorem 2. Let H € G(IR™) and P’ be a sequence of generalized poly-
nomials in G(IR"™) which m-sharply converges to P as j — oo, where P satisfies
condition (3) of Theorem 1. Then there is a sequence E7 of generalized functions
satisfying the equations P/(D)E7 = H, j € IN, which converges sharply to a
solution E of P(D)U = H.

Moreover, if Q is open bounded set and H. is a given representative of H,
then there exist E. and a sequence EJ in £y;(IR™) such that

P(D)E.|q = H.|lq, PY(D)F!|q=H.|q (pointwise equalities)

and EJ — E., j — oo, sharply in £y (IR").

Note that the first part also can be proved with €2 instead of IR". Since the
proof is already technically complicate, we omit this generalization.

Proof: Asin Theorem 1, Case II, we transfer the general case to the one when
P is of the form (4) such that (5) holds. The sharp convergence of a sequence of
polynomials is invariant with respect to the transformation of arguments s = Mt,
det M # 0. Thus, it is enough to prove the theorem in this case.

We will assume that P and P7 are of the form (8), (9) for which (10) holds.

We will use the notation of Theorem 1. Let h > 0, ¢ € (0,1) and v € Z" be
fixed. We put

C
Bh’5:3+max{raﬂj; Ogak Sh7 ‘Vk| Sh’u k:177n} ’
gla,v

1 n
5', = s ) ]Eza 5, = 6 ) t'7 :—10g5 s k}:l’.“’n‘
7 Bl imea) < (14157) e kl;[l vier tie vie
This implies

Cs+m+3)w
ghptimtaly "0 T TR (14 |u?)

if max lvi| > |8l + n(m +3) .
i=1,...n
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Put
The(Vp) =ty esguvy, k=1,..,n.
Fix ¢/ = (09, ...,04) and put
Ta(V) =Tye = (Tl,u,aa ooy Tn,u,a) 5 Té(V) - (7'2,1/,57 ) T’N,J/,E) .

Let f(o',7,¢) (resp. fi(o’, 7',,5)) be a step function with values in the set
;w = .,1}if vy >0, and {—1,. _E if 1 < 0, with the property that for

€(0,1)

51 =01 +i<ﬁ,y,s+f(0’,7u,s)) (reSp- s1 = a1+i(ﬁ,u,e+fj(a’,Tu,s))) , o1€R,

1
‘f(a’,ﬂ,@) — Im(s&p)(al, T,,jg))‘ > g p=1,..,m
Gt i) 1 1 .
(resp. ‘f (0", 1) —Im(s;" (o ,7‘,,75))’ > . p=1,...,m, j€ ]N) .

Note, for given a > 0 there are j, € IN and g, > 0 such that |af, . — apm| < &
if j > j, and € < g, (Lemma 3). By taking a > r, this implies that there are
C > 0, jo and g¢ such that for o1 € R and € < ¢g,

> (Cem

P, (Ul + i(f(0/7 Tu,e) + Tl,u,a)a o9 + iTQ,V,ay vy O+ iTn,V,&)

(resp., for j > jo, € < ey,

P](Ul+l(f (U Tus)+Tlus)+71V67 (72+Z7—21/6> ) Un"‘i'rn,u,s) >Ce" )

We consider solutions EJ of PJ(D)U. = H. (resp. E. of P.(D)U. = H.) which
are of the form

EE:): 27r ZZ/ /F] 7a(8)d01---dan

veln k=1 5

7ZISHV
EE()_ Z/Im/ E()dal"'dan ), z€R",
Vke

where s = (Ul +.i(fj(alyTu,5) + Tl,V,a)a oy + iTZ,V,Ey ey O+ iTn,u,E)’ o1 € R,
o' € IV, and IV, _are disjunct cubes which cover R""* (in the case E. we
omit j), j € IN, e € (0,1).
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One can prove that P.(D) E! = H. and [E!] € G, j € IN, as in the proof of
Theorem 1.

The main idea of the proof is that we will construct inductively sets I', j . and
Fi7k7£ in a way that when j tends to infinity we can identify I‘;k@ with I', 1, . and
f7 with f in increasingly large domains.

Note that the I', ;. .’s were constructed in such a way that the step function
/ is constant in a small cube (for given v and ¢) and that for any ¢’ in such a

cube we have, with suitable C’ > 0

m

P. ((71 +i(Tipet+fo), a’+i7-l’,75> =lame| [] ‘(O'l +i(Tyetfo)—oP (o, TLE))‘ >(C'e,
p=1

where f, = f(0/,7,¢) in T'y . It is easy to verify that we can construct the

I'yke’s in a way that for any v, ¢ there exists an increasing sequence k(M),

M € IN, such that
k(M)

U Tuke = Boo(0,1/6M)
k=1
where on the right hand side is the ball with respect to the “sup” norm, i.e.
0’| = sup;e(a,..n) loi|- This will be the only norm we will use in the sequel.
We have proved in Lemma 4 that for any a there is jo, € IN and €9, > 0
such that for j > jo, and € < g4,

o1 (0", 72) — o] P <1+ o™ A+ ™), o e R

0'177'5)

Thus, the left side is < Ce®e™M™(1 + |1, .|™) for 0’ € Buo(0,1/eM).
By construction, |7, .| = O(|logel|). This implies that for every v € Z there
exists €, > 0 such that

(14 |1e™) <e™™ for e<e, .
If e <e0,qaJ > Joaande <ey, then

o me) = A )| £ C et

Let a = mM +m+r', with v’ > r. We can easily conclude that there are j); € IN
and 37 > 0 such that if |o/| < 1/eM, j > jar, e < epr and € < €, then

1 m
> L [— .
>Ce (4m>

The fact that we have above an infinite number of v’s and that the previous

‘Pj (0'1 + Z-(7'1,u,5 + fl/)v o' + iTL,E)

inequality depends on ¢, could seem to be a serious problem. In order to solve
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the equations in the frame of G(IR") we overcome the quoted problem by choosing
representatives of H such that

H,. =0, for e>¢,.

We can suppose without loss of generality that the sequence jjs is strictly
increasing and that the sequence ¢, is strictly decreasing.

Let jar < j < jpma1 and epr1 < e < epr. We complete for any v, the covering
(T'u ke )k<k(nr), of the ball By (0, 1/eM) c R™! by a covering

IV . ke ACIN, of theset R" '\Bus(0,1/eM) .

v,k,e

We put
(o' 1) = flo',1e) =, for o € Buoo(0,1/eM)

and for o’ ¢ Bo(0,1/eM) we choose f7(o’,7,.) in such a way that in the cor-
responding covering the above step functions satisfy the prescription in the con-
struction of the solution of P/(D)UJ = H. as it is explained in the proof of
Theorem 1.

We split the expressions of EZ and E. as follows:

/ / ZISHI/E( )do—
Zk t JoreR Jorer, . Pl(s)

7ZZESH
o E
~ Joem Jorer, . Pl(s )

£

El(z) =

_|_
VGZ”

= Iis(:n) + I%,a(ff) , wT€R",

and likewise

k(M e—ixs ﬁ]j7g(8) o

(2 UIGR//GFV,IC,E PE(S)

—— S e Hlye(s)

ZIEZ" 'er ,N,E E(S)

=T e(7) + IZ,s(x), zeR™.

Es(x) -

do

Note that for I, loe, s = (01 + i(f + 1), 0" + 47, ), while for I{E, 1'28,
s=(o14i(f? +Tipe), o +iT) ).

We can choose the sequence ¢, to be strictly decreasing with respect to |v|.
Thus, for a given ¢ there is a finite set Z? of indices v for which I;T,,ﬁ # 0. (Recall
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that we have taken H,. =0 for ¢ > ¢,.) Let § € IN". Then
BIO) (@) — B ()] < |HD (@) — [0 ()| + 8P ()| + |12 ()] .
In order to estimate the right hand side of this inequality we use

(11) |50+ m+3) ﬁyyg(s)‘ < M

g B+m+3]v

for s = (o1 +i(T1pe + f), 0’ + iTll,vs) or s = (01 +i(T1pe + ), o' + Z'Tl/,’s) and

1 1
12 t| > = — —— M
12) N> = iy <e

Let us estimate \Ig(ﬁ) (z)| (and likewise Ig(:c)), reR"
We obtain by (11) (as in the proof of Theorem 1) that for & small enough

1 . Cﬁ+[m+3],u . I—HL 51‘/1:i|_|55i|_1
Sow T P Lt sl (L ol

e~irs of flm (s)
Pl(s)

Then,

C
(8 (Jvil=lzs|=1) M
20w < (3 110 pilnesiy )

veZr 1

/ do / do’
(L +]ou])? S (L+]o2])? - (L+ |on])?
(because 1/(1 4+ |s;])® < 1/(1 + |oy])?).

As in Theorem 1, when x belongs to a compact set, say x € By (0,p) C R",
the quantity in brackets can be estimated by Cj /%37, for € small enough, where
C7 > 0 and sg) > 0 are constants which depend on 3 and p but not on j.

Then, (12) implies that there exists a constant Cg;,, > 0 which does not depend
upon j such that:

S )\Ié (@) < Cppe DM =550,

In a similar way one can prove

sup |17 (2)] < Cp g DIM =50
B (0,p)

for epr1 <e<epy and jyr < J < Jpm+1-
Let M, be such that

(n—1)M — sup |sgp| >p, for M > M,.
1Bl<p
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We obtain that for every p € IN" there are jps(,) > 0 and ej(,) > 0 such that
sup \Ig(f)(:r)] < Cpel,  for j>jyp) and e < ey -
‘mfp, $€Boo(07p)

A similar inequality holds for IQ(B )

Let us estimate ]I] ﬁ)( ) — If{?(x)\, z € R". We have

( ) )eflIS
I -1 <
’ 18( )‘_ /a1€]R/€B 55)
VEZ"k 1
,Vw@fa@>w
P!(s)

We already proved that if j > jyr and € < ey, |0] < 1/eM, then
(13) |Pg(s)\ > (C"e"  where s = (01 +i(Tipe+ f), o + Z'TLVE) .

(C" depends only on M). On the other hand, since P/ converges m-sharply to
P, it follows that for every a there exist j, (jo > jn) and &, (€4 < £p7) such that:

|PL(s) = Pe(s)] S (L +[s)™,  e<&, j>Ja-
Thus, (13) implies

‘45) x —Ij(ﬂ)(x)’ <

crHa g -1 Z / / e s sﬁ(l + |s])™ ~
o1 €R el

H, (s)
veZn k= Pg(s) €

ir).

Now, as in the last part of the proof of Theorem 1, we conclude that the quantity
in brackets is O(¢7"#»), when x remains in the ball B (0, p). Choose

v,k,e

a=g(p) =p+r'+ sup g,
|BI<p

with 7/ > |r|. Since e "o "8 < P 1) it follows

sup |1 (@) - Y @) = 0er) .
|BI<p, z€Bss (0,p)

All the above estimates imply that there is a decreasing sequence &, and an
increasing sequence j, such that for j > j, and € <&,

sup ‘E] )—Eéﬁ)(a;)’ <P,
|BI<p, z€B(0,p)
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For a given p, the sequences €y and jas satisfy ey < &, and jar > 31) for large
enough M. This implies the sharp convergence of E’ to E in G(IR").

Let us prove the second part of Theorem 2. Fix x € D(IR") such that k =1
on Q. Denote

(14) O = {V € Z", supp h, Nsupp k # @} ,

where h,, is the partition of unity used in the proof of Theorem 1. Note that Zg
is a finite set because supp x is compact.

Put Ho. = kH.. Clearly, Ho.|q = H.|q. Then, the solution of P(D)U, =
Hgq . on € is given by restriction to € of the solution EI of PJ(D)U. = Hgq.:

PI(D)El|lg = Holo, jelN.

Since the set in (14) is finite, we construct the solutions EZ and E. of P/(D) U, =
Hq . and P.(D) U, = Hq, respectively, as in the previous part of the proof. The
sequence EJ converges sharply to E. in £y/(IR"™). u

REFERENCES

[1] Bracroni, H.A. — A Nonlinear Theory of Generalized Functions, Springer-Verlag,
Berlin-Heidelberg—New York, 1990.

[2] Biacioni, H.A. and OBERGUGGENBERGER, M. — Generalized solutions to Burgers’
equation, J. Diff. Egs., 97(2) (1992), 263—287.

[3] CoLOMBEAU, J.F. — A Multiplication of Distributions, Graduate Course, Lion, 1993.

[4] CoLoMBEAU, J.F. — Elementary Introduction in New Generalized Functions, North
Holland, Amsterdam, 1985.

[5] FRIEDMAN, A. — Generalized Functions and Partial Differential Equations, Prentice-
Hall, Inc, Englewood Cliffs, New York, 1963.

[6] HORMANDER, L. — Analysis of Partial Differential Operators, Vol. 1, Pseudo-
Differential Operators, Springer-Verlag, Berlin—Heidelberg—New York, 1983.

[7] NEDELJKOV, M. and PILiPOVIC, S. — Paley—Wiener type theorems in Colombeau’s
spaces of generalized functions, J. Math. Anal. and Appl., to appear.

[8] SCARPALEZOS, D. — Topologies dans les espaces de nouvelles fonctions genéralisées
de Colombeau. €-modules topologiques, Preprint.

[9] OBERGUGGENBERGER, M. — Multiplications of Distributions and Applications to
Partial Differential Equations, Longman, 1992.

S. Pilipovi¢,
University of Novi Sad, Faculty of Science, Institute for Mathematics,
Trg D. Obradoviéa 4, 21000 Novi Sad — YUGOSLAVIA
and
D. Scarpalézos,
U.F.R. de Mathématiques, Université Paris 7,
2 place Jussieu, Paris 5°™¢, 75005 - FRANCE



