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A P -THEOREM FOR INVERSE SEMIGROUPS WITH ZERO

Gracinda M.S. Gomes* and John M. Howie**

Introduction

The result known as McAlister’s P -theorem stands as one of the most signifi-

cant achievements in inverse semigroup theory since Vagner [17, 18] and Preston

[12, 13, 14] initiated the theory in the fifties. See the papers by McAlister [4, 5],

Munn [9], Schein [15], or the accounts by Petrich [11] and Howie [3]. The theorem

refers to what have come to be called E-unitary inverse semigroups, and gives a

description of such semigroups in terms of a group acting by order-automorphisms

on a partially ordered set.

An inverse semigroup with zero cannot be E-unitary unless every element is

idempotent, but, as noted by Szendrei [16], it is possible to modify the definition

and to consider what we shall call E∗-unitary semigroups instead.

One of the cornerstones of the McAlister theory is the minimum group con-

gruence

σ =
{

(a, b) ∈ S × S : (∃ e ∈ S) e2 = e, ea = eb
}

on an inverse semigroup S, first considered by Munn [7] in 1961. Again, σ is of

little interest if S has a zero element, since it must then be the universal congru-

ence. However, in 1964 Munn [8] showed that, for certain inverse semigroups S

with zero, the closely analogous relation

β =
{

(a, b) ∈ S × S : (∃ e ∈ S) 0 6= e = e2, ea = eb 6= 0
}

∪ {(0, 0)}

is the minimum Brandt semigroup congruence on S.
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In this paper we show how to obtain a result closely analogous to the McAlister

theorem for a certain class of inverse semigroups with zero, based on the idea of

a Brandt semigroup acting by partial order-isomorphisms on a partially ordered

set.

The main ‘building blocks’ of the McAlister structure theory for an E-unitary

inverse semigroup S are a groupG and a partially ordered set X . The source of the

group G has always been fairly obvious—it is the maximum group homomorphic

image of S—but the connection of X to the semigroup was harder to clarify,

and none of the early accounts [4, 5, 9, 15] was entirely satisfactory in this

respect. The approach by Margolis and Pin [6] involved the use of S to construct

a category, and certainly made X seem more natural. Here we copy their approach

by constructing a carrier semigroup associated with S.

A more general situation, in which S is an inverse semigroup and ρ is an

idempotent-pure congruence, is dealt with in [2]. See also [10] and [1] for other

more general ideas emerging from the McAlister theory. However, by specializing

to the case where S/ρ is a Brandt semigroup, we obtain a much more explicit

structure theorem than is possible in a general situation, and to underline that

point we devote the final section of the paper to an isomorphism theorem.

1 – Preliminaries

For undefined terms see [3]. A congruence ρ on a semigroup S with zero will

be called proper if 0ρ = {0}. We shall routinely denote by ES (or just by E if

the context allows) the set of idempotents of the semigroup S. For any set A

containing 0 we shall denote the set A\{0} by A∗.

A Brandt semigroup B, defined as a completely 0-simple inverse semigroup,

can be described in terms of a group G and a non-empty set I. More precisely,

B = (I ×G× I) ∪ {0} ,

and

(i, a, j)(k, b, l) =

{

(i, ab, l) if j = k,
0 otherwise ;

0(i, a, j) = (i, a, j)0 = 00 = 0 .

This is of course a special case of a Rees matrix semigroup: B =M0[G; I, I;P ],

where P is the I × I matrix ∆ = (δij), with

δij =

{

1 if i = j,
0 if i 6= j .
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The following easily verified properties will be of use throughout the paper.

Theorem 1.1. Let B be a Brandt semigroup.

(i) For all b, c in B∗, bc 6= 0 if and only if b−1b = cc−1.

(ii) In particular, for all e, f in E∗
B, ef 6= 0 if and only if e = f .

(iii) For all e in E∗
B and b in B∗,

eb 6= 0 ⇒ eb = b , be 6= 0 ⇒ be = b .

(iv) For all b, c in B∗

bc = b ⇒ c = b−1b , cb = b ⇒ c = bb−1 .

(v) For all e 6= f in EB, eB ∩ fB = Be ∩Bf = {0}.

Munn [8] considered an inverse semigroup S with zero having the two prop-

erties:

(C1) for all a, b, c in S,

abc = 0 ⇒ ab = 0 or bc = 0 ;

(C2) for all non-zero ideals M and N of S, M ∩N 6= {0}.

Let us call S strongly categorical if it has both these properties. Munn showed

that for a strongly categorical inverse semigroup the relation

(1) β =
{

(a, b) ∈ S × S : (∃ e ∈ S) 0 6= e = e2, ea = eb 6= 0
}

∪ {(0, 0)}

is a proper congruence on S such that:

(i) S/β is a Brandt semigroup;

(ii) if γ is a proper congruence on S such that S/γ is a Brandt semigroup,

then β ⊆ γ.

We shall refer to β as the minimum Brandt congruence on S, and to S/β as

the maximum Brandt homomorphic image of S.

An inverse semigroup S with zero is called E∗-unitary if, for all e, s in S∗,

e, es ∈ E∗ ⇒ s ∈ E∗ .

In fact, as remarked in [3, Section 5.9], the dual implication

e, se ∈ E∗ ⇒ s ∈ E∗
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is a consequence of this property. By analogy with Proposition 5.9.1 in [3], we

have

Theorem 1.2. Let S be a strongly categorical inverse semigroup. Then the

following statements are equivalent:

(a) S is E∗-unitary;

(b) the congruence β is idempotent-pure;

(c) β ∩R = 1S .

Proof: For (b)≡(c), see [11, III.4.2].

(a)⇒(b). Let a β f , where f ∈ E∗. Then there exists e in E∗ such that

ea = ef 6= 0. Since S is by assumption E∗-unitary, it now follows from e, ea ∈ E∗

that a ∈ E∗. The β-class fβ consists entirely of idempotents, which is what we

mean when we say that β is idempotent-pure.

(b)⇒(a). Suppose that β is idempotent-pure. Let e, es ∈ E∗. Then e(es) =

es 6= 0, and so es β s. Since es ∈ E∗ we may deduce by the idempotent-pure

property that s ∈ E∗.

2 – The carrier semigroup

Let S be a strongly categorical E∗-unitary inverse semigroup. We shall define

an inverse semigroup CS called the carrier semigroup of S.

Denote the maximum Brandt homomorphic image S/β of S by B, and for

each s in S denote the β-class sβ by [s]. Let

CS =
{

(a, s, b) ∈ B∗ × S∗ ×B∗ : a[s] = b
}

∪ {0} .

Notice that for every (a, s, b) in CS we also have b[s]−1 = a[s][s]−1 = a (by

Theorem 1.1); hence a RB b.

We define a binary operation ◦ on CS as follows:

(a, s, b) ◦ (c, t, d) =

{

(a, st, d) if b = c,
0 otherwise ,

0 ◦ (a, s, b) = (a, s, b) ◦ 0 = 0 ◦ 0 = 0 .

Notice that if b = c then a[st] = d, and so in particular st 6= 0. It is a routine

matter to verify that this operation is associative. It is easy also to see that
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(CS , ◦) is an inverse semigroup: the inverse of (a, s, b) is (b, s−1, a), and the non-

zero idempotents are of the form (a, i, a), where i ∈ E∗
S . For each (a, b) in RB,

with a, b in B∗, we write C(a, b) for the set (necessarily non-empty) of all elements

(a, s, b) in CS . Notice that C(a, b) ◦ C(c, d) 6= {0} if and only if b = c.

Lemma 2.1. For each idempotent e in B, C(e, e) consists entirely of idem-

potents of CS .

Proof: If (e, s, e) ∈ CS , where e ∈ B
∗, then e[s] = e. By Theorem 1.1 this is

possible only if [s] = e in B. Then, since β is idempotent-pure (Theorem 1.2), it

follows that s is idempotent in S.

There is a natural left action of B on CS : for all c in B and all (a, s, b) in

C(a, b) ⊆ C∗
S

c(a, s, b) =

{

(ca, s, cb) if ca 6= 0 in B,
0 otherwise .

Also,

c0 = 0 for all c in B .

Notice that since a R b in B we have aa−1 = bb−1, and so, by Theorem 1.1,

ca 6= 0 ⇐⇒ c−1c = aa−1 ⇐⇒ c−1c = bb−1 ⇐⇒ cb 6= 0 .

Also, the action is well-defined, for if a[s] = b then it is immediate that (ca)[s] =

cb.

Lemma 2.2. For all c, d in B and all p, q in CS ,

c(dp) = (cd)p , c(p ◦ q) = (cp) ◦ (cq) , c(p−1) = (cp)−1 .

Proof: The first equality is clear if p = 0. Suppose now that p = (a, s, b). If

dp = 0 then da = 0 in B, and it is then clear that c(dp) = (cd)p = 0. Suppose

next that dp 6= 0 and that cd = 0 in B. Then (cd)p = 0 in CS , and

c(dp) = c(da, s, db) = 0 ,

since c(da) = (cd)a = 0 in B. Finally, suppose that dp 6= 0, cd 6= 0. Then,

recalling our assumption that S is strongly categorical, we deduce by the property

(C1) that cda 6= 0 in B, and so

(cd)p = c(dp) = (cda, s, cdb) .
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The second equality is clear if p = 0 or q = 0 or c = 0. So suppose that

p = (a, s, b), q = (b′, t, d) and c are all non-zero, and suppose first that b′ 6= b.

Then p ◦ q = 0, and so certainly c(p ◦ q) = 0. If cb = 0 then cp = 0 and so

(cp) ◦ (cq) = 0. Similarly, if cb′ = 0 then (cp) ◦ (cq) = (cp) ◦ 0 = 0. If cb and cb′

are both non-zero then cb 6= cb′, for cb = cb′ would imply that

b = c−1cb = c−1cb′ = b′ ,

contrary to hypothesis. Hence (cp) ◦ (cq) = 0 in this case also.

Suppose finally that b′ = b 6= 0: thus p = (a, s, b), q = (b, t, d), and ca, cb (and

cd) are non-zero. Then

(cp) ◦ (cq) = (ca, s, cb) (cb, t, cd) = (ca, st, cd) = c(a, st, d) = c(p ◦ q) ,

as required.

The third equality follows in much the same way.

As in [3], for each p in CS , let us denote by J(p) the principal two-sided ideal

generated by p. It is clear that, for each p,

J(p) = J(p ◦ p−1) = J(p−1 ◦ p) = J(p−1) .

Lemma 2.3. Let p ∈ C(bb−1, b), q ∈ C(cc−1, c), where b, c ∈ B∗. Then

J(p) ∩ J(bq) = J(p ◦ bq) .

Proof: Suppose first that p ◦ bq = 0. Thus p = (bb−1, s, b), q = (cc−1, j, c),

with b 6= bcc−1. Now bc 6= 0 if and only if bcc−1 = b, and so p ◦ bq = 0 happens

precisely when bc = 0. In this case bq = 0, giving

J(p) ∩ J(bq) = J(p) ∩ {0} = {0} .

Suppose now that bc 6= 0. Since J(p ◦ bq) ⊆ J(p) and J(p ◦ bq) ⊆ J(bq), it is

clear that J(p ◦ bq) ⊆ J(p) ∩ J(bq). To show the reverse inclusion, suppose that

r 6= 0 and that

r = x1 ◦ p ◦ y1 = x2 ◦ bq
−1 ◦ y2 ∈ J(p) ∩ J(bq−1)

= J(p) ∩ J((bq)−1) = J(p) ∩ J(bq) .
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Here, since r 6= 0, we must have x1 ∈ C(a, bb−1), y1 ∈ C(b, d), x2 ∈ C(a, bc),

y2 ∈ C(b, d), for some a, d in B∗. Hence

r = r ◦ r−1 ◦ r

= x1 ◦ p ◦ y1 ◦ y
−1

2
◦ bq ◦ bq−1 ◦ bq ◦ x−1

2
◦ r

= x1 ◦ p ◦ b
(

b−1(y1 ◦ y
−1

2
) ◦ (q ◦ q−1)

)

◦ bq ◦ x−1

2
◦ r .

Now b−1(y1 ◦y
−1

2
) ∈ C(b−1b, b−1b), and so by Lemma 2.1 is an idempotent in CS .

Commuting idempotents, we obtain

r = x1 ◦ p ◦ b
(

(q ◦ q−1) ◦ b−1(y1 ◦ y
−1

2
)
)

◦ bq ◦ x−1

2
◦ r

= x1 ◦ (p ◦ bq) ◦ bq
−1 ◦ y1 ◦ y

−1

2
◦ bq ◦ x−1

2
◦ r ,

and so r ∈ J(p ◦ bq) as required.

Since e = ee−1 for every idempotent e in an inverse semigroup, we have the

following easy consequence of Lemma 2.3:

Corollary 2.4. Let p ∈ C(e, e), q ∈ C(f, f), where e, f are idempotents in

B∗. Then J(p ◦ q) = J(p) ∩ J(q). In particular, J(p) ∩ J(q) = {0} if e 6= f .

Let

CS =
{

(p, b) : p ∈ C(bb−1, b), b ∈ B∗
}

∪ {0} ,

and define a multiplication on CS by

(p, b) (q, c) =

{

(p ◦ bq, bc) if bc 6= 0,
0 otherwise ,

(p, b)0 = 0(p, b) = 00 = 0 .

This operation is well-defined. If p = (bb−1, s, b), q = (cc−1, t, c) and bc 6= 0, then

bcc−1 = b by Theorem 1.1. Hence (bc) (bc)−1 = bcc−1b−1 = bb−1, and so

p ◦ bq = (bb−1, s, b) ◦ (b, t, bc) = (bb−1, st, bc)

=
(

(bc)(bc)−1, st, bc
)

∈ C
(

(bc)(bc)−1, bc
)

,

as required. The verification that the operation is associative is routine.

Now consider the map ψ : S → CS given by

sψ =
(

([ss−1], s, [s]), [s]
)

(s ∈ S∗)

0ψ = 0 .
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Then ψ is clearly one-one. It is also onto, since for each ((bb−1, s, b), b) in C
∗
S , we

deduce from bb−1[s] = b that [s] = b and hence that ((bb−1, s, b), b) = sψ.

The map ψ is indeed even an isomorphism. Let s, t ∈ S∗, and suppose first

that [st] = 0. Then (st)ψ = 0, and from the fact that [s][t] = 0 in B we deduce

that

(sψ) (tψ) =
(

([ss−1], s, [s]), [s]
) (

([tt−1], t, [t]), [t]
)

= 0

in CS . Suppose now that [st] 6= 0. Then

(sψ) (tψ) =
(

([ss−1], s, [s]), [s]
) (

([tt−1], t, [t]), [t]
)

=
(

([ss−1], st, [st]), [s][t]
)

=
(

([(st)(st)−1], st, [st]), [st]
)

(since [s] = [s] [t] [t]−1)

= (st)ψ .

We have shown

Lemma 2.5. CS is isomorphic to S.

In a sense we have in this section gone round in a circle, starting with S,

moving to CS , and returning to S via CS and the isomorphism ψ. We shall see,

however, that the set of principal ideals of CS is the key to our main theorem.

3 – The main theorem

We begin with some observations concerning representations of Brandt semi-

groups. Let X = (X ,≤) be a partially ordered set containing a least element 0,

and let B be a Brandt semigroup. For each b in B, let λb be a partial order-

isomorphism of X , whose domain is an order-ideal of X , and such that the map

b 7→ λb is a faithful representation (see [3] for a definition of ‘faithful’) of B by

partial one-one maps of X . We shall find it convenient to regard each λb as acting

on X on the left, writing λb(X) rather than Xλb. Notice that each imλb is an

order-ideal also, since imλb = domλb−1 .

Suppose that domλ0 = imλ0 = {0}; then, by the faithful property we deduce

that if b 6= 0 in B then domλb and imλb are both non-zero order-ideals. The

order-preserving property implies that λb(0) = 0 for every b in B. For each e

in E∗
B, let ∆e = domλe = imλe. Since λe is an idempotent in the symmetric

inverse semigroup IX , it is the identity map on its domain. If e, f are distinct
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idempotents in B∗,

∆e ∩∆f = {0} ,

since ef = 0 in B whenever e 6= f .

Let us suppose also that the representation is effective, by which we mean

that every X in X lies in the domain of at least one λb. Equivalently, we have

X =
⋃

{

∆e : e ∈ E
∗
B

}

.

Notice that (since we are writing mapping symbols on the left) for all b in B∗,

domλb = domλb−1b = ∆b−1b , imλb = imλbb−1 = ∆bb−1 .

Also, by Theorem 1.1, for all b, c in B∗,

bc 6= 0 if and only if imλc = domλb ,

bc = 0 if and only if imλc ∩ domλb = {0} .

Now let (X ,≤) be a partially ordered set with a least element 0, and let Y be

a subset of X such that

(P1) Y is a lower semilattice with respect to ≤, in the sense that for every J

and K in Y there is a greatest lower bound J ∧K, also in Y;

(P2) Y is an order ideal, in the sense that for all A, X in X ,

A ∈ Y and X ≤ A =⇒ X ∈ Y .

Let B be a Brandt semigroup, and suppose that b 7→ λb is an effective, faith-

ful representation of B, as described above. Thus each λb is a partial order-

isomorphism of X , acting on the left, and domλb is an order-ideal of X . In

practice we shall write bX rather than λb(X), and so in effect, for each b in B∗,

we are supposing that there is a partial one-one map X 7→ bX (X ∈ X ), with

the property that, for all X, Y in X ,

X ≤ Y =⇒ bX ≤ bY .

Suppose now that the triple (B,X ,Y) has the following property:

(P3) For all e ∈ E∗
B, and for all P,Q ∈ ∆e ∩ Y

∗, where ∆e = domλe,

P ∧Q 6= 0 .
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If X,Y ∈ X and if X∧Y exists, then, for all b in B for which X and Y belong

to dom b, the element bX ∧ bY exists, and

bX ∧ bY = b(X ∧ Y ) .

To see this, notice first that X ∧ Y ∈ dom b, since dom b is an order-ideal, and

that b(X ∧Y ) ≤ bX, b(X ∧Y ) ≤ bY . Suppose next that Z ≤ bX, Z ≤ bY . Then

Z ∈ im b, since im b is an order-ideal, and so Z = bT for some T in dom b. Then

T = b−1Z ≤ b−1(bX) = X ,

and similarly T ≤ Y . Hence T ≤ X ∧ Y , and so

Z = bT ≤ b(X ∧ Y ) ,

as required.

The triple (B,X ,Y) is said to be a Brandt triple if it has the properties (P1),

(P2) and (P3) together with the additional properties:

(P4) BY = X ;

(P5) for all b in B∗, bY∗ ∩ Y∗ 6= ∅.

Now let

S =M(B,X ,Y) =
{

(P, b) ∈ Y∗ ×B∗ : b−1P ∈ Y∗
}

∪ {0} ,

where (B,X ,Y) is a Brandt triple. We define multiplication on S by the rule

that

(P, b) (Q, c) =

{

(P ∧ bQ, bc) if bc 6= 0,
0 otherwise ,

(P, b)0 = 0(P, b) = 00 = 0 .

To verify that S is closed with respect to this operation, notice first that bQ is

defined, for the tacit assumption that c−1Q is defined and the assumption that

bc 6= 0 in B implies that

Q ∈ dom c−1 = im c = dom b .

Next, notice that b−1P ∧ Q exists, since both b−1P and Q are in Y. Moreover,

b−1P ∧Q ∈ Y∗, since

b−1P ∈ im(b−1) = ∆b−1b , Q ∈ dom b = ∆b−1b ,
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and so b−1P ∧ Q 6= 0 by (P3). Also b−1P ∩ Q ∈ dom b, since Q ∈ dom b and

dom b is an order ideal. Hence b(b−1P ∧Q) = P ∧ bQ exists, and is in Y∗, since

P ∧ bQ ≤ P ∈ Y∗. Moreover, if bc 6= 0, then

(bc)−1(P ∧ bQ) = c−1b−1P ∧ c−1Q ≤ c−1Q ∈ Y∗ ,

and so (bc)−1(P ∧ bQ) ∈ Y∗.

Next, the operation is associative. The Brandt semigroup B satisfies the

‘categorical’ condition

bcd = 0 =⇒ bc = 0 or cd = 0 ;

hence either both [(P, b)(Q, c)](R, d) and (P, b)[(Q, c)(R, d)] are zero, or both are

equal to (P ∧ bQ ∧ bcR, bcd).

Thus S is a semigroup with zero. It is even a regular semigroup, for if (P, b)

is a non-zero element of S then (b−1P, b−1) ∈ S, and

(P, b) (b−1P, b−1) (P, b) = (P, bb−1) (P, b) = (P, b) ,

(b−1P, b−1) (P, b) (b−1P, b−1) = (b−1P, b−1) (P, bb−1) = (b−1P, b−1) .

It is, moreover, clear that a non-zero element (P, b) is idempotent if and only if b

is idempotent in B and bP = P (which is equivalent to saying that bP is defined).

If (P, e), (Q, f) are idempotents in S, then either e 6= f , in which case ef = 0

and (P, e)(Q, f) = (Q, f)(P, e) = 0, or e = f , in which case

(P, e) (Q, e) = (Q, e) (P, e) = (P ∧Q, e) .

Thus S is an inverse semigroup, and the unique inverse of (P, b) is (b−1P, b−1).

The natural order relation in S∗ is given by

(P, b) ≤ (Q, c) ⇐⇒ bb−1c 6= 0 and (P, b) = (P, bb−1) (Q, c) = (P ∧Q, bb−1c) .

That is, since bb−1c = c in such a case,

(2) (P, b) ≤ (Q, c) ⇐⇒ b = c and P ≤ Q .

It follows that S is E∗-unitary, for if (P, e) ∈ E∗ and (Q, c) ∈ S∗, then (P, e) ≤

(Q, c) if and only if c = e and P ≤ Q, and so in particular (Q, c) is idempotent.

Notice too that S is categorical, for the product (P, b)(Q, c)(R, d) can equal

zero only if bcd = 0, and the categorical property of B then implies that either

(P, b)(Q, c) = 0 or (Q, c)(R, d) = 0. Indeed S is strongly categorical. That this is
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so follows by the work of Munn [8], for it is clear that the relation γ on S defined

by

(3) γ =
{

((P, b), (Q, c)) ∈ S × S : b = c
}

∪ {(0, 0)}

is a proper congruence on S and that S/γ is isomorphic to the Brandt semigroup

B.

The congruence γ defined by (3) is in fact the minimum Brandt congruence on

S. Suppose that ((P, b), (Q, b)) ∈ γ. Then b−1P, b−1Q ∈ Y, and so bb−1P = P ,

bb−1Q = Q. Hence bb−1(P ∧ Q) = P ∧ Q, and P ∧ Q 6= 0 by (P3). Hence

(P ∧Q, bb−1) ∈ E∗
S . It now follows that

(P ∧Q, bb−1) (P, b) = (P ∧Q, bb−1) (Q, b) = (P ∧Q, b) 6= 0 .

Hence, recalling Munn’s characterization (1) of the minimum Brandt congruence,

we conclude that γ ⊆ β, the minimum Brandt congruence on S. Since γ is, as

observed before, a Brandt congruence, we deduce that γ = β.

It is useful also at this stage to note the following result:

Lemma 3.1. The semilattice of idempotents of M(B,X ,Y) is isomorphic

to Y.

Proof: We have seen that the non-zero idempotents of S =M(B,X ,Y) are

of the form (P, e), where P ∈ Y∗, e ∈ E∗
B and eP = P . The statement that

eP = P is equivalent to saying in our previous notation that P ∈ De, and since

the order ideals ∆e and ∆f (with e 6= f) have zero intersection, there is for each

P in Y∗ at most one e such that (P, e) ∈ E∗
S .

In fact for each P in Y∗ there is exactly one e in E∗
B such that (P, e) ∈ E∗

S ;

for by our assumption that the representation b 7→ λb is effective we can assert

that P ∈ dom b for some b in B∗, and then (P, b−1b) ∈ E∗
S . The conclusion is

that for each P in Y∗ there is a unique eP in B∗ such that (P, eP ) ∈ E∗
S . We

have a bijection P 7→ (P, eP ) from Y∗ onto E∗
S . If P ∧Q 6= 0, then eP = eQ = e

(say), and

(P, e) (Q, e) = (P ∧Q, e) .

If P ∧Q = 0, then eP 6= eQ by (P3), and so (P, eP )(Q, eQ) = 0. We deduce that

the bijection P 7→ (P, eP ), 0 7→ 0 is an isomorphism from Y onto ES .

We have in fact proved half of the following theorem:

Theorem 3.2. Let (B,X ,Y) be a Brandt triple. Then M(B,X ,Y) is a

strongly categorical E∗-unitary inverse semigroup. Conversely, every strongly

categorical E∗-unitary inverse semigroup is isomorphic to one of this kind.
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Proof: To prove the converse part, let S be a strongly categorical E∗-unitary

inverse semigroup. Let X be the set of principal two-sided ideals of the carrier

semigroup CS :

X =
{

J(p) : p ∈ CS

}

.

The set X is partially ordered by inclusion, with a minimum element 0 (strictly

the zero ideal {0}). Let Y be the subset of X consisting of 0 together with all

principal ideals J(p) for which p ∈ C(e, e) for some idempotent e of B∗. Let

J(p), J(q) ∈ Y. Then by Corollary 2.4 we have either J(p) ∩ J(q) = 0 ∈ Y, or

e = f , p ◦ q ∈ C(e, e) and

J(p) ∩ J(q) = J(p ◦ q) ∈ Y .

Thus Y is a semilattice with respect to the inclusion order inherited from X . This

is the property (P1).

To show the property (P2), suppose that J(p) ⊆ J(q), where J(q) ∈ Y∗. Thus

we may assume that q = (e, i, e) ∈ C(e, e) for some idempotents e in B and i in

S, such that [i] = e. We may suppose that p is idempotent in CS . (If not we

replace it by p ◦ p−1, observing that J(p ◦ p−1) = J(p).) Hence there exist r, s in

CS such that

p = r ◦ q ◦ s .

Let n = s ◦ p ◦ s−1. Then n ∈ C(e, e), and clearly J(n) ⊆ J(p). Also

p = p3 = (r ◦ q ◦ s) ◦ p ◦ (s−1 ◦ q−1 ◦ r−1)

= r ◦ q ◦ n ◦ q−1 ◦ r−1 ∈ J(n) ,

and so J(p) = J(n) ∈ Y. Thus Y is an order ideal of X .

Now we define a representation b 7→ λb of the Brandt semigroup B = S/β by

partial order-isomorphisms of X . Let λ0 = {(0, 0)}. For each b in B
∗, let

λb =
{

(J(p), J(bp)) : p, bp 6= 0
}

∪ {(0, 0)} .

That is to say, we define domλb = {J(p) : p, bp 6= 0}∪{0}, and define λb(J(p)) =

J(bp), λb(0) = 0.

The domain of λb is in fact an order ideal of X . For suppose that 0 6= J(q) ⊆

J(p), where p = (a, s, c) is such that bp 6= 0 and q = (d, t, e). Then there exist

elements (d, u, a), (c, v, e) in C∗
S such that

q = (d, u, a) ◦ (a, s, c) ◦ (c, v, e) = (d, usv, e) .

Now d[u] = a, and so if bd = 0 it follows that ba = 0, contrary to hypothesis.

Hence bq 6= 0, and so J(q) ∈ domλb.
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Notice now that

imλb =
{

J(bp) : p, bp 6= 0
}

=
{

J(q) : q, b−1q 6= 0
}

= domλb−1 ,

and that λb−1 λb and λb λb−1 are the identity maps of domλb, imλb, respectively.

Since J(p) ⊆ J(q) ⇒ J(bp) ⊆ J(bq), each λb is a partial order-isomorphism of

X . Next, notice that if bc = 0 then λbλc = λ0, the trivial map whose domain

and image are both 0; for otherwise there exists q 6= 0 in CS such that J(q) ∈

dom(λbλc), from which it follows that (bc)q = b(cq) 6= 0, a contradiction.

Suppose now that bc 6= 0. Then dom(λbλc) = domλbc, since the conditions

p 6= 0, cp 6= 0, b(cp) 6= 0 for J(p) to be in dom(λbλc) are equivalent to the

conditions p 6= 0, (bc)p 6= 0 for J(p) to be in domλbc. Moreover, for all p in the

common domain,

(λbλc) (J(p)) = λb(J(cp)) = J(b(cp)) = J((bc)p) = λbc(J(p)) .

Thus λbλc = λbc in all cases, and so b 7→ λb is a representation of B by partial

order-isomorphisms of X . We can regard B as acting on X on the left, and write

bJ(p) rather than λb(J(p)). Notice that bJ(p) = J(bp) provided bp 6= 0.

To show that the representation is faithful, suppose that λb = λc, where

b, c ∈ B∗, and let p = (a, s, d) in CS be such that bp 6= 0. Then cp 6= 0, and so

b = baa−1 = caa−1 = c .

To show that the representation is effective, let p = (a, s, d) be an arbitrary

element of C∗
S . Then aa

−1p 6= 0 and so J(p) ∈ domλaa−1 .

To verify (P3), let e ∈ E∗
B, and let J(p), J(q) ∈ Y∗ ∩∆e. Thus p = (f, i, f),

q = (g, j, g), where f, g ∈ E∗
B, i, j ∈ E

∗
S and f [i] = f , g[j] = g. Since ep and eq

are non-zero, we must in fact have f = g = e. Thus p ◦ q = (e, ij, e) 6= 0 and so,

using Corollary 2.4, we see that

J(p) ∩ J(q) = J(p ◦ q) 6= 0 .

To show the property (P4), consider a non-zero element J(p) of X , where

p = (a, s, b). Then J(p) = J(p◦p−1), with p◦p−1 = (a, ss−1, a), and a[ss−1] = a.

Let q be the element (a−1a, ss−1, a−1a) of CS . Then J(q) ∈ Y, and

aq = (a, ss−1, a) = p ◦ p−1 .

It follows that J(p) = aJ(q) ∈ aY, and so X = BY, as required.
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To show (P5), let a ∈ B∗, let q = (a, x, aa−1), where [x] = a−1, and

p = (a−1a, xx−1, a−1a). Then J(p) ∈ Y. Also ap = (a, xx−1, a). If we define

r = (aa−1, x−1x, aa−1), then we easily verify that

q−1 ◦ (ap) ◦ q = r , q ◦ r ◦ q−1 = ap .

Hence aJ(p) = J(q) ∈ aY∗ ∩ Y∗, as required.

It remains to show that S 'M(B,X ,Y). We show in fact that

CS 'M(B,X ,Y) ,

which by virtue of Lemma 2.5 is enough. Let φ : CS →M(B,X ,Y) be given by

(p, b)φ = (J(p), b)) (p ∈ C(bb−1, b), b ∈ B∗)

0φ = 0 .

Since J(p) = J(p ◦ p−1) and p ◦ p−1 ∈ C(bb−1, bb−1), we deduce that J(p) ∈ Y∗.

Also, b−1p 6= 0,

b−1J(p) = J(b−1p) = J
(

(b−1p)−1 ◦ (b−1p)
)

,

and

(b−1p)−1 ◦ (b−1p) ∈ C(bb−1, b−1) ◦ C(b−1, bb−1) ⊆ C(bb−1, bb−1) ;

hence b−1J(p) ∈ Y∗. Thus (J(p), b) ∈M(B,X ,Y).

To show that φ is one-one, suppose that (J(p), b) = (J(q), c), where

p∈C(bb−1, b), q∈C(cc−1, c). Then certainly b=c. If we now write p=(bb−1, s, b)

and q = (bb−1, t, b), we have that

p ◦ q−1 = (bb−1, st−1, bb−1) ,

and so st−1 ∈ E∗
S . Hence

(4) st−1 = (st−1)−1st−1 = ts−1st−1 .

Next, since p−1 ◦ p ∈ J(q−1 ◦ q), there exist elements (b, u, b), (b, v, b) in C∗
S

such that p−1 ◦ p = (b, s−1s, b) = (b, u, b)(b, t−1t, b)(b, v, b); hence

(5) s−1s = u t−1 t v .

Now, from b[u] = b we deduce that [u] is idempotent in B, and hence (since β is

idempotent-pure) that u is idempotent in S. The same argument applies to v,
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and so from (5) we conclude that s−1s ≤ t−1t. The opposite inequality can be

proved in just the same way, and so s−1s = t−1t.

It now easily follows from this and from (4) that

s = ss−1s = st−1t = ts−1st−1t = tt−1tt−1t = t .

Hence (p, b) = (q, c) as required.

To show that φ is onto, suppose that (J(p), b) is a non-zero element of

M(B,X ,Y). Then we may assume that p = (e, i, e), where e ∈ E∗
B, i ∈ E∗

S

and [i] = e. Also, J(b−1p) ∈ Y∗, and so, since b−1e 6= 0, we deduce that e = bb−1.

We have J(b−1p) = J(q) for some q = (f, j, f), with f ∈ E∗
B, j ∈ E

∗
S and [j] = f .

Hence there exist (b−1, u, f) and (f, v, b−1) such that

b−1p = (b−1, i, b−1) = (b−1, u, f) ◦ (f, j, f) ◦ (f, v, b−1) .

It follows that

(6) p = b(b−1p) = (bb−1, i, bb−1) = (bb−1, u, bf) ◦ (bf, j, bf) ◦ (bf, v, bb−1) .

Since bf 6= 0 we deduce that bf = b and f = b−1b.

Now, since J(q) = J(b−1p), there exist elements (b−1b, x, b−1) and (b−1, y, b−1b)

such that

q = (b−1b, j, b−1b) = (b−1b, x, b−1) ◦ (b−1, i, b−1) ◦ (b−1, y, b−1b) .

Hence

(7) bq = (b, j, b) = (b, x, bb−1) ◦ p ◦ (bb−1, y, b) .

We may rewrite (6) as

p = (bb−1, u, b) ◦ (b, j, b) ◦ (b, v, bb−1) = r ◦ (b, v, bb−1) ,

where r = (bb−1, uj, b), and we immediately deduce that J(p) ⊆ J(r). Also, from

(7) it follows that

r = (bb−1, u, b) ◦ (b, j, b) ∈ J(p) ,

and so J(r) = J(p). It now follows that (r, b) ∈ CS and that (J(p), b) = (r, b)φ.

Thus φ is onto.

Finally, we show that φ is a homomorphism. Let (p, b), (q, c) ∈ C
∗
S . If bc = 0

in B then both [(p, b)(q, c)]φ and [(p, b)φ] [(q, c)φ] are zero. Otherwise we use

Lemma 2.3 and observe that

[(p, b)(q, c)]φ = (p ◦ bq, bc)φ = (J(p ◦ bq), bc)

= (J(p) ∩ bJ(q), bc) = (J(p), b) (J(q), c) = [(p, b)φ] [(q, c)φ] .
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This completes the proof of Theorem 3.2.

Example: Let T =M(G,X ,Y) be an E-unitary inverse semigroup (without

zero), let I be a set, and let S = (I × T × I) ∪ {0}, and define multiplication in

S by

(i, a, j) (k, b, l) =

{

(i, ab, l) if j = k,
0 otherwise ,

0 (i, a, j) = (i, a, j) 0 = 0 0 = 0 .

Then it is not hard to check that S is a strongly categorical E∗-unitary inverse

semigroup. Its maximum Brandt image is B = (I ×G× I)∪ {0}, where G is the

maximum group image of T .

For each i in I, let Xi be a copy of X , and suppose that X 7→ Xi (X ∈ X )

is an order-isomorphism. Let Yi correspond to Y in this isomorphism. Suppose

that the sets Xi are pairwise disjoint, and form an ordered set X ′ as the union

of all the sets Xi together with an extra minimum element 0. The order on X ′

coincides with the order on Xi within Xi, and 0 ≤ X ′ for all X ′ in X ′. Define

Y ′ =
⋃

{Yi : i ∈ I} ∪ {0}.

The action of B on X ′ is given as follows. If b = (i, a, j) ∈ B, then the domain

of λb is Xj ∪ {0}, and the action of b on the elements of its domain is given by

(i, a, j)Xj = (aX)i (X ∈ X )

(i, a, j) 0 = 0 .

(Trivially, if b = 0, then the domain of λ0 is {0}, and the action of b simply sends

0 to 0.)

Then (B,X ′,Y ′) is a Brandt triple, and S 'M(B,X ′,Y ′).

4 – An isomorphism theorem

Given two semigroups S = M(B,X ,Y) and S ′ = M(B′,X ′,Y ′), it is now

important to describe the conditions under which S ′ ' S. In a sense it is clear

from the last section that the ‘building blocks’ of S are intrinsic: B is the maxi-

mum Brandt homomorphic image of S, X is the partially ordered set of principal

ideals of the carrier semigroup CS , and Y is in effect the semilattice of idempo-

tents of S. It is, however, conceivable that two non-isomorphic semigroups S and

S′ might have isomorphic maximum Brandt images, isomorphic semilattices of

idempotents, and might be such that CS and CS′ have order-isomorphic sets of

principal ideals, and so we must prove a formal isomorphism theorem.
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Theorem 4.1. Let S =M(B,X ,Y), S ′ =M(B′,X ′,Y ′), and suppose that

φ : S → S′ is an isomorphism. Then

(i) there exists an isomorphism ω : B → B ′;

(ii) there exists an order isomorphism θ : X → X ′ whose restriction to Y is

a semilattice isomorphism from Y onto Y ′;

(iii) for all b in B and X in X ,

(8) (bX) θ = (bω) (Xθ) ;

(iv) for all (P, b) in S∗,

(9) (P, b)φ = (Pθ, bω) .

Conversely, if there exist ω and θ with the properties (i), (ii) and (iii), then

(9), together with 0φ = 0, defines an isomorphism from S onto S ′.

Proof: Notice that (8) is to be interpreted as including the information that

bX is defined if and only if (bω)(Xθ) is defined.

We begin by proving the converse part. So, for each (P, b) in S∗, define

(P, b)φ = (Pθ, bω), in accordance with (9). Notice first that this does define a

map from S into S ′, for Pθ ∈ (Y ′)∗ and by (8) we also have

(bω)−1(Pθ) = (b−1ω) (Pθ) = (b−1P ) θ ∈ (Y ′)∗ .

(The first equality follows from (i), and (b′)−1P ′ ∈ (Y ′)∗ is a consequence of (ii).)

Next, the map φ defined by (9) is a bijection. If (P ′, b′) ∈ (S′)∗, then there

exist a unique P in Y such that Pθ = P ′ and a unique b in B such that bω = b′.

Moreover,

(b−1P ) θ = (bω)−1(Pθ) = (b′)−1P ′ ∈ (Y ′)∗ .

Hence (P, b) ∈ S, and is the unique element of S mapping to (P ′, b′) by φ.

Finally, φ is a homomorphism. Given (P, b), (Q, c) in S∗ such that bc 6= 0, we

have that

[(P, b)(Q, c)]φ = (P ∧ bQ, bc)φ =
(

(P ∧ bQ)θ, (bc)ω
)

=
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=
(

(b(b−1P ∧Q))θ, (bc)ω
)

, (where b−1P,Q ∈ Y)

=
(

(bω)((b−1P ∧Q)θ), (bc)ω
)

, (by (8)

=
(

(bω)((b−1P )θ ∧Qθ), (bc)ω
)

, since θ|Y is a semilattice isomorphism,

=
(

(bω)((bω)−1(Pθ) ∧Qθ), (bc)ω
)

, by (8),

=
(

Pθ ∧ (bω)(Qθ), (bω)(cω)
)

= (Pθ, bω) (Qθ, cω) = [(P, b)φ] [(Q, c)φ] .

If bc = 0 then (bω)(cω) = 0, and so both [(P, b)(Q, c)]φ and [(P, b)φ] [(Q, c)φ] are

equal to zero.

Conversely, suppose that φ : S → S ′ is an isomorphism. Let β, β′ be the

minimum Brandt congruences on S, S ′, respectively. As we saw in the last

section, S/β ' B and S ′/β′ ' B′. In fact we have an isomorphism ω : B → B ′

such that the diagram

B B′

S S′

-

-

? ?

γ

ω

φ

γ′

commutes. Here γ and γ ′ are the projections (P, b) 7→ b, (P ′, b′) 7→ b′ respectively.

Now let (P ′, b′) be the image under φ of (P, b). Then

b′ = (P ′, b′) γ′ = (P, b)φγ′ = (P, b) γ ω = b ω ,

and so (P, b)φ = (P ′, bω), where P ′ ∈ Y ′ and is such that (bω)−1P ′ ∈ Y ′.

We now have a lemma

Lemma 4.2. Let (P, b), (P, c) ∈ S∗, and suppose that (P, b)φ = (P ′, bω).

Then (P, c)φ = (P ′, cω).

Proof: Suppose that (P, c)φ = (P ′′, cω). Both (P, bb−1) = (P, b)(P, b)−1 and

(P, cc−1) = (P, c)(P, c)−1 belong to S∗, and so, by the argument in the proof of

Lemma 3.1, we must have bb−1 = cc−1. Hence

(P ′, (bb−1)ω) = (P ′, bω) (P ′, bω)−1 = [(P, b)φ] [(P, b)−1φ]

= (P, bb−1)φ = (P, cc−1)φ = [(P, c)φ] [(P, c)−1φ]

= (P ′′, cω)(P ′′, cω)−1 = (P ′′, (cc−1)ω) ,
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and so P ′′ = P ′.

From this lemma it follows that we can define a map θ : Y → Y ′ such that,

for all (P, b) in S,

(P, b)φ = (Pθ, bω) .

The domain of θ is in fact the whole of Y, since, by the effectiveness of the

representation b 7→ λb, there exists for every P in Y∗ an element b in B∗ such

that (P, b−1b) ∈ S.

Lemma 4.3. The map θ : Y → Y ′ is an order-isomorphism.

Proof: That θ is a bijection follows from the observation that we can do

for the inverse isomorphism φ−1 : S′ → S exactly what we have just done for φ,

obtaining maps ω′ : B′ → B and θ′ : Y ′ → Y such that (P ′, b′)φ−1 = (P ′θ′, b′ω′).

Then, from the inverse property of φ−1, we deduce that ω′ and θ′ are two-sided

inverses of ω and θ respectively. Let P ≤ Q in Y, and let b be such thatQ ∈ dom b.

Then, since dom b is an order-ideal, P ∈ dom b also, and so, by (2), (P, b−1b) ≤

(Q, b−1b) in S. Applying φ, we deduce that (Pθ, (b−1b)ω) ≤ (Qθ, (b−1b)ω) in S′,

and so Pθ ≤ Qθ.

Lemma 4.4. Let P ∈ Y∗, and let b in B∗ be such that bP ∈ Y∗. Then

(bP )θ = (bω)(Pθ).

Proof: The elements (bP, b) and (P, b−1) are both in S, and are mutually

inverse. By applying φ to both sides of the equality

(bP, b) (P, b−1) = (bP, bb−1) ,

we deduce that

((bP )θ, bω) (Pθ, b−1ω) = ((bP )θ, (b−1b)ω) ,

and hence that

(bP )θ ∧ (bω)(Pθ) = (bP )θ .

It follows that (bP )θ ≤ (bω)(Pθ).

Similarly, by applying φ to both sides of the equality

(P, b−1) (bP, b) = (P, b−1b) ,

we obtain

Pθ ∧ (b−1ω) ((bP )θ) = Pθ ,
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and from this it follows that (bω)(Pθ) ≤ (bP )θ.

To extend the map θ to X we use (P4) to express an arbitrary X in X ∗ in

the form bP , where b ∈ B∗ and P ∈ Y∗, and define Xθ to be (bω)(Pθ). To

show that this defines Xθ uniquely, we must show that bP = cQ implies that

(bω)(Pθ) = (cω)(Qθ). In fact we shall deduce this from the result that

bP ≤ cQ ⇒ (bω)(Pθ) ≤ (cω)(Qθ) ,

and so obtain also the information that θ is order-preserving on X . So suppose

that bP ≤ cQ. Then bP ∈ dom(c−1), and so we may deduce that c−1bP ≤ Q

in Y. From Lemmas 4.3 and 4.4 we deduce that ((c−1b)ω)(Pθ) ≤ Qθ, which

immediately gives the required inequality.

It is now easy to see that θ : X → X ′ is a bijection. To show that it is one-one,

suppose that Xθ = Y θ, where X = bP and Y = cQ, with b, c in B∗ and P , Q in

Y∗. Then (bω)(Pθ) = (cω)(Qθ), and so, in Y ′,

(c−1bP )θ = ((cω)−1(bω)) (Pθ) = Qθ .

Hence c−1bP = Q, and from this it is immediate that X = Y . To show that θ

is onto, consider an element X ′ = b′P ′ in X ′, where b′ ∈ (B′)∗ and P ′ ∈ (Y ′)∗.

Then there exist b in B and P in Y such that bω = b′ and Pθ = P ′, and so

(bP )θ = b′P ′ = X ′.

Finally, we show that the equality (8) holds for all b in B∗ and all X in X ∗.

Let X = cP , where c ∈ B∗ and P ∈ Y∗. Then

(bX)θ = (b(cP ))θ = ((bc)P )θ = ((bc)ω)(Pθ)

= (bω) [(cω)(Pθ)] = (bω)(Xθ) .

This completes the proof of Theorem 4.1.
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