A P-THEOREM FOR INVERSE SEMIGROUPS WITH ZERO

Gracinda M.S. Gomes* and John M. Howie**

Introduction

The result known as McAlister's P-theorem stands as one of the most significant achievements in inverse semigroup theory since Vagner [17, 18] and Preston $[12,13,14]$ initiated the theory in the fifties. See the papers by McAlister $[4,5]$, Munn [9], Schein [15], or the accounts by Petrich [11] and Howie [3]. The theorem refers to what have come to be called E-unitary inverse semigroups, and gives a description of such semigroups in terms of a group acting by order-automorphisms on a partially ordered set.

An inverse semigroup with zero cannot be E-unitary unless every element is idempotent, but, as noted by Szendrei [16], it is possible to modify the definition and to consider what we shall call E^{*}-unitary semigroups instead.

One of the cornerstones of the McAlister theory is the minimum group congruence

$$
\sigma=\left\{(a, b) \in S \times S:(\exists e \in S) e^{2}=e, e a=e b\right\}
$$

on an inverse semigroup S, first considered by Munn [7] in 1961. Again, σ is of little interest if S has a zero element, since it must then be the universal congruence. However, in 1964 Munn [8] showed that, for certain inverse semigroups S with zero, the closely analogous relation

$$
\beta=\left\{(a, b) \in S \times S:(\exists e \in S) 0 \neq e=e^{2}, e a=e b \neq 0\right\} \cup\{(0,0)\}
$$

is the minimum Brandt semigroup congruence on S.

[^0]In this paper we show how to obtain a result closely analogous to the McAlister theorem for a certain class of inverse semigroups with zero, based on the idea of a Brandt semigroup acting by partial order-isomorphisms on a partially ordered set.

The main 'building blocks' of the McAlister structure theory for an E-unitary inverse semigroup S are a group G and a partially ordered set \mathcal{X}. The source of the group G has always been fairly obvious-it is the maximum group homomorphic image of S-but the connection of \mathcal{X} to the semigroup was harder to clarify, and none of the early accounts [4, 5, 9, 15] was entirely satisfactory in this respect. The approach by Margolis and Pin [6] involved the use of S to construct a category, and certainly made \mathcal{X} seem more natural. Here we copy their approach by constructing a carrier semigroup associated with S.

A more general situation, in which S is an inverse semigroup and ρ is an idempotent-pure congruence, is dealt with in [2]. See also [10] and [1] for other more general ideas emerging from the McAlister theory. However, by specializing to the case where S / ρ is a Brandt semigroup, we obtain a much more explicit structure theorem than is possible in a general situation, and to underline that point we devote the final section of the paper to an isomorphism theorem.

1 - Preliminaries

For undefined terms see [3]. A congruence ρ on a semigroup S with zero will be called proper if $0 \rho=\{0\}$. We shall routinely denote by E_{S} (or just by E if the context allows) the set of idempotents of the semigroup S. For any set A containing 0 we shall denote the set $A \backslash\{0\}$ by A^{*}.

A Brandt semigroup B, defined as a completely 0 -simple inverse semigroup, can be described in terms of a group G and a non-empty set I. More precisely,

$$
B=(I \times G \times I) \cup\{0\}
$$

and

$$
\begin{aligned}
(i, a, j)(k, b, l) & = \begin{cases}(i, a b, l) & \text { if } j=k \\
0 & \text { otherwise } ;\end{cases} \\
0(i, a, j) & =(i, a, j) 0=00=0
\end{aligned}
$$

This is of course a special case of a Rees matrix semigroup: $B=\mathcal{M}^{0}[G ; I, I ; P]$, where P is the $I \times I$ matrix $\Delta=\left(\delta_{i j}\right)$, with

$$
\delta_{i j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

The following easily verified properties will be of use throughout the paper.
Theorem 1.1. Let B be a Brandt semigroup.
(i) For all b, c in $B^{*}, b c \neq 0$ if and only if $b^{-1} b=c c^{-1}$.
(ii) In particular, for all e, f in E_{B}^{*}, ef $\neq 0$ if and only if $e=f$.
(iii) For all e in E_{B}^{*} and b in B^{*},

$$
e b \neq 0 \Rightarrow e b=b, \quad b e \neq 0 \Rightarrow b e=b
$$

(iv) For all b, c in B^{*}

$$
b c=b \Rightarrow c=b^{-1} b, \quad c b=b \Rightarrow c=b b^{-1}
$$

(v) For all $e \neq f$ in $E_{B}, e B \cap f B=B e \cap B f=\{0\}$.

Munn [8] considered an inverse semigroup S with zero having the two properties:
(C1) for all a, b, c in S,

$$
a b c=0 \Rightarrow a b=0 \text { or } b c=0
$$

(C2) for all non-zero ideals M and N of $S, M \cap N \neq\{0\}$.
Let us call S strongly categorical if it has both these properties. Munn showed that for a strongly categorical inverse semigroup the relation

$$
\begin{equation*}
\beta=\left\{(a, b) \in S \times S:(\exists e \in S) 0 \neq e=e^{2}, e a=e b \neq 0\right\} \cup\{(0,0)\} \tag{1}
\end{equation*}
$$

is a proper congruence on S such that:
(i) S / β is a Brandt semigroup;
(ii) if γ is a proper congruence on S such that S / γ is a Brandt semigroup, then $\beta \subseteq \gamma$.

We shall refer to β as the minimum Brandt congruence on S, and to S / β as the maximum Brandt homomorphic image of S.

An inverse semigroup S with zero is called E^{*}-unitary if, for all e, s in S^{*},

$$
e, e s \in E^{*} \Rightarrow s \in E^{*}
$$

In fact, as remarked in [3, Section 5.9], the dual implication

$$
e, s e \in E^{*} \Rightarrow s \in E^{*}
$$

is a consequence of this property. By analogy with Proposition 5.9.1 in [3], we have

Theorem 1.2. Let S be a strongly categorical inverse semigroup. Then the following statements are equivalent:
(a) S is E^{*}-unitary;
(b) the congruence β is idempotent-pure;
(c) $\beta \cap \mathcal{R}=1_{S}$.

Proof: For $(b) \equiv(c)$, see [11, III.4.2].
$(\mathrm{a}) \Rightarrow(\mathrm{b})$. Let $a \beta f$, where $f \in E^{*}$. Then there exists e in E^{*} such that $e a=e f \neq 0$. Since S is by assumption E^{*}-unitary, it now follows from $e, e a \in E^{*}$ that $a \in E^{*}$. The β-class $f \beta$ consists entirely of idempotents, which is what we mean when we say that β is idempotent-pure.
$(\mathrm{b}) \Rightarrow(\mathrm{a})$. Suppose that β is idempotent-pure. Let $e, e s \in E^{*}$. Then $e(e s)=$ es $\neq 0$, and so es β s. Since es $\in E^{*}$ we may deduce by the idempotent-pure property that $s \in E^{*}$.

2 - The carrier semigroup

Let S be a strongly categorical E^{*}-unitary inverse semigroup. We shall define an inverse semigroup C_{S} called the carrier semigroup of S.

Denote the maximum Brandt homomorphic image S / β of S by B, and for each s in S denote the β-class $s \beta$ by $[s]$. Let

$$
C_{S}=\left\{(a, s, b) \in B^{*} \times S^{*} \times B^{*}: a[s]=b\right\} \cup\{0\}
$$

Notice that for every (a, s, b) in C_{S} we also have $b[s]^{-1}=a[s][s]^{-1}=a$ (by Theorem 1.1); hence $a \mathcal{R}^{B} b$.

We define a binary operation \circ on C_{S} as follows:

$$
\begin{aligned}
(a, s, b) \circ(c, t, d) & =\left\{\begin{array}{cc}
(a, s t, d) & \text { if } b=c \\
0 & \text { otherwise }
\end{array}\right. \\
0 \circ(a, s, b) & =(a, s, b) \circ 0=0 \circ 0=0
\end{aligned}
$$

Notice that if $b=c$ then $a[s t]=d$, and so in particular $s t \neq 0$. It is a routine matter to verify that this operation is associative. It is easy also to see that
$\left(C_{S}, \circ\right)$ is an inverse semigroup: the inverse of (a, s, b) is $\left(b, s^{-1}, a\right)$, and the nonzero idempotents are of the form (a, i, a), where $i \in E_{S}^{*}$. For each (a, b) in \mathcal{R}^{B}, with a, b in B^{*}, we write $C(a, b)$ for the set (necessarily non-empty) of all elements (a, s, b) in C_{S}. Notice that $C(a, b) \circ C(c, d) \neq\{0\}$ if and only if $b=c$.

Lemma 2.1. For each idempotent e in $B, C(e, e)$ consists entirely of idempotents of C_{S}.

Proof: If $(e, s, e) \in C_{S}$, where $e \in B^{*}$, then $e[s]=e$. By Theorem 1.1 this is possible only if $[s]=e$ in B. Then, since β is idempotent-pure (Theorem 1.2), it follows that s is idempotent in S.

There is a natural left action of B on C_{S} : for all c in B and all (a, s, b) in $C(a, b) \subseteq C_{S}^{*}$

$$
c(a, s, b)=\left\{\begin{array}{cl}
(c a, s, c b) & \text { if } c a \neq 0 \text { in } B, \\
0 & \text { otherwise } .
\end{array}\right.
$$

Also,

$$
c 0=0 \text { for all } c \text { in } B .
$$

Notice that since $a \mathcal{R} b$ in B we have $a a^{-1}=b b^{-1}$, and so, by Theorem 1.1,

$$
c a \neq 0 \Longleftrightarrow c^{-1} c=a a^{-1} \Longleftrightarrow c^{-1} c=b b^{-1} \Longleftrightarrow c b \neq 0
$$

Also, the action is well-defined, for if $a[s]=b$ then it is immediate that $(c a)[s]=$ $c b$.

Lemma 2.2. For all c, d in B and all p, q in C_{S},

$$
c(d p)=(c d) p, \quad c(p \circ q)=(c p) \circ(c q), \quad c\left(p^{-1}\right)=(c p)^{-1} .
$$

Proof: The first equality is clear if $p=0$. Suppose now that $p=(a, s, b)$. If $d p=0$ then $d a=0$ in B, and it is then clear that $c(d p)=(c d) p=0$. Suppose next that $d p \neq 0$ and that $c d=0$ in B. Then $(c d) p=0$ in C_{S}, and

$$
c(d p)=c(d a, s, d b)=0
$$

since $c(d a)=(c d) a=0$ in B. Finally, suppose that $d p \neq 0, c d \neq 0$. Then, recalling our assumption that S is strongly categorical, we deduce by the property (C1) that $c d a \neq 0$ in B, and so

$$
(c d) p=c(d p)=(c d a, s, c d b) .
$$

The second equality is clear if $p=0$ or $q=0$ or $c=0$. So suppose that $p=(a, s, b), q=\left(b^{\prime}, t, d\right)$ and c are all non-zero, and suppose first that $b^{\prime} \neq b$. Then $p \circ q=0$, and so certainly $c(p \circ q)=0$. If $c b=0$ then $c p=0$ and so $(c p) \circ(c q)=0$. Similarly, if $c b^{\prime}=0$ then $(c p) \circ(c q)=(c p) \circ 0=0$. If $c b$ and $c b^{\prime}$ are both non-zero then $c b \neq c b^{\prime}$, for $c b=c b^{\prime}$ would imply that

$$
b=c^{-1} c b=c^{-1} c b^{\prime}=b^{\prime},
$$

contrary to hypothesis. Hence $(c p) \circ(c q)=0$ in this case also.
Suppose finally that $b^{\prime}=b \neq 0$: thus $p=(a, s, b), q=(b, t, d)$, and $c a, c b$ (and $c d)$ are non-zero. Then

$$
(c p) \circ(c q)=(c a, s, c b)(c b, t, c d)=(c a, s t, c d)=c(a, s t, d)=c(p \circ q),
$$

as required.
The third equality follows in much the same way.
As in [3], for each p in C_{S}, let us denote by $J(p)$ the principal two-sided ideal generated by p. It is clear that, for each p,

$$
J(p)=J\left(p \circ p^{-1}\right)=J\left(p^{-1} \circ p\right)=J\left(p^{-1}\right) .
$$

Lemma 2.3. Let $p \in C\left(b b^{-1}, b\right), q \in C\left(c c^{-1}, c\right)$, where $b, c \in B^{*}$. Then

$$
J(p) \cap J(b q)=J(p \circ b q) .
$$

Proof: Suppose first that $p \circ b q=0$. Thus $p=\left(b b^{-1}, s, b\right), q=\left(c c^{-1}, j, c\right)$, with $b \neq b c c^{-1}$. Now $b c \neq 0$ if and only if $b c c^{-1}=b$, and so $p \circ b q=0$ happens precisely when $b c=0$. In this case $b q=0$, giving

$$
J(p) \cap J(b q)=J(p) \cap\{0\}=\{0\}
$$

Suppose now that $b c \neq 0$. Since $J(p \circ b q) \subseteq J(p)$ and $J(p \circ b q) \subseteq J(b q)$, it is clear that $J(p \circ b q) \subseteq J(p) \cap J(b q)$. To show the reverse inclusion, suppose that $r \neq 0$ and that

$$
\begin{aligned}
r & =x_{1} \circ p \circ y_{1}=x_{2} \circ b q^{-1} \circ y_{2} \in J(p) \cap J\left(b q^{-1}\right) \\
& =J(p) \cap J\left((b q)^{-1}\right)=J(p) \cap J(b q) .
\end{aligned}
$$

Here, since $r \neq 0$, we must have $x_{1} \in C\left(a, b b^{-1}\right), y_{1} \in C(b, d), x_{2} \in C(a, b c)$, $y_{2} \in C(b, d)$, for some a, d in B^{*}. Hence

$$
\begin{aligned}
r & =r \circ r^{-1} \circ r \\
& =x_{1} \circ p \circ y_{1} \circ y_{2}^{-1} \circ b q \circ b q^{-1} \circ b q \circ x_{2}^{-1} \circ r \\
& =x_{1} \circ p \circ b\left(b^{-1}\left(y_{1} \circ y_{2}^{-1}\right) \circ\left(q \circ q^{-1}\right)\right) \circ b q \circ x_{2}^{-1} \circ r .
\end{aligned}
$$

Now $b^{-1}\left(y_{1} \circ y_{2}^{-1}\right) \in C\left(b^{-1} b, b^{-1} b\right)$, and so by Lemma 2.1 is an idempotent in C_{S}. Commuting idempotents, we obtain

$$
\begin{aligned}
r & =x_{1} \circ p \circ b\left(\left(q \circ q^{-1}\right) \circ b^{-1}\left(y_{1} \circ y_{2}^{-1}\right)\right) \circ b q \circ x_{2}^{-1} \circ r \\
& =x_{1} \circ(p \circ b q) \circ b q^{-1} \circ y_{1} \circ y_{2}^{-1} \circ b q \circ x_{2}^{-1} \circ r,
\end{aligned}
$$

and so $r \in J(p \circ b q)$ as required.
Since $e=e e^{-1}$ for every idempotent e in an inverse semigroup, we have the following easy consequence of Lemma 2.3:

Corollary 2.4. Let $p \in C(e, e), q \in C(f, f)$, where e, f are idempotents in B^{*}. Then $J(p \circ q)=J(p) \cap J(q)$. In particular, $J(p) \cap J(q)=\{0\}$ if $e \neq f$.

Let

$$
\bar{C}_{S}=\left\{(p, b): p \in C\left(b b^{-1}, b\right), b \in B^{*}\right\} \cup\{0\},
$$

and define a multiplication on \bar{C}_{S} by

$$
\begin{aligned}
(p, b)(q, c) & =\left\{\begin{array}{cc}
(p \circ b q, b c) & \text { if } b c \neq 0 \\
0 & \text { otherwise },
\end{array}\right. \\
(p, b) 0 & =0(p, b)=00=0 .
\end{aligned}
$$

This operation is well-defined. If $p=\left(b b^{-1}, s, b\right), q=\left(c c^{-1}, t, c\right)$ and $b c \neq 0$, then $b c c^{-1}=b$ by Theorem 1.1. Hence $(b c)(b c)^{-1}=b c c^{-1} b^{-1}=b b^{-1}$, and so

$$
\begin{aligned}
p \circ b q & =\left(b b^{-1}, s, b\right) \circ(b, t, b c)=\left(b b^{-1}, s t, b c\right) \\
& =\left((b c)(b c)^{-1}, s t, b c\right) \in C\left((b c)(b c)^{-1}, b c\right)
\end{aligned}
$$

as required. The verification that the operation is associative is routine.
Now consider the map $\psi: S \rightarrow \bar{C}_{S}$ given by

$$
\begin{aligned}
& s \psi=\left(\left(\left[s s^{-1}\right], s,[s]\right),[s]\right) \quad\left(s \in S^{*}\right) \\
& 0 \psi=0 .
\end{aligned}
$$

Then ψ is clearly one-one. It is also onto, since for each $\left(\left(b b^{-1}, s, b\right), b\right)$ in \bar{C}_{S}^{*}, we deduce from $b b^{-1}[s]=b$ that $[s]=b$ and hence that $\left(\left(b b^{-1}, s, b\right), b\right)=s \psi$.

The map ψ is indeed even an isomorphism. Let $s, t \in S^{*}$, and suppose first that $[s t]=0$. Then $(s t) \psi=0$, and from the fact that $[s][t]=0$ in B we deduce that

$$
(s \psi)(t \psi)=\left(\left(\left[s s^{-1}\right], s,[s]\right),[s]\right)\left(\left(\left[t t^{-1}\right], t,[t]\right),[t]\right)=0
$$

in \bar{C}_{S}. Suppose now that $[s t] \neq 0$. Then

$$
\begin{aligned}
(s \psi)(t \psi) & =\left(\left(\left[s s^{-1}\right], s,[s]\right),[s]\right)\left(\left(\left[t t^{-1}\right], t,[t]\right),[t]\right) \\
& =\left(\left(\left[s s^{-1}\right], s t,[s t]\right),[s][t]\right) \\
& =\left(\left(\left[(s t)(s t)^{-1}\right], s t,[s t]\right),[s t]\right) \quad\left(\text { since }[s]=[s][t][t]^{-1}\right) \\
& =(s t) \psi .
\end{aligned}
$$

We have shown
Lemma 2.5. \bar{C}_{S} is isomorphic to S.
In a sense we have in this section gone round in a circle, starting with S, moving to C_{S}, and returning to S via \bar{C}_{S} and the isomorphism ψ. We shall see, however, that the set of principal ideals of C_{S} is the key to our main theorem.

3 - The main theorem

We begin with some observations concerning representations of Brandt semigroups. Let $\mathcal{X}=(\mathcal{X}, \leq)$ be a partially ordered set containing a least element 0 , and let B be a Brandt semigroup. For each b in B, let λ_{b} be a partial orderisomorphism of \mathcal{X}, whose domain is an order-ideal of \mathcal{X}, and such that the map $b \mapsto \lambda_{b}$ is a faithful representation (see [3] for a definition of 'faithful') of B by partial one-one maps of \mathcal{X}. We shall find it convenient to regard each λ_{b} as acting on \mathcal{X} on the left, writing $\lambda_{b}(X)$ rather than $X \lambda_{b}$. Notice that each im λ_{b} is an order-ideal also, since im $\lambda_{b}=\operatorname{dom} \lambda_{b^{-1}}$.

Suppose that $\operatorname{dom} \lambda_{0}=\operatorname{im} \lambda_{0}=\{0\}$; then, by the faithful property we deduce that if $b \neq 0$ in B then $\operatorname{dom} \lambda_{b}$ and $\operatorname{im} \lambda_{b}$ are both non-zero order-ideals. The order-preserving property implies that $\lambda_{b}(0)=0$ for every b in B. For each e in E_{B}^{*}, let $\Delta_{e}=\operatorname{dom} \lambda_{e}=\operatorname{im} \lambda_{e}$. Since λ_{e} is an idempotent in the symmetric inverse semigroup $\mathcal{I}_{\mathcal{X}}$, it is the identity map on its domain. If e, f are distinct
idempotents in B^{*},

$$
\Delta_{e} \cap \Delta_{f}=\{0\}
$$

since $e f=0$ in B whenever $e \neq f$.
Let us suppose also that the representation is effective, by which we mean that every X in \mathcal{X} lies in the domain of at least one λ_{b}. Equivalently, we have

$$
\mathcal{X}=\bigcup\left\{\Delta_{e}: e \in E_{B}^{*}\right\}
$$

Notice that (since we are writing mapping symbols on the left) for all b in B^{*},

$$
\operatorname{dom} \lambda_{b}=\operatorname{dom} \lambda_{b^{-1} b}=\Delta_{b^{-1} b}, \quad \operatorname{im} \lambda_{b}=\operatorname{im} \lambda_{b b^{-1}}=\Delta_{b b^{-1}}
$$

Also, by Theorem 1.1, for all b, c in B^{*},

$$
\begin{gathered}
b c \neq 0 \quad \text { if and only if } \quad \operatorname{im} \lambda_{c}=\operatorname{dom} \lambda_{b} \\
b c=0 \quad \text { if and only if } \quad \operatorname{im} \lambda_{c} \cap \operatorname{dom} \lambda_{b}=\{0\}
\end{gathered}
$$

Now let (\mathcal{X}, \leq) be a partially ordered set with a least element 0 , and let \mathcal{Y} be a subset of \mathcal{X} such that
$(\mathbf{P 1}) \mathcal{Y}$ is a lower semilattice with respect to \leq, in the sense that for every J and K in \mathcal{Y} there is a greatest lower bound $J \wedge K$, also in \mathcal{Y};
$(\mathbf{P 2}) \mathcal{Y}$ is an order ideal, in the sense that for all A, X in \mathcal{X},

$$
A \in \mathcal{Y} \text { and } X \leq A \quad \Longrightarrow \quad X \in \mathcal{Y}
$$

Let B be a Brandt semigroup, and suppose that $b \mapsto \lambda_{b}$ is an effective, faithful representation of B, as described above. Thus each λ_{b} is a partial orderisomorphism of \mathcal{X}, acting on the left, and dom λ_{b} is an order-ideal of \mathcal{X}. In practice we shall write $b X$ rather than $\lambda_{b}(X)$, and so in effect, for each b in B^{*}, we are supposing that there is a partial one-one map $X \mapsto b X(X \in \mathcal{X})$, with the property that, for all X, Y in \mathcal{X},

$$
X \leq Y \Longrightarrow b X \leq b Y
$$

Suppose now that the triple $(B, \mathcal{X}, \mathcal{Y})$ has the following property:
(P3) For all $e \in E_{B}^{*}$, and for all $P, Q \in \Delta_{e} \cap \mathcal{Y}^{*}$, where $\Delta_{e}=\operatorname{dom} \lambda_{e}$,

$$
P \wedge Q \neq 0
$$

If $X, Y \in \mathcal{X}$ and if $X \wedge Y$ exists, then, for all b in B for which X and Y belong to dom b, the element $b X \wedge b Y$ exists, and

$$
b X \wedge b Y=b(X \wedge Y)
$$

To see this, notice first that $X \wedge Y \in \operatorname{dom} b$, since $\operatorname{dom} b$ is an order-ideal, and that $b(X \wedge Y) \leq b X, b(X \wedge Y) \leq b Y$. Suppose next that $Z \leq b X, Z \leq b Y$. Then $Z \in \operatorname{im} b$, since $\operatorname{im} b$ is an order-ideal, and so $Z=b T$ for some T in dom b. Then

$$
T=b^{-1} Z \leq b^{-1}(b X)=X
$$

and similarly $T \leq Y$. Hence $T \leq X \wedge Y$, and so

$$
Z=b T \leq b(X \wedge Y)
$$

as required.
The triple $(B, \mathcal{X}, \mathcal{Y})$ is said to be a Brandt triple if it has the properties (P 1), (P2) and (P3) together with the additional properties:
$(\mathbf{P 4}) B \mathcal{Y}=\mathcal{X}$;
(P5) for all b in $B^{*}, b \mathcal{Y}^{*} \cap \mathcal{Y}^{*} \neq \emptyset$.
Now let

$$
S=\mathcal{M}(B, \mathcal{X}, \mathcal{Y})=\left\{(P, b) \in \mathcal{Y}^{*} \times B^{*}: b^{-1} P \in \mathcal{Y}^{*}\right\} \cup\{0\}
$$

where $(B, \mathcal{X}, \mathcal{Y})$ is a Brandt triple. We define multiplication on S by the rule that

$$
\begin{aligned}
(P, b)(Q, c) & =\left\{\begin{array}{cl}
(P \wedge b Q, b c) & \text { if } b c \neq 0 \\
0 & \text { otherwise }
\end{array}\right. \\
(P, b) 0 & =0(P, b)=00=0
\end{aligned}
$$

To verify that S is closed with respect to this operation, notice first that $b Q$ is defined, for the tacit assumption that $c^{-1} Q$ is defined and the assumption that $b c \neq 0$ in B implies that

$$
Q \in \operatorname{dom} c^{-1}=\operatorname{im} c=\operatorname{dom} b
$$

Next, notice that $b^{-1} P \wedge Q$ exists, since both $b^{-1} P$ and Q are in \mathcal{Y}. Moreover, $b^{-1} P \wedge Q \in \mathcal{Y}^{*}$, since

$$
b^{-1} P \in \operatorname{im}\left(b^{-1}\right)=\Delta_{b^{-1} b}, \quad Q \in \operatorname{dom} b=\Delta_{b^{-1} b}
$$

and so $b^{-1} P \wedge Q \neq 0$ by (P3). Also $b^{-1} P \cap Q \in \operatorname{dom} b$, since $Q \in \operatorname{dom} b$ and $\operatorname{dom} b$ is an order ideal. Hence $b\left(b^{-1} P \wedge Q\right)=P \wedge b Q$ exists, and is in \mathcal{Y}^{*}, since $P \wedge b Q \leq P \in \mathcal{Y}^{*}$. Moreover, if $b c \neq 0$, then

$$
(b c)^{-1}(P \wedge b Q)=c^{-1} b^{-1} P \wedge c^{-1} Q \leq c^{-1} Q \in \mathcal{Y}^{*}
$$

and so $(b c)^{-1}(P \wedge b Q) \in \mathcal{Y}^{*}$.
Next, the operation is associative. The Brandt semigroup B satisfies the 'categorical' condition

$$
b c d=0 \quad \Longrightarrow \quad b c=0 \quad \text { or } \quad c d=0
$$

hence either both $[(P, b)(Q, c)](R, d)$ and $(P, b)[(Q, c)(R, d)]$ are zero, or both are equal to $(P \wedge b Q \wedge b c R, b c d)$.

Thus S is a semigroup with zero. It is even a regular semigroup, for if (P, b) is a non-zero element of S then $\left(b^{-1} P, b^{-1}\right) \in S$, and

$$
\begin{gathered}
(P, b)\left(b^{-1} P, b^{-1}\right)(P, b)=\left(P, b b^{-1}\right)(P, b)=(P, b), \\
\left(b^{-1} P, b^{-1}\right)(P, b)\left(b^{-1} P, b^{-1}\right)=\left(b^{-1} P, b^{-1}\right)\left(P, b b^{-1}\right)=\left(b^{-1} P, b^{-1}\right) .
\end{gathered}
$$

It is, moreover, clear that a non-zero element (P, b) is idempotent if and only if b is idempotent in B and $b P=P$ (which is equivalent to saying that $b P$ is defined). If $(P, e),(Q, f)$ are idempotents in S, then either $e \neq f$, in which case $e f=0$ and $(P, e)(Q, f)=(Q, f)(P, e)=0$, or $e=f$, in which case

$$
(P, e)(Q, e)=(Q, e)(P, e)=(P \wedge Q, e) .
$$

Thus S is an inverse semigroup, and the unique inverse of (P, b) is $\left(b^{-1} P, b^{-1}\right)$.
The natural order relation in S^{*} is given by

$$
(P, b) \leq(Q, c) \Longleftrightarrow b b^{-1} c \neq 0 \text { and }(P, b)=\left(P, b b^{-1}\right)(Q, c)=\left(P \wedge Q, b b^{-1} c\right) .
$$

That is, since $b b^{-1} c=c$ in such a case,

$$
\begin{equation*}
(P, b) \leq(Q, c) \quad \Longleftrightarrow \quad b=c \text { and } P \leq Q \tag{2}
\end{equation*}
$$

It follows that S is E^{*}-unitary, for if $(P, e) \in E^{*}$ and $(Q, c) \in S^{*}$, then $(P, e) \leq$ (Q, c) if and only if $c=e$ and $P \leq Q$, and so in particular (Q, c) is idempotent.

Notice too that S is categorical, for the product $(P, b)(Q, c)(R, d)$ can equal zero only if $b c d=0$, and the categorical property of B then implies that either $(P, b)(Q, c)=0$ or $(Q, c)(R, d)=0$. Indeed S is strongly categorical. That this is
so follows by the work of Munn [8], for it is clear that the relation γ on S defined by

$$
\begin{equation*}
\gamma=\{((P, b),(Q, c)) \in S \times S: b=c\} \cup\{(0,0)\} \tag{3}
\end{equation*}
$$

is a proper congruence on S and that S / γ is isomorphic to the Brandt semigroup B.

The congruence γ defined by (3) is in fact the minimum Brandt congruence on S. Suppose that $((P, b),(Q, b)) \in \gamma$. Then $b^{-1} P, b^{-1} Q \in \mathcal{Y}$, and so $b b^{-1} P=P$, $b b^{-1} Q=Q$. Hence $b b^{-1}(P \wedge Q)=P \wedge Q$, and $P \wedge Q \neq 0$ by (P3). Hence $\left(P \wedge Q, b b^{-1}\right) \in E_{S}^{*}$. It now follows that

$$
\left(P \wedge Q, b b^{-1}\right)(P, b)=\left(P \wedge Q, b b^{-1}\right)(Q, b)=(P \wedge Q, b) \neq 0
$$

Hence, recalling Munn's characterization (1) of the minimum Brandt congruence, we conclude that $\gamma \subseteq \beta$, the minimum Brandt congruence on S. Since γ is, as observed before, a Brandt congruence, we deduce that $\gamma=\beta$.

It is useful also at this stage to note the following result:
Lemma 3.1. The semilattice of idempotents of $\mathcal{M}(B, \mathcal{X}, \mathcal{Y})$ is isomorphic to \mathcal{Y}.

Proof: We have seen that the non-zero idempotents of $S=\mathcal{M}(B, \mathcal{X}, \mathcal{Y})$ are of the form (P, e), where $P \in \mathcal{Y}^{*}, e \in E_{B}^{*}$ and $e P=P$. The statement that $e P=P$ is equivalent to saying in our previous notation that $P \in \mathcal{D}_{e}$, and since the order ideals Δ_{e} and $\Delta_{f}($ with $e \neq f)$ have zero intersection, there is for each P in \mathcal{Y}^{*} at most one e such that $(P, e) \in E_{S}^{*}$.

In fact for each P in \mathcal{Y}^{*} there is exactly one e in E_{B}^{*} such that $(P, e) \in E_{S}^{*}$; for by our assumption that the representation $b \mapsto \lambda_{b}$ is effective we can assert that $P \in \operatorname{dom} b$ for some b in B^{*}, and then $\left(P, b^{-1} b\right) \in E_{S}^{*}$. The conclusion is that for each P in \mathcal{Y}^{*} there is a unique e_{P} in $B^{*} \operatorname{such}$ that $\left(P, e_{P}\right) \in E_{S}^{*}$. We have a bijection $P \mapsto\left(P, e_{P}\right)$ from \mathcal{Y}^{*} onto E_{S}^{*}. If $P \wedge Q \neq 0$, then $e_{P}=e_{Q}=e$ (say), and

$$
(P, e)(Q, e)=(P \wedge Q, e)
$$

If $P \wedge Q=0$, then $e_{P} \neq e_{Q}$ by (P3), and so $\left(P, e_{P}\right)\left(Q, e_{Q}\right)=0$. We deduce that the bijection $P \mapsto\left(P, e_{P}\right), 0 \mapsto 0$ is an isomorphism from \mathcal{Y} onto E_{S}.

We have in fact proved half of the following theorem:
Theorem 3.2. Let $(B, \mathcal{X}, \mathcal{Y})$ be a Brandt triple. Then $\mathcal{M}(B, \mathcal{X}, \mathcal{Y})$ is a strongly categorical E^{*}-unitary inverse semigroup. Conversely, every strongly categorical E^{*}-unitary inverse semigroup is isomorphic to one of this kind.

Proof: To prove the converse part, let S be a strongly categorical E^{*}-unitary inverse semigroup. Let \mathcal{X} be the set of principal two-sided ideals of the carrier semigroup C_{S} :

$$
\mathcal{X}=\left\{J(p): p \in C_{S}\right\} .
$$

The set \mathcal{X} is partially ordered by inclusion, with a minimum element 0 (strictly the zero ideal $\{0\}$). Let \mathcal{Y} be the subset of \mathcal{X} consisting of 0 together with all principal ideals $J(p)$ for which $p \in C(e, e)$ for some idempotent e of B^{*}. Let $J(p), J(q) \in \mathcal{Y}$. Then by Corollary 2.4 we have either $J(p) \cap J(q)=0 \in \mathcal{Y}$, or $e=f, p \circ q \in C(e, e)$ and

$$
J(p) \cap J(q)=J(p \circ q) \in \mathcal{Y}
$$

Thus \mathcal{Y} is a semilattice with respect to the inclusion order inherited from \mathcal{X}. This is the property (P 1).

To show the property (P2), suppose that $J(p) \subseteq J(q)$, where $J(q) \in \mathcal{Y}^{*}$. Thus we may assume that $q=(e, i, e) \in C(e, e)$ for some idempotents e in B and i in S, such that $[i]=e$. We may suppose that p is idempotent in C_{S}. (If not we replace it by $p \circ p^{-1}$, observing that $J\left(p \circ p^{-1}\right)=J(p)$.) Hence there exist r, s in C_{S} such that

$$
p=r \circ q \circ s .
$$

Let $n=s \circ p \circ s^{-1}$. Then $n \in C(e, e)$, and clearly $J(n) \subseteq J(p)$. Also

$$
\begin{aligned}
p & =p^{3}=(r \circ q \circ s) \circ p \circ\left(s^{-1} \circ q^{-1} \circ r^{-1}\right) \\
& =r \circ q \circ n \circ q^{-1} \circ r^{-1} \in J(n),
\end{aligned}
$$

and so $J(p)=J(n) \in \mathcal{Y}$. Thus \mathcal{Y} is an order ideal of \mathcal{X}.
Now we define a representation $b \mapsto \lambda_{b}$ of the Brandt semigroup $B=S / \beta$ by partial order-isomorphisms of \mathcal{X}. Let $\lambda_{0}=\{(0,0)\}$. For each b in B^{*}, let

$$
\lambda_{b}=\{(J(p), J(b p)): p, b p \neq 0\} \cup\{(0,0)\} .
$$

That is to say, we define dom $\lambda_{b}=\{J(p): p, b p \neq 0\} \cup\{0\}$, and define $\lambda_{b}(J(p))=$ $J(b p), \lambda_{b}(0)=0$.

The domain of λ_{b} is in fact an order ideal of \mathcal{X}. For suppose that $0 \neq J(q) \subseteq$ $J(p)$, where $p=(a, s, c)$ is such that $b p \neq 0$ and $q=(d, t, e)$. Then there exist elements $(d, u, a),(c, v, e)$ in C_{S}^{*} such that

$$
q=(d, u, a) \circ(a, s, c) \circ(c, v, e)=(d, u s v, e) .
$$

Now $d[u]=a$, and so if $b d=0$ it follows that $b a=0$, contrary to hypothesis. Hence $b q \neq 0$, and so $J(q) \in \operatorname{dom} \lambda_{b}$.

Notice now that

$$
\operatorname{im} \lambda_{b}=\{J(b p): p, b p \neq 0\}=\left\{J(q): q, b^{-1} q \neq 0\right\}=\operatorname{dom} \lambda_{b^{-1}}
$$

and that $\lambda_{b^{-1}} \lambda_{b}$ and $\lambda_{b} \lambda_{b^{-1}}$ are the identity maps of dom λ_{b}, im λ_{b}, respectively. Since $J(p) \subseteq J(q) \Rightarrow J(b p) \subseteq J(b q)$, each λ_{b} is a partial order-isomorphism of \mathcal{X}. Next, notice that if $b c=0$ then $\lambda_{b} \lambda_{c}=\lambda_{0}$, the trivial map whose domain and image are both 0 ; for otherwise there exists $q \neq 0$ in C_{S} such that $J(q) \in$ $\operatorname{dom}\left(\lambda_{b} \lambda_{c}\right)$, from which it follows that $(b c) q=b(c q) \neq 0$, a contradiction.

Suppose now that $b c \neq 0$. Then $\operatorname{dom}\left(\lambda_{b} \lambda_{c}\right)=\operatorname{dom} \lambda_{b c}$, since the conditions $p \neq 0, c p \neq 0, b(c p) \neq 0$ for $J(p)$ to be in $\operatorname{dom}\left(\lambda_{b} \lambda_{c}\right)$ are equivalent to the conditions $p \neq 0,(b c) p \neq 0$ for $J(p)$ to be in $\operatorname{dom} \lambda_{b c}$. Moreover, for all p in the common domain,

$$
\left(\lambda_{b} \lambda_{c}\right)(J(p))=\lambda_{b}(J(c p))=J(b(c p))=J((b c) p)=\lambda_{b c}(J(p))
$$

Thus $\lambda_{b} \lambda_{c}=\lambda_{b c}$ in all cases, and so $b \mapsto \lambda_{b}$ is a representation of B by partial order-isomorphisms of \mathcal{X}. We can regard B as acting on \mathcal{X} on the left, and write $b J(p)$ rather than $\lambda_{b}(J(p))$. Notice that $b J(p)=J(b p)$ provided $b p \neq 0$.

To show that the representation is faithful, suppose that $\lambda_{b}=\lambda_{c}$, where $b, c \in B^{*}$, and let $p=(a, s, d)$ in C_{S} be such that $b p \neq 0$. Then $c p \neq 0$, and so

$$
b=b a a^{-1}=c a a^{-1}=c
$$

To show that the representation is effective, let $p=(a, s, d)$ be an arbitrary element of C_{S}^{*}. Then $a a^{-1} p \neq 0$ and so $J(p) \in \operatorname{dom} \lambda_{a a^{-1}}$.

To verify (P3), let $e \in E_{B}^{*}$, and let $J(p), J(q) \in \mathcal{Y}^{*} \cap \Delta_{e}$. Thus $p=(f, i, f)$, $q=(g, j, g)$, where $f, g \in E_{B}^{*}, i, j \in E_{S}^{*}$ and $f[i]=f, g[j]=g$. Since $e p$ and $e q$ are non-zero, we must in fact have $f=g=e$. Thus $p \circ q=(e, i j, e) \neq 0$ and so, using Corollary 2.4, we see that

$$
J(p) \cap J(q)=J(p \circ q) \neq 0
$$

To show the property (P 4), consider a non-zero element $J(p)$ of \mathcal{X}, where $p=(a, s, b)$. Then $J(p)=J\left(p \circ p^{-1}\right)$, with $p \circ p^{-1}=\left(a, s s^{-1}, a\right)$, and $a\left[s s^{-1}\right]=a$. Let q be the element $\left(a^{-1} a, s s^{-1}, a^{-1} a\right)$ of C_{S}. Then $J(q) \in \mathcal{Y}$, and

$$
a q=\left(a, s s^{-1}, a\right)=p \circ p^{-1}
$$

It follows that $J(p)=a J(q) \in a \mathcal{Y}$, and so $\mathcal{X}=B \mathcal{Y}$, as required.

To show (P5), let $a \in B^{*}$, let $q=\left(a, x, a a^{-1}\right)$, where $[x]=a^{-1}$, and $p=\left(a^{-1} a, x x^{-1}, a^{-1} a\right)$. Then $J(p) \in \mathcal{Y}$. Also $a p=\left(a, x x^{-1}, a\right)$. If we define $r=\left(a a^{-1}, x^{-1} x, a a^{-1}\right)$, then we easily verify that

$$
q^{-1} \circ(a p) \circ q=r, \quad q \circ r \circ q^{-1}=a p .
$$

Hence $a J(p)=J(q) \in a \mathcal{Y}^{*} \cap \mathcal{Y}^{*}$, as required.
It remains to show that $S \simeq \mathcal{M}(B, \mathcal{X}, \mathcal{Y})$. We show in fact that

$$
\bar{C}_{S} \simeq \mathcal{M}(B, \mathcal{X}, \mathcal{Y})
$$

which by virtue of Lemma 2.5 is enough. Let $\phi: \bar{C}_{S} \rightarrow \mathcal{M}(B, \mathcal{X}, \mathcal{Y})$ be given by

$$
\begin{aligned}
(p, b) \phi & =(J(p), b)) \quad\left(p \in C\left(b b^{-1}, b\right), b \in B^{*}\right) \\
0 \phi & =0 .
\end{aligned}
$$

Since $J(p)=J\left(p \circ p^{-1}\right)$ and $p \circ p^{-1} \in C\left(b b^{-1}, b b^{-1}\right)$, we deduce that $J(p) \in \mathcal{Y}^{*}$. Also, $b^{-1} p \neq 0$,

$$
b^{-1} J(p)=J\left(b^{-1} p\right)=J\left(\left(b^{-1} p\right)^{-1} \circ\left(b^{-1} p\right)\right),
$$

and

$$
\left(b^{-1} p\right)^{-1} \circ\left(b^{-1} p\right) \in C\left(b b^{-1}, b^{-1}\right) \circ C\left(b^{-1}, b b^{-1}\right) \subseteq C\left(b b^{-1}, b b^{-1}\right) ;
$$

hence $b^{-1} J(p) \in \mathcal{Y}^{*}$. Thus $(J(p), b) \in \mathcal{M}(B, \mathcal{X}, \mathcal{Y})$.
To show that ϕ is one-one, suppose that $(J(p), b)=(J(q), c)$, where $p \in C\left(b b^{-1}, b\right), q \in C\left(c c^{-1}, c\right)$. Then certainly $b=c$. If we now write $p=\left(b b^{-1}, s, b\right)$ and $q=\left(b b^{-1}, t, b\right)$, we have that

$$
p \circ q^{-1}=\left(b b^{-1}, s t^{-1}, b b^{-1}\right),
$$

and so $s t^{-1} \in E_{S}^{*}$. Hence

$$
\begin{equation*}
s t^{-1}=\left(s t^{-1}\right)^{-1} s t^{-1}=t s^{-1} s t^{-1} \tag{4}
\end{equation*}
$$

Next, since $p^{-1} \circ p \in J\left(q^{-1} \circ q\right)$, there exist elements $(b, u, b),(b, v, b)$ in C_{S}^{*} such that $p^{-1} \circ p=\left(b, s^{-1} s, b\right)=(b, u, b)\left(b, t^{-1} t, b\right)(b, v, b)$; hence

$$
\begin{equation*}
s^{-1} s=u t^{-1} t v . \tag{5}
\end{equation*}
$$

Now, from $b[u]=b$ we deduce that $[u]$ is idempotent in B, and hence (since β is idempotent-pure) that u is idempotent in S. The same argument applies to v,
and so from (5) we conclude that $s^{-1} s \leq t^{-1} t$. The opposite inequality can be proved in just the same way, and so $s^{-1} s=t^{-1} t$.

It now easily follows from this and from (4) that

$$
s=s s^{-1} s=s t^{-1} t=t s^{-1} s t^{-1} t=t t^{-1} t t^{-1} t=t
$$

Hence $(p, b)=(q, c)$ as required.
To show that ϕ is onto, suppose that $(J(p), b)$ is a non-zero element of $\mathcal{M}(B, \mathcal{X}, \mathcal{Y})$. Then we may assume that $p=(e, i, e)$, where $e \in E_{B}^{*}, i \in E_{S}^{*}$ and $[i]=e$. Also, $J\left(b^{-1} p\right) \in \mathcal{Y}^{*}$, and so, since $b^{-1} e \neq 0$, we deduce that $e=b b^{-1}$. We have $J\left(b^{-1} p\right)=J(q)$ for some $q=(f, j, f)$, with $f \in E_{B}^{*}, j \in E_{S}^{*}$ and $[j]=f$. Hence there exist $\left(b^{-1}, u, f\right)$ and $\left(f, v, b^{-1}\right)$ such that

$$
b^{-1} p=\left(b^{-1}, i, b^{-1}\right)=\left(b^{-1}, u, f\right) \circ(f, j, f) \circ\left(f, v, b^{-1}\right)
$$

It follows that

$$
\begin{equation*}
p=b\left(b^{-1} p\right)=\left(b b^{-1}, i, b b^{-1}\right)=\left(b b^{-1}, u, b f\right) \circ(b f, j, b f) \circ\left(b f, v, b b^{-1}\right) \tag{6}
\end{equation*}
$$

Since $b f \neq 0$ we deduce that $b f=b$ and $f=b^{-1} b$.
Now, since $J(q)=J\left(b^{-1} p\right)$, there exist elements $\left(b^{-1} b, x, b^{-1}\right)$ and $\left(b^{-1}, y, b^{-1} b\right)$ such that

$$
q=\left(b^{-1} b, j, b^{-1} b\right)=\left(b^{-1} b, x, b^{-1}\right) \circ\left(b^{-1}, i, b^{-1}\right) \circ\left(b^{-1}, y, b^{-1} b\right)
$$

Hence

$$
\begin{equation*}
b q=(b, j, b)=\left(b, x, b b^{-1}\right) \circ p \circ\left(b b^{-1}, y, b\right) \tag{7}
\end{equation*}
$$

We may rewrite (6) as

$$
p=\left(b b^{-1}, u, b\right) \circ(b, j, b) \circ\left(b, v, b b^{-1}\right)=r \circ\left(b, v, b b^{-1}\right),
$$

where $r=\left(b b^{-1}, u j, b\right)$, and we immediately deduce that $J(p) \subseteq J(r)$. Also, from (7) it follows that

$$
r=\left(b b^{-1}, u, b\right) \circ(b, j, b) \in J(p)
$$

and so $J(r)=J(p)$. It now follows that $(r, b) \in \bar{C}_{S}$ and that $(J(p), b)=(r, b) \phi$. Thus ϕ is onto.

Finally, we show that ϕ is a homomorphism. Let $(p, b),(q, c) \in \bar{C}_{S}^{*}$. If $b c=0$ in B then both $[(p, b)(q, c)] \phi$ and $[(p, b) \phi][(q, c) \phi]$ are zero. Otherwise we use Lemma 2.3 and observe that

$$
\begin{aligned}
{[(p, b)(q, c)] \phi } & =(p \circ b q, b c) \phi=(J(p \circ b q), b c) \\
& =(J(p) \cap b J(q), b c)=(J(p), b)(J(q), c)=[(p, b) \phi][(q, c) \phi]
\end{aligned}
$$

This completes the proof of Theorem 3.2.
Example: Let $T=\mathcal{M}(G, \mathcal{X}, \mathcal{Y})$ be an E-unitary inverse semigroup (without zero), let I be a set, and let $S=(I \times T \times I) \cup\{0\}$, and define multiplication in S by

$$
\begin{aligned}
(i, a, j)(k, b, l) & = \begin{cases}(i, a b, l) & \text { if } j=k, \\
0 & \text { otherwise },\end{cases} \\
0(i, a, j) & =(i, a, j) 0=00=0 .
\end{aligned}
$$

Then it is not hard to check that S is a strongly categorical E^{*}-unitary inverse semigroup. Its maximum Brandt image is $B=(I \times G \times I) \cup\{0\}$, where G is the maximum group image of T.

For each i in I, let \mathcal{X} be a copy of \mathcal{X}, and suppose that $X \mapsto X_{i}(X \in \mathcal{X})$ is an order-isomorphism. Let \mathcal{Y}_{i} correspond to \mathcal{Y} in this isomorphism. Suppose that the sets \mathcal{X}_{i} are pairwise disjoint, and form an ordered set \mathcal{X}^{\prime} as the union of all the sets \mathcal{X}_{i} together with an extra minimum element 0 . The order on \mathcal{X}^{\prime} coincides with the order on \mathcal{X}_{i} within \mathcal{X}_{i}, and $0 \leq X^{\prime}$ for all X^{\prime} in \mathcal{X}^{\prime}. Define $\mathcal{Y}^{\prime}=\bigcup\left\{\mathcal{Y}_{i}: i \in I\right\} \cup\{0\}$.

The action of B on \mathcal{X}^{\prime} is given as follows. If $b=(i, a, j) \in B$, then the domain of λ_{b} is $\mathcal{X}_{j} \cup\{0\}$, and the action of b on the elements of its domain is given by

$$
\begin{aligned}
(i, a, j) X_{j} & =(a X)_{i} \quad(X \in \mathcal{X}) \\
(i, a, j) 0 & =0
\end{aligned}
$$

(Trivially, if $b=0$, then the domain of λ_{0} is $\{0\}$, and the action of b simply sends 0 to 0 .)

Then $\left(B, \mathcal{X}^{\prime}, \mathcal{Y}^{\prime}\right)$ is a Brandt triple, and $S \simeq \mathcal{M}\left(B, \mathcal{X}^{\prime}, \mathcal{Y}^{\prime}\right)$.

4 - An isomorphism theorem

Given two semigroups $S=\mathcal{M}(B, \mathcal{X}, \mathcal{Y})$ and $S^{\prime}=\mathcal{M}\left(B^{\prime}, \mathcal{X}^{\prime}, \mathcal{Y}^{\prime}\right)$, it is now important to describe the conditions under which $S^{\prime} \simeq S$. In a sense it is clear from the last section that the 'building blocks' of S are intrinsic: B is the maximum Brandt homomorphic image of S, \mathcal{X} is the partially ordered set of principal ideals of the carrier semigroup C_{S}, and \mathcal{Y} is in effect the semilattice of idempotents of S. It is, however, conceivable that two non-isomorphic semigroups S and S^{\prime} might have isomorphic maximum Brandt images, isomorphic semilattices of idempotents, and might be such that C_{S} and $C_{S^{\prime}}$ have order-isomorphic sets of principal ideals, and so we must prove a formal isomorphism theorem.

Theorem 4.1. Let $S=\mathcal{M}(B, \mathcal{X}, \mathcal{Y})$, $S^{\prime}=\mathcal{M}\left(B^{\prime}, \mathcal{X}^{\prime}, \mathcal{Y}^{\prime}\right)$, and suppose that $\phi: S \rightarrow S^{\prime}$ is an isomorphism. Then
(i) there exists an isomorphism $\omega: B \rightarrow B^{\prime}$;
(ii) there exists an order isomorphism $\theta: \mathcal{X} \rightarrow \mathcal{X}^{\prime}$ whose restriction to \mathcal{Y} is a semilattice isomorphism from \mathcal{Y} onto \mathcal{Y}^{\prime};
(iii) for all b in B and X in \mathcal{X},

$$
\begin{equation*}
(b X) \theta=(b \omega)(X \theta) \tag{8}
\end{equation*}
$$

(iv) for all (P, b) in S^{*},

$$
\begin{equation*}
(P, b) \phi=(P \theta, b \omega) \tag{9}
\end{equation*}
$$

Conversely, if there exist ω and θ with the properties (i), (ii) and (iii), then (9), together with $0 \phi=0$, defines an isomorphism from S onto S^{\prime}.

Proof: Notice that (8) is to be interpreted as including the information that $b X$ is defined if and only if $(b \omega)(X \theta)$ is defined.

We begin by proving the converse part. So, for each (P, b) in S^{*}, define $(P, b) \phi=(P \theta, b \omega)$, in accordance with (9). Notice first that this does define a map from S into S^{\prime}, for $P \theta \in\left(\mathcal{Y}^{\prime}\right)^{*}$ and by (8) we also have

$$
(b \omega)^{-1}(P \theta)=\left(b^{-1} \omega\right)(P \theta)=\left(b^{-1} P\right) \theta \in\left(\mathcal{Y}^{\prime}\right)^{*}
$$

(The first equality follows from (i), and $\left(b^{\prime}\right)^{-1} P^{\prime} \in\left(\mathcal{Y}^{\prime}\right)^{*}$ is a consequence of (ii).)
Next, the map ϕ defined by (9) is a bijection. If $\left(P^{\prime}, b^{\prime}\right) \in\left(S^{\prime}\right)^{*}$, then there exist a unique P in \mathcal{Y} such that $P \theta=P^{\prime}$ and a unique b in B such that $b \omega=b^{\prime}$. Moreover,

$$
\left(b^{-1} P\right) \theta=(b \omega)^{-1}(P \theta)=\left(b^{\prime}\right)^{-1} P^{\prime} \in\left(\mathcal{Y}^{\prime}\right)^{*}
$$

Hence $(P, b) \in S$, and is the unique element of S mapping to $\left(P^{\prime}, b^{\prime}\right)$ by ϕ.
Finally, ϕ is a homomorphism. Given $(P, b),(Q, c)$ in S^{*} such that $b c \neq 0$, we have that

$$
[(P, b)(Q, c)] \phi=(P \wedge b Q, b c) \phi=((P \wedge b Q) \theta,(b c) \omega)=
$$

$$
\begin{aligned}
& =\left(\left(b\left(b^{-1} P \wedge Q\right)\right) \theta,(b c) \omega\right), \quad\left(\text { where } b^{-1} P, Q \in \mathcal{Y}\right) \\
& =\left((b \omega)\left(\left(b^{-1} P \wedge Q\right) \theta\right),(b c) \omega\right), \quad(\text { by }(8) \\
& =\left((b \omega)\left(\left(b^{-1} P\right) \theta \wedge Q \theta\right),(b c) \omega\right), \quad \text { since } \theta \mid \mathcal{Y} \text { is a semilattice isomorphism, } \\
& =\left((b \omega)\left((b \omega)^{-1}(P \theta) \wedge Q \theta\right),(b c) \omega\right), \quad \text { by }(8), \\
& =(P \theta \wedge(b \omega)(Q \theta),(b \omega)(c \omega)) \\
& =(P \theta, b \omega)(Q \theta, c \omega)=[(P, b) \phi][(Q, c) \phi] .
\end{aligned}
$$

If $b c=0$ then $(b \omega)(c \omega)=0$, and so both $[(P, b)(Q, c)] \phi$ and $[(P, b) \phi][(Q, c) \phi]$ are equal to zero.

Conversely, suppose that $\phi: S \rightarrow S^{\prime}$ is an isomorphism. Let β, β^{\prime} be the minimum Brandt congruences on S, S^{\prime}, respectively. As we saw in the last section, $S / \beta \simeq B$ and $S^{\prime} / \beta^{\prime} \simeq B^{\prime}$. In fact we have an isomorphism $\omega: B \rightarrow B^{\prime}$ such that the diagram

commutes. Here γ and γ^{\prime} are the projections $(P, b) \mapsto b,\left(P^{\prime}, b^{\prime}\right) \mapsto b^{\prime}$ respectively.
Now let $\left(P^{\prime}, b^{\prime}\right)$ be the image under ϕ of (P, b). Then

$$
b^{\prime}=\left(P^{\prime}, b^{\prime}\right) \gamma^{\prime}=(P, b) \phi \gamma^{\prime}=(P, b) \gamma \omega=b \omega,
$$

and so $(P, b) \phi=\left(P^{\prime}, b \omega\right)$, where $P^{\prime} \in \mathcal{Y}^{\prime}$ and is such that $(b \omega)^{-1} P^{\prime} \in \mathcal{Y}^{\prime}$.
We now have a lemma
Lemma 4.2. Let $(P, b),(P, c) \in S^{*}$, and suppose that $(P, b) \phi=\left(P^{\prime}, b \omega\right)$. Then $(P, c) \phi=\left(P^{\prime}, c \omega\right)$.

Proof: Suppose that $(P, c) \phi=\left(P^{\prime \prime}, c \omega\right)$. Both $\left(P, b b^{-1}\right)=(P, b)(P, b)^{-1}$ and $\left(P, c c^{-1}\right)=(P, c)(P, c)^{-1}$ belong to S^{*}, and so, by the argument in the proof of Lemma 3.1, we must have $b b^{-1}=c c^{-1}$. Hence

$$
\begin{aligned}
\left(P^{\prime},\left(b b^{-1}\right) \omega\right) & =\left(P^{\prime}, b \omega\right)\left(P^{\prime}, b \omega\right)^{-1}=[(P, b) \phi]\left[(P, b)^{-1} \phi\right] \\
& =\left(P, b b^{-1}\right) \phi=\left(P, c c^{-1}\right) \phi=[(P, c) \phi]\left[(P, c)^{-1} \phi\right] \\
& =\left(P^{\prime \prime}, c \omega\right)\left(P^{\prime \prime}, c \omega\right)^{-1}=\left(P^{\prime \prime},\left(c c^{-1}\right) \omega\right),
\end{aligned}
$$

and so $P^{\prime \prime}=P^{\prime}$.
From this lemma it follows that we can define a map $\theta: \mathcal{Y} \rightarrow \mathcal{Y}^{\prime}$ such that, for all (P, b) in S,

$$
(P, b) \phi=(P \theta, b \omega) .
$$

The domain of θ is in fact the whole of \mathcal{Y}, since, by the effectiveness of the representation $b \mapsto \lambda_{b}$, there exists for every P in \mathcal{Y}^{*} an element b in B^{*} such that $\left(P, b^{-1} b\right) \in S$.

Lemma 4.3. The map $\theta: \mathcal{Y} \rightarrow \mathcal{Y}^{\prime}$ is an order-isomorphism.
Proof: That θ is a bijection follows from the observation that we can do for the inverse isomorphism $\phi^{-1}: S^{\prime} \rightarrow S$ exactly what we have just done for ϕ, obtaining maps $\omega^{\prime}: B^{\prime} \rightarrow B$ and $\theta^{\prime}: \mathcal{Y}^{\prime} \rightarrow \mathcal{Y}$ such that $\left(P^{\prime}, b^{\prime}\right) \phi^{-1}=\left(P^{\prime} \theta^{\prime}, b^{\prime} \omega^{\prime}\right)$. Then, from the inverse property of ϕ^{-1}, we deduce that ω^{\prime} and θ^{\prime} are two-sided inverses of ω and θ respectively. Let $P \leq Q$ in \mathcal{Y}, and let b be such that $Q \in \operatorname{dom} b$. Then, since $\operatorname{dom} b$ is an order-ideal, $P \in \operatorname{dom} b$ also, and so, by $(2),\left(P, b^{-1} b\right) \leq$ $\left(Q, b^{-1} b\right)$ in S. Applying ϕ, we deduce that $\left(P \theta,\left(b^{-1} b\right) \omega\right) \leq\left(Q \theta,\left(b^{-1} b\right) \omega\right)$ in S^{\prime}, and so $P \theta \leq Q \theta$.

Lemma 4.4. Let $P \in \mathcal{Y}^{*}$, and let b in B^{*} be such that $b P \in \mathcal{Y}^{*}$. Then $(b P) \theta=(b \omega)(P \theta)$.

Proof: The elements $(b P, b)$ and $\left(P, b^{-1}\right)$ are both in S, and are mutually inverse. By applying ϕ to both sides of the equality

$$
(b P, b)\left(P, b^{-1}\right)=\left(b P, b b^{-1}\right),
$$

we deduce that

$$
((b P) \theta, b \omega)\left(P \theta, b^{-1} \omega\right)=\left((b P) \theta,\left(b^{-1} b\right) \omega\right)
$$

and hence that

$$
(b P) \theta \wedge(b \omega)(P \theta)=(b P) \theta .
$$

It follows that $(b P) \theta \leq(b \omega)(P \theta)$.
Similarly, by applying ϕ to both sides of the equality

$$
\left(P, b^{-1}\right)(b P, b)=\left(P, b^{-1} b\right),
$$

we obtain

$$
P \theta \wedge\left(b^{-1} \omega\right)((b P) \theta)=P \theta,
$$

and from this it follows that $(b \omega)(P \theta) \leq(b P) \theta$.
To extend the map θ to \mathcal{X} we use (P4) to express an arbitrary X in \mathcal{X}^{*} in the form $b P$, where $b \in B^{*}$ and $P \in \mathcal{Y}^{*}$, and define $X \theta$ to be $(b \omega)(P \theta)$. To show that this defines $X \theta$ uniquely, we must show that $b P=c Q$ implies that $(b \omega)(P \theta)=(c \omega)(Q \theta)$. In fact we shall deduce this from the result that

$$
b P \leq c Q \Rightarrow(b \omega)(P \theta) \leq(c \omega)(Q \theta)
$$

and so obtain also the information that θ is order-preserving on \mathcal{X}. So suppose that $b P \leq c Q$. Then $b P \in \operatorname{dom}\left(c^{-1}\right)$, and so we may deduce that $c^{-1} b P \leq Q$ in \mathcal{Y}. From Lemmas 4.3 and 4.4 we deduce that $\left(\left(c^{-1} b\right) \omega\right)(P \theta) \leq Q \theta$, which immediately gives the required inequality.

It is now easy to see that $\theta: \mathcal{X} \rightarrow \mathcal{X}^{\prime}$ is a bijection. To show that it is one-one, suppose that $X \theta=Y \theta$, where $X=b P$ and $Y=c Q$, with b, c in B^{*} and P, Q in \mathcal{Y}^{*}. Then $(b \omega)(P \theta)=(c \omega)(Q \theta)$, and so, in \mathcal{Y}^{\prime},

$$
\left(c^{-1} b P\right) \theta=\left((c \omega)^{-1}(b \omega)\right)(P \theta)=Q \theta
$$

Hence $c^{-1} b P=Q$, and from this it is immediate that $X=Y$. To show that θ is onto, consider an element $X^{\prime}=b^{\prime} P^{\prime}$ in \mathcal{X}^{\prime}, where $b^{\prime} \in\left(B^{\prime}\right)^{*}$ and $P^{\prime} \in\left(\mathcal{Y}^{\prime}\right)^{*}$. Then there exist b in B and P in \mathcal{Y} such that $b \omega=b^{\prime}$ and $P \theta=P^{\prime}$, and so $(b P) \theta=b^{\prime} P^{\prime}=X^{\prime}$.

Finally, we show that the equality (8) holds for all b in B^{*} and all X in \mathcal{X}^{*}. Let $X=c P$, where $c \in B^{*}$ and $P \in \mathcal{Y}^{*}$. Then

$$
\begin{aligned}
(b X) \theta & =(b(c P)) \theta=((b c) P) \theta=((b c) \omega)(P \theta) \\
& =(b \omega)[(c \omega)(P \theta)]=(b \omega)(X \theta)
\end{aligned}
$$

This completes the proof of Theorem 4.1.

REFERENCES

[1] Billhardt, B. - On a wreath product embedding and idempotent pure congruences on inverse semigroups, Semigroup Forum, 45 (1992), 45-54.
[2] Gomes, G.M.S. and Szendrei, M. - Idempotent-pure extensions of inverse semigroups via quivers, submitted.
[3] Howie, J.M. - Fundamentals of semigroup theory, Oxford University Press, 1995.
[4] McAlister, D.B. - Groups, semilattices and inverse semigroups, Trans. American Math. Soc., 192 (1974), 227-244.
[5] McAlister, D.B. - Groups, semilattices and inverse semigroups, II, Trans. American Math. Soc., 196 (1974), 351-370.
[6] Margolis, S. and Pin, J.-E. - Inverse semigroups and extensions of groups by semilattices, J. Algebra, 110 (1987), 277-297.
[7] Munn, W.D. - A class of irreducible representations of an arbitrary inverse semigroup, Proc. Glasgow Math. Assoc., 5 (1961), 41-48.
[8] Munn, W.D. - Brandt congruences on inverse semigroups, Proc. London Math. Soc., 14(3) (1964), 154-164.
[9] Munn, W.D. - A note on E-unitary inverse semigroups, Bull. London Math. Soc., 8 (1976), 71-76.
[10] O'Carroll, L. - Inverse semigroups as extensions of semilattices, Glasgow Math. J., 16 (1975), 12-21.
[11] Petrich, M. - Inverse semigroups, Wiley, New York, 1984.
[12] Preston, G.B. - Inverse semi-groups, J. London Math. Soc., 29 (1954), 396-403.
[13] Preston, G.B. - Inverse semi-groups with minimal right ideals, J. London Math. Soc., 29 (1954), 404-411.
[14] Preston, G.B. - Representations of inverse semigroups, J. London Math. Soc., 29 (1954), 412-419.
[15] Schein, B.M. - A new proof for the McAlister P-theorem, Semigroup Forum, 10 (1975), 185-188.
[16] Szendrei, M.B. - A generalization of McAlister's P-theorem for E-unitary regular semigroups, Acta Sci. Math. (Szeged), 57 (1987), 229-249.
[17] Vagner, V.V. - Generalized groups, Doklady Akad. Nauk SSSR, 84 (1952), 1119-1122 (Russian).
[18] Vagner, V.V. - Theory of generalized groups and generalized heaps, Mat. Sbornik (N.S.), 32 (1953), 545-632.

Gracinda M.S. Gomes,
Centro de Álgebra, Universidade de Lisboa, Avenida Prof. Gama Pinto 2, 1699 Lisboa Codex - PORTUGAL
E-mail: ggomes@alf1.cii.fc.ul.pt

and
John M. Howie,
Mathematical Institute, University of St Andrews, North Haugh, St. Andrews KY16 9SS - U.K.

E-mail: jmh@st-and.ac.uk

[^0]: Received: June 2, 1995; Revised: October 21, 1995.

 * This research was carried out as part of the JNICT contract PBIC/C/CEN/1021/92.
 ** The author thanks JNICT for supporting a visit to the Centro de Algebra of the University of Lisbon in January 1995.

