PORTUGALIAE MATHEMATICA Vol. 53 Fasc. 3 – 1996

A P-THEOREM FOR INVERSE SEMIGROUPS WITH ZERO

GRACINDA M.S. GOMES* and JOHN M. HOWIE**

Introduction

The result known as McAlister's P-theorem stands as one of the most significant achievements in inverse semigroup theory since Vagner [17, 18] and Preston [12, 13, 14] initiated the theory in the fifties. See the papers by McAlister [4, 5], Munn [9], Schein [15], or the accounts by Petrich [11] and Howie [3]. The theorem refers to what have come to be called E-unitary inverse semigroups, and gives a description of such semigroups in terms of a group acting by order-automorphisms on a partially ordered set.

An inverse semigroup with zero cannot be E-unitary unless every element is idempotent, but, as noted by Szendrei [16], it is possible to modify the definition and to consider what we shall call E^* -unitary semigroups instead.

One of the cornerstones of the McAlister theory is the *minimum group con*gruence

$$\sigma = \left\{ (a,b) \in S \times S \colon (\exists e \in S) \ e^2 = e, \ ea = eb \right\}$$

on an inverse semigroup S, first considered by Munn [7] in 1961. Again, σ is of little interest if S has a zero element, since it must then be the universal congruence. However, in 1964 Munn [8] showed that, for certain inverse semigroups S with zero, the closely analogous relation

$$\beta = \left\{ (a,b) \in S \times S \colon (\exists e \in S) \ 0 \neq e = e^2, \ ea = eb \neq 0 \right\} \cup \{(0,0)\}$$

is the minimum Brandt semigroup congruence on S.

Received: June 2, 1995; Revised: October 21, 1995.

^{*} This research was carried out as part of the JNICT contract PBIC/C/CEN/1021/92.

^{**} The author thanks JNICT for supporting a visit to the Centro de Algebra of the University of Lisbon in January 1995.

In this paper we show how to obtain a result closely analogous to the McAlister theorem for a certain class of inverse semigroups with zero, based on the idea of a Brandt semigroup acting by partial order-isomorphisms on a partially ordered set.

The main 'building blocks' of the McAlister structure theory for an E-unitary inverse semigroup S are a group G and a partially ordered set \mathcal{X} . The source of the group G has always been fairly obvious—it is the maximum group homomorphic image of S—but the connection of \mathcal{X} to the semigroup was harder to clarify, and none of the early accounts [4, 5, 9, 15] was entirely satisfactory in this respect. The approach by Margolis and Pin [6] involved the use of S to construct a category, and certainly made \mathcal{X} seem more natural. Here we copy their approach by constructing a *carrier semigroup* associated with S.

A more general situation, in which S is an inverse semigroup and ρ is an idempotent-pure congruence, is dealt with in [2]. See also [10] and [1] for other more general ideas emerging from the McAlister theory. However, by specializing to the case where S/ρ is a Brandt semigroup, we obtain a much more explicit structure theorem than is possible in a general situation, and to underline that point we devote the final section of the paper to an isomorphism theorem.

1 – Preliminaries

For undefined terms see [3]. A congruence ρ on a semigroup S with zero will be called *proper* if $0\rho = \{0\}$. We shall routinely denote by E_S (or just by E if the context allows) the set of idempotents of the semigroup S. For any set Acontaining 0 we shall denote the set $A \setminus \{0\}$ by A^* .

A Brandt semigroup B, defined as a completely 0-simple inverse semigroup, can be described in terms of a group G and a non-empty set I. More precisely,

$$B = (I \times G \times I) \cup \{0\}$$

and

$$(i, a, j)(k, b, l) = \begin{cases} (i, ab, l) & \text{if } j = k, \\ 0 & \text{otherwise} \end{cases}$$

$$0(i, a, j) = (i, a, j)0 = 00 = 0$$
.

This is of course a special case of a Rees matrix semigroup: $B = \mathcal{M}^0[G; I, I; P]$, where P is the $I \times I$ matrix $\Delta = (\delta_{ij})$, with

$$\delta_{ij} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j \end{cases}.$$

The following easily verified properties will be of use throughout the paper.

Theorem 1.1. Let B be a Brandt semigroup.

- (i) For all b, c in B^* , $bc \neq 0$ if and only if $b^{-1}b = cc^{-1}$.
- (ii) In particular, for all e, f in $E_B^*, ef \neq 0$ if and only if e = f.
- (iii) For all e in E_B^* and b in B^* ,

$$eb \neq 0 \Rightarrow eb = b$$
, $be \neq 0 \Rightarrow be = b$.

(iv) For all b, c in B^*

$$bc = b \Rightarrow c = b^{-1}b$$
, $cb = b \Rightarrow c = bb^{-1}$.

(v) For all $e \neq f$ in E_B , $eB \cap fB = Be \cap Bf = \{0\}$.

Munn [8] considered an inverse semigroup S with zero having the two properties:

(C1) for all a, b, c in S,

$$abc = 0 \Rightarrow ab = 0 \text{ or } bc = 0;$$

(C2) for all non-zero ideals M and N of S, $M \cap N \neq \{0\}$.

Let us call S strongly categorical if it has both these properties. Munn showed that for a strongly categorical inverse semigroup the relation

(1)
$$\beta = \left\{ (a,b) \in S \times S : (\exists e \in S) \ 0 \neq e = e^2, \ ea = eb \neq 0 \right\} \cup \{(0,0)\}$$

is a proper congruence on S such that:

- (i) S/β is a Brandt semigroup;
- (ii) if γ is a proper congruence on S such that S/γ is a Brandt semigroup, then $\beta \subseteq \gamma$.

We shall refer to β as the minimum Brandt congruence on S, and to S/β as the maximum Brandt homomorphic image of S.

An inverse semigroup S with zero is called E^* -unitary if, for all e, s in S^* ,

$$e, es \in E^* \Rightarrow s \in E^*$$
.

In fact, as remarked in [3, Section 5.9], the dual implication

$$e, se \in E^* \Rightarrow s \in E^*$$

is a consequence of this property. By analogy with Proposition 5.9.1 in [3], we have

Theorem 1.2. Let S be a strongly categorical inverse semigroup. Then the following statements are equivalent:

- (a) S is E^* -unitary;
- (b) the congruence β is idempotent-pure;
- (c) $\beta \cap \mathcal{R} = 1_S$.

Proof: For (b) \equiv (c), see [11, III.4.2].

(a) \Rightarrow (b). Let $a \ \beta \ f$, where $f \in E^*$. Then there exists e in E^* such that $ea = ef \neq 0$. Since S is by assumption E^* -unitary, it now follows from $e, ea \in E^*$ that $a \in E^*$. The β -class $f\beta$ consists entirely of idempotents, which is what we mean when we say that β is idempotent-pure.

(b) \Rightarrow (a). Suppose that β is idempotent-pure. Let $e, es \in E^*$. Then $e(es) = es \neq 0$, and so $es \beta s$. Since $es \in E^*$ we may deduce by the idempotent-pure property that $s \in E^*$.

2 – The carrier semigroup

Let S be a strongly categorical E^* -unitary inverse semigroup. We shall define an inverse semigroup C_S called the *carrier semigroup* of S.

Denote the maximum Brandt homomorphic image S/β of S by B, and for each s in S denote the β -class $s\beta$ by [s]. Let

$$C_{S} = \left\{ (a, s, b) \in B^{*} \times S^{*} \times B^{*} \colon a[s] = b \right\} \cup \{0\}$$

Notice that for every (a, s, b) in C_S we also have $b[s]^{-1} = a[s][s]^{-1} = a$ (by Theorem 1.1); hence $a \mathcal{R}^B b$.

We define a binary operation \circ on C_S as follows:

$$(a, s, b) \circ (c, t, d) = \begin{cases} (a, st, d) & \text{if } b = c, \\ 0 & \text{otherwise} \end{cases}, \\ 0 \circ (a, s, b) = (a, s, b) \circ 0 = 0 \circ 0 = 0 .$$

Notice that if b = c then a[st] = d, and so in particular $st \neq 0$. It is a routine matter to verify that this operation is associative. It is easy also to see that

 (C_S, \circ) is an inverse semigroup: the inverse of (a, s, b) is (b, s^{-1}, a) , and the nonzero idempotents are of the form (a, i, a), where $i \in E_S^*$. For each (a, b) in \mathcal{R}^B , with a, b in B^* , we write C(a, b) for the set (necessarily non-empty) of all elements (a, s, b) in C_S . Notice that $C(a, b) \circ C(c, d) \neq \{0\}$ if and only if b = c.

Lemma 2.1. For each idempotent e in B, C(e, e) consists entirely of idempotents of C_S .

Proof: If $(e, s, e) \in C_S$, where $e \in B^*$, then e[s] = e. By Theorem 1.1 this is possible only if [s] = e in B. Then, since β is idempotent-pure (Theorem 1.2), it follows that s is idempotent in S.

There is a natural left action of B on C_S : for all c in B and all (a, s, b) in $C(a, b) \subseteq C_S^*$

$$c(a, s, b) = \begin{cases} (ca, s, cb) & \text{if } ca \neq 0 \text{ in } B, \\ 0 & \text{otherwise }. \end{cases}$$

Also,

$$c0 = 0$$
 for all c in B .

Notice that since $a \mathcal{R} b$ in B we have $aa^{-1} = bb^{-1}$, and so, by Theorem 1.1,

$$ca \neq 0 \ \iff \ c^{-1}c = aa^{-1} \ \iff \ c^{-1}c = bb^{-1} \ \iff \ cb \neq 0 \ .$$

Also, the action is well-defined, for if a[s] = b then it is immediate that (ca)[s] = cb.

Lemma 2.2. For all c, d in B and all p, q in C_S ,

$$c(dp) = (cd)p$$
, $c(p \circ q) = (cp) \circ (cq)$, $c(p^{-1}) = (cp)^{-1}$.

Proof: The first equality is clear if p = 0. Suppose now that p = (a, s, b). If dp = 0 then da = 0 in B, and it is then clear that c(dp) = (cd)p = 0. Suppose next that $dp \neq 0$ and that cd = 0 in B. Then (cd)p = 0 in C_S , and

$$c(dp) = c(da, s, db) = 0 ,$$

since c(da) = (cd)a = 0 in *B*. Finally, suppose that $dp \neq 0$, $cd \neq 0$. Then, recalling our assumption that *S* is strongly categorical, we deduce by the property (C1) that $cda \neq 0$ in *B*, and so

$$(cd)p = c(dp) = (cda, s, cdb)$$
.

The second equality is clear if p = 0 or q = 0 or c = 0. So suppose that p = (a, s, b), q = (b', t, d) and c are all non-zero, and suppose first that $b' \neq b$. Then $p \circ q = 0$, and so certainly $c(p \circ q) = 0$. If cb = 0 then cp = 0 and so $(cp) \circ (cq) = 0$. Similarly, if cb' = 0 then $(cp) \circ (cq) = (cp) \circ 0 = 0$. If cb and cb' are both non-zero then $cb \neq cb'$, for cb = cb' would imply that

$$b = c^{-1}cb = c^{-1}cb' = b'$$
,

contrary to hypothesis. Hence $(cp) \circ (cq) = 0$ in this case also.

Suppose finally that $b' = b \neq 0$: thus p = (a, s, b), q = (b, t, d), and ca, cb (and cd) are non-zero. Then

$$(cp) \circ (cq) = (ca, s, cb) (cb, t, cd) = (ca, st, cd) = c(a, st, d) = c(p \circ q)$$
,

as required.

The third equality follows in much the same way. \blacksquare

As in [3], for each p in C_S , let us denote by J(p) the principal two-sided ideal generated by p. It is clear that, for each p,

$$J(p) = J(p \circ p^{-1}) = J(p^{-1} \circ p) = J(p^{-1})$$
.

Lemma 2.3. Let $p \in C(bb^{-1}, b), q \in C(cc^{-1}, c)$, where $b, c \in B^*$. Then

$$J(p) \cap J(bq) = J(p \circ bq)$$
.

Proof: Suppose first that $p \circ bq = 0$. Thus $p = (bb^{-1}, s, b)$, $q = (cc^{-1}, j, c)$, with $b \neq bcc^{-1}$. Now $bc \neq 0$ if and only if $bcc^{-1} = b$, and so $p \circ bq = 0$ happens precisely when bc = 0. In this case bq = 0, giving

$$J(p) \cap J(bq) = J(p) \cap \{0\} = \{0\}$$
.

Suppose now that $bc \neq 0$. Since $J(p \circ bq) \subseteq J(p)$ and $J(p \circ bq) \subseteq J(bq)$, it is clear that $J(p \circ bq) \subseteq J(p) \cap J(bq)$. To show the reverse inclusion, suppose that $r \neq 0$ and that

$$r = x_1 \circ p \circ y_1 = x_2 \circ bq^{-1} \circ y_2 \in J(p) \cap J(bq^{-1}) = J(p) \cap J((bq)^{-1}) = J(p) \cap J(bq) .$$

Here, since $r \neq 0$, we must have $x_1 \in C(a, bb^{-1})$, $y_1 \in C(b, d)$, $x_2 \in C(a, bc)$, $y_2 \in C(b, d)$, for some a, d in B^* . Hence

$$\begin{aligned} r &= r \circ r^{-1} \circ r \\ &= x_1 \circ p \circ y_1 \circ y_2^{-1} \circ bq \circ bq^{-1} \circ bq \circ x_2^{-1} \circ r \\ &= x_1 \circ p \circ b \Big(b^{-1} (y_1 \circ y_2^{-1}) \circ (q \circ q^{-1}) \Big) \circ bq \circ x_2^{-1} \circ r . \end{aligned}$$

Now $b^{-1}(y_1 \circ y_2^{-1}) \in C(b^{-1}b, b^{-1}b)$, and so by Lemma 2.1 is an idempotent in C_S . Commuting idempotents, we obtain

$$r = x_1 \circ p \circ b \Big((q \circ q^{-1}) \circ b^{-1} (y_1 \circ y_2^{-1}) \Big) \circ bq \circ x_2^{-1} \circ r$$

= $x_1 \circ (p \circ bq) \circ bq^{-1} \circ y_1 \circ y_2^{-1} \circ bq \circ x_2^{-1} \circ r$,

and so $r \in J(p \circ bq)$ as required.

Since $e = ee^{-1}$ for every idempotent e in an inverse semigroup, we have the following easy consequence of Lemma 2.3:

Corollary 2.4. Let $p \in C(e, e)$, $q \in C(f, f)$, where e, f are idempotents in B^* . Then $J(p \circ q) = J(p) \cap J(q)$. In particular, $J(p) \cap J(q) = \{0\}$ if $e \neq f$.

Let

$$\overline{C}_S = \left\{ (p, b) \colon p \in C(bb^{-1}, b), \ b \in B^* \right\} \cup \{0\} ,$$

and define a multiplication on \overline{C}_S by

$$(p,b)(q,c) = \begin{cases} (p \circ bq, bc) & \text{if } bc \neq 0, \\ 0 & \text{otherwise}, \end{cases}$$

$$(p,b)0 = 0(p,b) = 00 = 0$$
.

This operation is well-defined. If $p = (bb^{-1}, s, b)$, $q = (cc^{-1}, t, c)$ and $bc \neq 0$, then $bcc^{-1} = b$ by Theorem 1.1. Hence $(bc)(bc)^{-1} = bcc^{-1}b^{-1} = bb^{-1}$, and so

$$p \circ bq = (bb^{-1}, s, b) \circ (b, t, bc) = (bb^{-1}, st, bc)$$
$$= ((bc)(bc)^{-1}, st, bc) \in C((bc)(bc)^{-1}, bc) ,$$

as required. The verification that the operation is associative is routine.

Now consider the map $\psi \colon S \to \overline{C}_S$ given by

$$s\psi = \left(([ss^{-1}], s, [s]), [s] \right) \quad (s \in S^*)$$

 $0\psi = 0$.

Then ψ is clearly one-one. It is also onto, since for each $((bb^{-1}, s, b), b)$ in \overline{C}_S^* , we deduce from $bb^{-1}[s] = b$ that [s] = b and hence that $((bb^{-1}, s, b), b) = s\psi$.

The map ψ is indeed even an isomorphism. Let $s, t \in S^*$, and suppose first that [st] = 0. Then $(st)\psi = 0$, and from the fact that [s][t] = 0 in B we deduce that

$$(s\psi)(t\psi) = \left(([ss^{-1}], s, [s]), [s]\right)\left(([tt^{-1}], t, [t]), [t]\right) = 0$$

in \overline{C}_S . Suppose now that $[st] \neq 0$. Then

$$(s\psi) (t\psi) = \left(([ss^{-1}], s, [s]), [s] \right) \left(([tt^{-1}], t, [t]), [t] \right)$$

= $\left(([ss^{-1}], st, [st]), [s][t] \right)$
= $\left(([(st)(st)^{-1}], st, [st]), [st] \right)$ (since $[s] = [s] [t] [t]^{-1}$)
= $(st) \psi$.

We have shown

Lemma 2.5. \overline{C}_S is isomorphic to S.

In a sense we have in this section gone round in a circle, starting with S, moving to C_S , and returning to S via \overline{C}_S and the isomorphism ψ . We shall see, however, that the set of principal ideals of C_S is the key to our main theorem.

3 – The main theorem

We begin with some observations concerning representations of Brandt semigroups. Let $\mathcal{X} = (\mathcal{X}, \leq)$ be a partially ordered set containing a least element 0, and let B be a Brandt semigroup. For each b in B, let λ_b be a partial orderisomorphism of \mathcal{X} , whose domain is an order-ideal of \mathcal{X} , and such that the map $b \mapsto \lambda_b$ is a faithful representation (see [3] for a definition of 'faithful') of B by partial one-one maps of \mathcal{X} . We shall find it convenient to regard each λ_b as acting on \mathcal{X} on the left, writing $\lambda_b(\mathcal{X})$ rather than $X\lambda_b$. Notice that each im λ_b is an order-ideal also, since im $\lambda_b = \operatorname{dom} \lambda_{b^{-1}}$.

Suppose that dom $\lambda_0 = \operatorname{im} \lambda_0 = \{0\}$; then, by the faithful property we deduce that if $b \neq 0$ in B then dom λ_b and im λ_b are both non-zero order-ideals. The order-preserving property implies that $\lambda_b(0) = 0$ for every b in B. For each ein E_B^* , let $\Delta_e = \operatorname{dom} \lambda_e = \operatorname{im} \lambda_e$. Since λ_e is an idempotent in the symmetric inverse semigroup $\mathcal{I}_{\mathcal{X}}$, it is the identity map on its domain. If e, f are distinct

idempotents in B^* ,

$$\Delta_e \cap \Delta_f = \{0\} \; ,$$

since ef = 0 in B whenever $e \neq f$.

Let us suppose also that the representation is *effective*, by which we mean that every X in \mathcal{X} lies in the domain of at least one λ_b . Equivalently, we have

$$\mathcal{X} = \bigcup \left\{ \Delta_e \colon e \in E_B^* \right\} \,.$$

Notice that (since we are writing mapping symbols on the left) for all b in B^* ,

$$\operatorname{dom} \lambda_b = \operatorname{dom} \lambda_{b^{-1}b} = \Delta_{b^{-1}b}, \quad \operatorname{im} \lambda_b = \operatorname{im} \lambda_{bb^{-1}} = \Delta_{bb^{-1}}.$$

Also, by Theorem 1.1, for all b, c in B^* ,

 $bc \neq 0$ if and only if $\operatorname{im} \lambda_c = \operatorname{dom} \lambda_b$,

bc = 0 if and only if $\operatorname{im} \lambda_c \cap \operatorname{dom} \lambda_b = \{0\}$.

Now let (\mathcal{X}, \leq) be a partially ordered set with a least element 0, and let \mathcal{Y} be a subset of \mathcal{X} such that

(P1) \mathcal{Y} is a lower semilattice with respect to \leq , in the sense that for every J and K in \mathcal{Y} there is a greatest lower bound $J \wedge K$, also in \mathcal{Y} ;

(P2) \mathcal{Y} is an order ideal, in the sense that for all A, X in \mathcal{X} ,

$$A \in \mathcal{Y} \text{ and } X \leq A \implies X \in \mathcal{Y}$$

Let *B* be a Brandt semigroup, and suppose that $b \mapsto \lambda_b$ is an effective, faithful representation of *B*, as described above. Thus each λ_b is a partial orderisomorphism of \mathcal{X} , acting on the left, and dom λ_b is an order-ideal of \mathcal{X} . In practice we shall write bX rather than $\lambda_b(X)$, and so in effect, for each *b* in B^* , we are supposing that there is a partial one-one map $X \mapsto bX$ ($X \in \mathcal{X}$), with the property that, for all X, Y in \mathcal{X} ,

$$X \le Y \implies bX \le bY$$

Suppose now that the triple $(B, \mathcal{X}, \mathcal{Y})$ has the following property:

(**P3**) For all $e \in E_B^*$, and for all $P, Q \in \Delta_e \cap \mathcal{Y}^*$, where $\Delta_e = \operatorname{dom} \lambda_e$,

$$P \wedge Q \neq 0$$
.

If $X, Y \in \mathcal{X}$ and if $X \wedge Y$ exists, then, for all b in B for which X and Y belong to dom b, the element $bX \wedge bY$ exists, and

$$bX \wedge bY = b(X \wedge Y) \; .$$

To see this, notice first that $X \wedge Y \in \text{dom } b$, since dom b is an order-ideal, and that $b(X \wedge Y) \leq bX$, $b(X \wedge Y) \leq bY$. Suppose next that $Z \leq bX$, $Z \leq bY$. Then $Z \in \text{im } b$, since im b is an order-ideal, and so Z = bT for some T in dom b. Then

$$T = b^{-1}Z \le b^{-1}(bX) = X$$
,

and similarly $T \leq Y$. Hence $T \leq X \wedge Y$, and so

$$Z = bT \le b(X \wedge Y) ,$$

as required.

The triple $(B, \mathcal{X}, \mathcal{Y})$ is said to be a *Brandt triple* if it has the properties (P1), (P2) and (P3) together with the additional properties:

(P4) $B\mathcal{Y} = \mathcal{X};$

(**P5**) for all b in B^* , $b\mathcal{Y}^* \cap \mathcal{Y}^* \neq \emptyset$.

Now let

$$S = \mathcal{M}(B, \mathcal{X}, \mathcal{Y}) = \left\{ (P, b) \in \mathcal{Y}^* \times B^* \colon b^{-1}P \in \mathcal{Y}^* \right\} \cup \{0\}$$

where $(B, \mathcal{X}, \mathcal{Y})$ is a Brandt triple. We define multiplication on S by the rule that

$$(P,b)(Q,c) = \begin{cases} (P \land bQ, bc) & \text{if } bc \neq 0, \\ 0 & \text{otherwise}, \end{cases}$$
$$(P,b)0 = 0(P,b) = 00 = 0.$$

To verify that S is closed with respect to this operation, notice first that bQ is defined, for the tacit assumption that $c^{-1}Q$ is defined and the assumption that $bc \neq 0$ in B implies that

$$Q \in \operatorname{dom} c^{-1} = \operatorname{im} c = \operatorname{dom} b$$

Next, notice that $b^{-1}P \wedge Q$ exists, since both $b^{-1}P$ and Q are in \mathcal{Y} . Moreover, $b^{-1}P \wedge Q \in \mathcal{Y}^*$, since

$$b^{-1}P \in im(b^{-1}) = \Delta_{b^{-1}b}, \quad Q \in dom \, b = \Delta_{b^{-1}b},$$

and so $b^{-1}P \wedge Q \neq 0$ by (P3). Also $b^{-1}P \cap Q \in \text{dom} b$, since $Q \in \text{dom} b$ and dom b is an order ideal. Hence $b(b^{-1}P \wedge Q) = P \wedge bQ$ exists, and is in \mathcal{Y}^* , since $P \wedge bQ \leq P \in \mathcal{Y}^*$. Moreover, if $bc \neq 0$, then

$$(bc)^{-1}(P \wedge bQ) = c^{-1}b^{-1}P \wedge c^{-1}Q \le c^{-1}Q \in \mathcal{Y}^*$$

and so $(bc)^{-1}(P \wedge bQ) \in \mathcal{Y}^*$.

Next, the operation is associative. The Brandt semigroup B satisfies the 'categorical' condition

$$bcd = 0 \implies bc = 0 \text{ or } cd = 0;$$

hence either both [(P, b)(Q, c)](R, d) and (P, b)[(Q, c)(R, d)] are zero, or both are equal to $(P \wedge bQ \wedge bcR, bcd)$.

Thus S is a semigroup with zero. It is even a regular semigroup, for if (P, b) is a non-zero element of S then $(b^{-1}P, b^{-1}) \in S$, and

$$(P,b) (b^{-1}P, b^{-1}) (P,b) = (P, bb^{-1}) (P,b) = (P,b) ,$$

$$(b^{-1}P, b^{-1}) (P,b) (b^{-1}P, b^{-1}) = (b^{-1}P, b^{-1}) (P, bb^{-1}) = (b^{-1}P, b^{-1}) .$$

It is, moreover, clear that a non-zero element (P, b) is idempotent if and only if b is idempotent in B and bP = P (which is equivalent to saying that bP is defined). If (P, e), (Q, f) are idempotents in S, then either $e \neq f$, in which case ef = 0 and (P, e)(Q, f) = (Q, f)(P, e) = 0, or e = f, in which case

$$(P, e) (Q, e) = (Q, e) (P, e) = (P \land Q, e)$$
.

Thus S is an inverse semigroup, and the unique inverse of (P, b) is $(b^{-1}P, b^{-1})$.

The natural order relation in S^* is given by

$$(P,b) \le (Q,c) \iff bb^{-1}c \ne 0 \text{ and } (P,b) = (P,bb^{-1})(Q,c) = (P \land Q,bb^{-1}c).$$

That is, since $bb^{-1}c = c$ in such a case,

$$(2) \qquad \qquad (P,b) \leq (Q,c) \qquad \Longleftrightarrow \qquad b=c \ \text{ and } \ P \leq Q \ .$$

It follows that S is E^* -unitary, for if $(P, e) \in E^*$ and $(Q, c) \in S^*$, then $(P, e) \leq (Q, c)$ if and only if c = e and $P \leq Q$, and so in particular (Q, c) is idempotent.

Notice too that S is categorical, for the product (P,b)(Q,c)(R,d) can equal zero only if bcd = 0, and the categorical property of B then implies that either (P,b)(Q,c) = 0 or (Q,c)(R,d) = 0. Indeed S is strongly categorical. That this is

so follows by the work of Munn [8], for it is clear that the relation γ on S defined by

(3)
$$\gamma = \left\{ ((P, b), (Q, c)) \in S \times S \colon b = c \right\} \cup \{ (0, 0) \}$$

is a proper congruence on S and that S/γ is isomorphic to the Brandt semigroup B.

The congruence γ defined by (3) is in fact the minimum Brandt congruence on S. Suppose that $((P,b), (Q,b)) \in \gamma$. Then $b^{-1}P, b^{-1}Q \in \mathcal{Y}$, and so $bb^{-1}P = P$, $bb^{-1}Q = Q$. Hence $bb^{-1}(P \wedge Q) = P \wedge Q$, and $P \wedge Q \neq 0$ by (P3). Hence $(P \wedge Q, bb^{-1}) \in E_S^*$. It now follows that

$$(P \land Q, bb^{-1})(P, b) = (P \land Q, bb^{-1})(Q, b) = (P \land Q, b) \neq 0$$
.

Hence, recalling Munn's characterization (1) of the minimum Brandt congruence, we conclude that $\gamma \subseteq \beta$, the minimum Brandt congruence on S. Since γ is, as observed before, a Brandt congruence, we deduce that $\gamma = \beta$.

It is useful also at this stage to note the following result:

Lemma 3.1. The semilattice of idempotents of $\mathcal{M}(B, \mathcal{X}, \mathcal{Y})$ is isomorphic to \mathcal{Y} .

Proof: We have seen that the non-zero idempotents of $S = \mathcal{M}(B, \mathcal{X}, \mathcal{Y})$ are of the form (P, e), where $P \in \mathcal{Y}^*$, $e \in E_B^*$ and eP = P. The statement that eP = P is equivalent to saying in our previous notation that $P \in \mathcal{D}_e$, and since the order ideals Δ_e and Δ_f (with $e \neq f$) have zero intersection, there is for each P in \mathcal{Y}^* at most one e such that $(P, e) \in E_S^*$.

In fact for each P in \mathcal{Y}^* there is exactly one e in E_B^* such that $(P, e) \in E_S^*$; for by our assumption that the representation $b \mapsto \lambda_b$ is effective we can assert that $P \in \text{dom } b$ for some b in B^* , and then $(P, b^{-1}b) \in E_S^*$. The conclusion is that for each P in \mathcal{Y}^* there is a unique e_P in B^* such that $(P, e_P) \in E_S^*$. We have a bijection $P \mapsto (P, e_P)$ from \mathcal{Y}^* onto E_S^* . If $P \wedge Q \neq 0$, then $e_P = e_Q = e$ (say), and

$$(P,e)(Q,e) = (P \land Q,e)$$
.

If $P \wedge Q = 0$, then $e_P \neq e_Q$ by (P3), and so $(P, e_P)(Q, e_Q) = 0$. We deduce that the bijection $P \mapsto (P, e_P), 0 \mapsto 0$ is an isomorphism from \mathcal{Y} onto E_S .

We have in fact proved half of the following theorem:

Theorem 3.2. Let $(B, \mathcal{X}, \mathcal{Y})$ be a Brandt triple. Then $\mathcal{M}(B, \mathcal{X}, \mathcal{Y})$ is a strongly categorical E^* -unitary inverse semigroup. Conversely, every strongly categorical E^* -unitary inverse semigroup is isomorphic to one of this kind.

Proof: To prove the converse part, let S be a strongly categorical E^* -unitary inverse semigroup. Let \mathcal{X} be the set of principal two-sided ideals of the carrier semigroup C_S :

$$\mathcal{X} = \left\{ J(p) \colon p \in C_S \right\} \,.$$

The set \mathcal{X} is partially ordered by inclusion, with a minimum element 0 (strictly the zero ideal $\{0\}$). Let \mathcal{Y} be the subset of \mathcal{X} consisting of 0 together with all principal ideals J(p) for which $p \in C(e, e)$ for some idempotent e of B^* . Let $J(p), J(q) \in \mathcal{Y}$. Then by Corollary 2.4 we have either $J(p) \cap J(q) = 0 \in \mathcal{Y}$, or $e = f, p \circ q \in C(e, e)$ and

$$J(p) \cap J(q) = J(p \circ q) \in \mathcal{Y}$$
.

Thus \mathcal{Y} is a semilattice with respect to the inclusion order inherited from \mathcal{X} . This is the property (P1).

To show the property (P2), suppose that $J(p) \subseteq J(q)$, where $J(q) \in \mathcal{Y}^*$. Thus we may assume that $q = (e, i, e) \in C(e, e)$ for some idempotents e in B and i in S, such that [i] = e. We may suppose that p is idempotent in C_S . (If not we replace it by $p \circ p^{-1}$, observing that $J(p \circ p^{-1}) = J(p)$.) Hence there exist r, s in C_S such that

$$p = r \circ q \circ s$$

Let $n = s \circ p \circ s^{-1}$. Then $n \in C(e, e)$, and clearly $J(n) \subseteq J(p)$. Also

$$p = p^{3} = (r \circ q \circ s) \circ p \circ (s^{-1} \circ q^{-1} \circ r^{-1})$$

= $r \circ q \circ n \circ q^{-1} \circ r^{-1} \in J(n)$,

and so $J(p) = J(n) \in \mathcal{Y}$. Thus \mathcal{Y} is an order ideal of \mathcal{X} .

Now we define a representation $b \mapsto \lambda_b$ of the Brandt semigroup $B = S/\beta$ by partial order-isomorphisms of \mathcal{X} . Let $\lambda_0 = \{(0,0)\}$. For each b in B^* , let

$$\lambda_b = \left\{ (J(p), J(bp)) \colon p, bp \neq 0 \right\} \cup \{(0, 0)\} \ .$$

That is to say, we define dom $\lambda_b = \{J(p): p, bp \neq 0\} \cup \{0\}$, and define $\lambda_b(J(p)) = J(bp), \lambda_b(0) = 0$.

The domain of λ_b is in fact an order ideal of \mathcal{X} . For suppose that $0 \neq J(q) \subseteq J(p)$, where p = (a, s, c) is such that $bp \neq 0$ and q = (d, t, e). Then there exist elements (d, u, a), (c, v, e) in C_S^* such that

$$q = (d, u, a) \circ (a, s, c) \circ (c, v, e) = (d, usv, e)$$
.

Now d[u] = a, and so if bd = 0 it follows that ba = 0, contrary to hypothesis. Hence $bq \neq 0$, and so $J(q) \in \text{dom } \lambda_b$.

Notice now that

$$\operatorname{im} \lambda_b = \left\{ J(bp) \colon p, \ bp \neq 0 \right\} = \left\{ J(q) \colon q, \ b^{-1}q \neq 0 \right\} = \operatorname{dom} \lambda_{b^{-1}}$$

and that $\lambda_{b^{-1}} \lambda_b$ and $\lambda_b \lambda_{b^{-1}}$ are the identity maps of dom λ_b , im λ_b , respectively. Since $J(p) \subseteq J(q) \Rightarrow J(bp) \subseteq J(bq)$, each λ_b is a partial order-isomorphism of \mathcal{X} . Next, notice that if bc = 0 then $\lambda_b \lambda_c = \lambda_0$, the trivial map whose domain and image are both 0; for otherwise there exists $q \neq 0$ in C_S such that $J(q) \in$ dom $(\lambda_b \lambda_c)$, from which it follows that $(bc)q = b(cq) \neq 0$, a contradiction.

Suppose now that $bc \neq 0$. Then $dom(\lambda_b\lambda_c) = dom\lambda_{bc}$, since the conditions $p \neq 0$, $cp \neq 0$, $b(cp) \neq 0$ for J(p) to be in $dom(\lambda_b\lambda_c)$ are equivalent to the conditions $p \neq 0$, $(bc)p \neq 0$ for J(p) to be in $dom\lambda_{bc}$. Moreover, for all p in the common domain,

$$(\lambda_b \lambda_c) (J(p)) = \lambda_b (J(cp)) = J(b(cp)) = J((bc)p) = \lambda_{bc} (J(p)) .$$

Thus $\lambda_b \lambda_c = \lambda_{bc}$ in all cases, and so $b \mapsto \lambda_b$ is a representation of B by partial order-isomorphisms of \mathcal{X} . We can regard B as acting on \mathcal{X} on the left, and write bJ(p) rather than $\lambda_b(J(p))$. Notice that bJ(p) = J(bp) provided $bp \neq 0$.

To show that the representation is faithful, suppose that $\lambda_b = \lambda_c$, where $b, c \in B^*$, and let p = (a, s, d) in C_S be such that $bp \neq 0$. Then $cp \neq 0$, and so

$$b = baa^{-1} = caa^{-1} = c$$
.

To show that the representation is effective, let p = (a, s, d) be an arbitrary element of C_S^* . Then $aa^{-1}p \neq 0$ and so $J(p) \in \text{dom } \lambda_{aa^{-1}}$.

To verify (P3), let $e \in E_B^*$, and let $J(p), J(q) \in \mathcal{Y}^* \cap \Delta_e$. Thus p = (f, i, f), q = (g, j, g), where $f, g \in E_B^*$, $i, j \in E_S^*$ and f[i] = f, g[j] = g. Since ep and eq are non-zero, we must in fact have f = g = e. Thus $p \circ q = (e, ij, e) \neq 0$ and so, using Corollary 2.4, we see that

$$J(p) \cap J(q) = J(p \circ q) \neq 0$$
.

To show the property (P4), consider a non-zero element J(p) of \mathcal{X} , where p = (a, s, b). Then $J(p) = J(p \circ p^{-1})$, with $p \circ p^{-1} = (a, ss^{-1}, a)$, and $a[ss^{-1}] = a$. Let q be the element $(a^{-1}a, ss^{-1}, a^{-1}a)$ of C_s . Then $J(q) \in \mathcal{Y}$, and

$$aq = (a, ss^{-1}, a) = p \circ p^{-1}$$

It follows that $J(p) = aJ(q) \in a\mathcal{Y}$, and so $\mathcal{X} = B\mathcal{Y}$, as required.

To show (P5), let $a \in B^*$, let $q = (a, x, aa^{-1})$, where $[x] = a^{-1}$, and $p = (a^{-1}a, xx^{-1}, a^{-1}a)$. Then $J(p) \in \mathcal{Y}$. Also $ap = (a, xx^{-1}, a)$. If we define $r = (aa^{-1}, x^{-1}x, aa^{-1})$, then we easily verify that

$$q^{-1} \circ (ap) \circ q = r$$
, $q \circ r \circ q^{-1} = ap$.

Hence $aJ(p) = J(q) \in a\mathcal{Y}^* \cap \mathcal{Y}^*$, as required.

It remains to show that $S \simeq \mathcal{M}(B, \mathcal{X}, \mathcal{Y})$. We show in fact that

$$\overline{C}_S \simeq \mathcal{M}(B, \mathcal{X}, \mathcal{Y})$$

which by virtue of Lemma 2.5 is enough. Let $\phi \colon \overline{C}_S \to \mathcal{M}(B, \mathcal{X}, \mathcal{Y})$ be given by

$$(p,b)\phi = (J(p),b))$$
 $(p \in C(bb^{-1},b), b \in B^*)$
 $0\phi = 0$.

Since $J(p) = J(p \circ p^{-1})$ and $p \circ p^{-1} \in C(bb^{-1}, bb^{-1})$, we deduce that $J(p) \in \mathcal{Y}^*$. Also, $b^{-1}p \neq 0$,

$$b^{-1}J(p) = J(b^{-1}p) = J((b^{-1}p)^{-1} \circ (b^{-1}p)),$$

and

$$(b^{-1}p)^{-1} \circ (b^{-1}p) \in C(bb^{-1}, b^{-1}) \circ C(b^{-1}, bb^{-1}) \subseteq C(bb^{-1}, bb^{-1});$$

hence $b^{-1}J(p) \in \mathcal{Y}^*$. Thus $(J(p), b) \in \mathcal{M}(B, \mathcal{X}, \mathcal{Y})$.

To show that ϕ is one-one, suppose that (J(p), b) = (J(q), c), where $p \in C(bb^{-1}, b), q \in C(cc^{-1}, c)$. Then certainly b = c. If we now write $p = (bb^{-1}, s, b)$ and $q = (bb^{-1}, t, b)$, we have that

$$p \circ q^{-1} = (bb^{-1}, st^{-1}, bb^{-1}) \ ,$$

and so $st^{-1} \in E_S^*$. Hence

(4)
$$st^{-1} = (st^{-1})^{-1}st^{-1} = ts^{-1}st^{-1}$$
.

Next, since $p^{-1} \circ p \in J(q^{-1} \circ q)$, there exist elements (b, u, b), (b, v, b) in C_S^* such that $p^{-1} \circ p = (b, s^{-1}s, b) = (b, u, b)(b, t^{-1}t, b)(b, v, b)$; hence

(5)
$$s^{-1}s = u t^{-1} t v$$
.

Now, from b[u] = b we deduce that [u] is idempotent in B, and hence (since β is idempotent-pure) that u is idempotent in S. The same argument applies to v,

and so from (5) we conclude that $s^{-1}s \leq t^{-1}t$. The opposite inequality can be proved in just the same way, and so $s^{-1}s = t^{-1}t$.

It now easily follows from this and from (4) that

$$s = ss^{-1}s = st^{-1}t = ts^{-1}st^{-1}t = tt^{-1}tt^{-1}t = t$$
.

Hence (p, b) = (q, c) as required.

To show that ϕ is onto, suppose that (J(p), b) is a non-zero element of $\mathcal{M}(B, \mathcal{X}, \mathcal{Y})$. Then we may assume that p = (e, i, e), where $e \in E_B^*$, $i \in E_S^*$ and [i] = e. Also, $J(b^{-1}p) \in \mathcal{Y}^*$, and so, since $b^{-1}e \neq 0$, we deduce that $e = bb^{-1}$. We have $J(b^{-1}p) = J(q)$ for some q = (f, j, f), with $f \in E_B^*$, $j \in E_S^*$ and [j] = f. Hence there exist (b^{-1}, u, f) and (f, v, b^{-1}) such that

$$b^{-1}p = (b^{-1}, i, b^{-1}) = (b^{-1}, u, f) \circ (f, j, f) \circ (f, v, b^{-1})$$

It follows that

(6)
$$p = b(b^{-1}p) = (bb^{-1}, i, bb^{-1}) = (bb^{-1}, u, bf) \circ (bf, j, bf) \circ (bf, v, bb^{-1})$$
.

Since $bf \neq 0$ we deduce that bf = b and $f = b^{-1}b$.

Now, since $J(q) = J(b^{-1}p)$, there exist elements $(b^{-1}b, x, b^{-1})$ and $(b^{-1}, y, b^{-1}b)$ such that

$$q = (b^{-1}b, j, b^{-1}b) = (b^{-1}b, x, b^{-1}) \circ (b^{-1}, i, b^{-1}) \circ (b^{-1}, y, b^{-1}b) .$$

Hence

(7)
$$bq = (b, j, b) = (b, x, bb^{-1}) \circ p \circ (bb^{-1}, y, b)$$
.

We may rewrite (6) as

$$p = (bb^{-1}, u, b) \circ (b, j, b) \circ (b, v, bb^{-1}) = r \circ (b, v, bb^{-1}) ,$$

where $r = (bb^{-1}, uj, b)$, and we immediately deduce that $J(p) \subseteq J(r)$. Also, from (7) it follows that

$$r = (bb^{-1}, u, b) \circ (b, j, b) \in J(p)$$
,

and so J(r) = J(p). It now follows that $(r, b) \in \overline{C}_S$ and that $(J(p), b) = (r, b)\phi$. Thus ϕ is onto.

Finally, we show that ϕ is a homomorphism. Let $(p, b), (q, c) \in \overline{C}_S^*$. If bc = 0 in *B* then both $[(p, b)(q, c)]\phi$ and $[(p, b)\phi][(q, c)\phi]$ are zero. Otherwise we use Lemma 2.3 and observe that

$$\begin{split} [(p,b)(q,c)]\phi &= (p \circ bq, bc)\phi = (J(p \circ bq), bc) \\ &= (J(p) \cap bJ(q), bc) = (J(p), b) \, (J(q), c) = [(p,b)\phi] \, [(q,c)\phi] \; . \end{split}$$

This completes the proof of Theorem 3.2. \blacksquare

Example: Let $T = \mathcal{M}(G, \mathcal{X}, \mathcal{Y})$ be an *E*-unitary inverse semigroup (without zero), let *I* be a set, and let $S = (I \times T \times I) \cup \{0\}$, and define multiplication in *S* by

$$(i, a, j) (k, b, l) = \begin{cases} (i, ab, l) & \text{if } j = k, \\ 0 & \text{otherwise} \end{cases}, \\ 0 (i, a, j) = (i, a, j) 0 = 0 0 = 0 . \end{cases}$$

Then it is not hard to check that S is a strongly categorical E^* -unitary inverse semigroup. Its maximum Brandt image is $B = (I \times G \times I) \cup \{0\}$, where G is the maximum group image of T.

For each i in I, let \mathcal{X}_i be a copy of \mathcal{X} , and suppose that $X \mapsto X_i$ $(X \in \mathcal{X})$ is an order-isomorphism. Let \mathcal{Y}_i correspond to \mathcal{Y} in this isomorphism. Suppose that the sets \mathcal{X}_i are pairwise disjoint, and form an ordered set \mathcal{X}' as the union of all the sets \mathcal{X}_i together with an extra minimum element 0. The order on \mathcal{X}' coincides with the order on \mathcal{X}_i within \mathcal{X}_i , and $0 \leq X'$ for all X' in \mathcal{X}' . Define $\mathcal{Y}' = \bigcup \{\mathcal{Y}_i : i \in I\} \cup \{0\}.$

The action of B on \mathcal{X}' is given as follows. If $b = (i, a, j) \in B$, then the domain of λ_b is $\mathcal{X}_j \cup \{0\}$, and the action of b on the elements of its domain is given by

$$(i, a, j) X_j = (aX)_i \quad (X \in \mathcal{X})$$
$$(i, a, j) 0 = 0.$$

(Trivially, if b = 0, then the domain of λ_0 is $\{0\}$, and the action of b simply sends 0 to 0.)

Then $(B, \mathcal{X}', \mathcal{Y}')$ is a Brandt triple, and $S \simeq \mathcal{M}(B, \mathcal{X}', \mathcal{Y}')$.

4 – An isomorphism theorem

Given two semigroups $S = \mathcal{M}(B, \mathcal{X}, \mathcal{Y})$ and $S' = \mathcal{M}(B', \mathcal{X}', \mathcal{Y}')$, it is now important to describe the conditions under which $S' \simeq S$. In a sense it is clear from the last section that the 'building blocks' of S are intrinsic: B is the maximum Brandt homomorphic image of S, \mathcal{X} is the partially ordered set of principal ideals of the carrier semigroup C_S , and \mathcal{Y} is in effect the semilattice of idempotents of S. It is, however, conceivable that two non-isomorphic semigroups S and S' might have isomorphic maximum Brandt images, isomorphic semilattices of idempotents, and might be such that C_S and $C_{S'}$ have order-isomorphic sets of principal ideals, and so we must prove a formal isomorphism theorem. **Theorem 4.1.** Let $S = \mathcal{M}(B, \mathcal{X}, \mathcal{Y}), S' = \mathcal{M}(B', \mathcal{X}', \mathcal{Y}')$, and suppose that $\phi: S \to S'$ is an isomorphism. Then

- (i) there exists an isomorphism $\omega \colon B \to B'$;
- (ii) there exists an order isomorphism $\theta: \mathcal{X} \to \mathcal{X}'$ whose restriction to \mathcal{Y} is a semilattice isomorphism from \mathcal{Y} onto \mathcal{Y}' ;
- (iii) for all b in B and X in \mathcal{X} ,

(8)
$$(bX)\theta = (b\omega)(X\theta);$$

(iv) for all (P, b) in S^* ,

(9)
$$(P,b)\phi = (P\theta, b\omega) .$$

Conversely, if there exist ω and θ with the properties (i), (ii) and (iii), then (9), together with $0\phi = 0$, defines an isomorphism from S onto S'.

Proof: Notice that (8) is to be interpreted as including the information that bX is defined if and only if $(b\omega)(X\theta)$ is defined.

We begin by proving the converse part. So, for each (P, b) in S^* , define $(P, b)\phi = (P\theta, b\omega)$, in accordance with (9). Notice first that this does define a map from S into S', for $P\theta \in (\mathcal{Y}')^*$ and by (8) we also have

$$(b\omega)^{-1}(P\theta) = (b^{-1}\omega)(P\theta) = (b^{-1}P)\theta \in (\mathcal{Y}')^*.$$

(The first equality follows from (i), and $(b')^{-1}P' \in (\mathcal{Y}')^*$ is a consequence of (ii).)

Next, the map ϕ defined by (9) is a bijection. If $(P', b') \in (S')^*$, then there exist a unique P in \mathcal{Y} such that $P\theta = P'$ and a unique b in B such that $b\omega = b'$. Moreover,

$$(b^{-1}P)\theta = (b\omega)^{-1}(P\theta) = (b')^{-1}P' \in (\mathcal{Y}')^*$$
.

Hence $(P, b) \in S$, and is the unique element of S mapping to (P', b') by ϕ .

Finally, ϕ is a homomorphism. Given (P,b), (Q,c) in S^* such that $bc \neq 0,$ we have that

$$[(P,b)(Q,c)]\phi = (P \land bQ, bc)\phi = ((P \land bQ)\theta, (bc)\omega) =$$

$$= \left((b(b^{-1}P \land Q))\theta, (bc)\omega \right), \quad (\text{where } b^{-1}P, Q \in \mathcal{Y}) \\ = \left((b\omega)((b^{-1}P \land Q)\theta), (bc)\omega \right), \quad (by \ (8) \\ = \left((b\omega)((b^{-1}P)\theta \land Q\theta), (bc)\omega \right), \quad \text{since } \theta|_{\mathcal{Y}} \text{ is a semilattice isomorphism,} \\ = \left((b\omega)((b\omega)^{-1}(P\theta) \land Q\theta), (bc)\omega \right), \quad by \ (8), \\ = \left(P\theta \land (b\omega)(Q\theta), (b\omega)(c\omega) \right) \\ = (P\theta, b\omega) \left(Q\theta, c\omega \right) = \left[(P, b)\phi \right] \left[(Q, c)\phi \right].$$

If bc = 0 then $(b\omega)(c\omega) = 0$, and so both $[(P, b)(Q, c)]\phi$ and $[(P, b)\phi][(Q, c)\phi]$ are equal to zero.

Conversely, suppose that $\phi: S \to S'$ is an isomorphism. Let β , β' be the minimum Brandt congruences on S, S', respectively. As we saw in the last section, $S/\beta \simeq B$ and $S'/\beta' \simeq B'$. In fact we have an isomorphism $\omega: B \to B'$ such that the diagram

commutes. Here γ and γ' are the projections $(P, b) \mapsto b$, $(P', b') \mapsto b'$ respectively. Now let (P', b') be the image under ϕ of (P, b). Then

$$b' = (P', b') \, \gamma' = (P, b) \, \phi \, \gamma' = (P, b) \, \gamma \, \omega = b \, \omega \, ,$$

and so $(P, b)\phi = (P', b\omega)$, where $P' \in \mathcal{Y}'$ and is such that $(b\omega)^{-1}P' \in \mathcal{Y}'$. We now have a lemma

Lemma 4.2. Let $(P,b), (P,c) \in S^*$, and suppose that $(P,b)\phi = (P',b\omega)$. Then $(P,c)\phi = (P',c\omega)$.

Proof: Suppose that $(P, c)\phi = (P'', c\omega)$. Both $(P, bb^{-1}) = (P, b)(P, b)^{-1}$ and $(P, cc^{-1}) = (P, c)(P, c)^{-1}$ belong to S^* , and so, by the argument in the proof of Lemma 3.1, we must have $bb^{-1} = cc^{-1}$. Hence

$$(P', (bb^{-1})\omega) = (P', b\omega) (P', b\omega)^{-1} = [(P, b)\phi] [(P, b)^{-1}\phi]$$

= $(P, bb^{-1})\phi = (P, cc^{-1})\phi = [(P, c)\phi] [(P, c)^{-1}\phi]$
= $(P'', c\omega)(P'', c\omega)^{-1} = (P'', (cc^{-1})\omega)$,

and so P'' = P'.

From this lemma it follows that we can define a map $\theta: \mathcal{Y} \to \mathcal{Y}'$ such that, for all (P, b) in S,

$$(P,b)\phi = (P\theta, b\omega)$$

The domain of θ is in fact the whole of \mathcal{Y} , since, by the effectiveness of the representation $b \mapsto \lambda_b$, there exists for every P in \mathcal{Y}^* an element b in B^* such that $(P, b^{-1}b) \in S$.

Lemma 4.3. The map $\theta: \mathcal{Y} \to \mathcal{Y}'$ is an order-isomorphism.

Proof: That θ is a bijection follows from the observation that we can do for the inverse isomorphism $\phi^{-1} \colon S' \to S$ exactly what we have just done for ϕ , obtaining maps $\omega' \colon B' \to B$ and $\theta' \colon \mathcal{Y}' \to \mathcal{Y}$ such that $(P', b')\phi^{-1} = (P'\theta', b'\omega')$. Then, from the inverse property of ϕ^{-1} , we deduce that ω' and θ' are two-sided inverses of ω and θ respectively. Let $P \leq Q$ in \mathcal{Y} , and let b be such that $Q \in \text{dom } b$. Then, since dom b is an order-ideal, $P \in \text{dom } b$ also, and so, by (2), $(P, b^{-1}b) \leq (Q, b^{-1}b)$ in S. Applying ϕ , we deduce that $(P\theta, (b^{-1}b)\omega) \leq (Q\theta, (b^{-1}b)\omega)$ in S', and so $P\theta \leq Q\theta$.

Lemma 4.4. Let $P \in \mathcal{Y}^*$, and let b in B^* be such that $bP \in \mathcal{Y}^*$. Then $(bP)\theta = (b\omega)(P\theta)$.

Proof: The elements (bP, b) and (P, b^{-1}) are both in S, and are mutually inverse. By applying ϕ to both sides of the equality

$$(bP,b)(P,b^{-1}) = (bP,bb^{-1})$$
,

we deduce that

$$((bP)\theta, b\omega) (P\theta, b^{-1}\omega) = ((bP)\theta, (b^{-1}b)\omega) ,$$

and hence that

$$(bP)\theta \wedge (b\omega)(P\theta) = (bP)\theta$$
.

It follows that $(bP)\theta \leq (b\omega)(P\theta)$.

Similarly, by applying ϕ to both sides of the equality

$$(P, b^{-1})(bP, b) = (P, b^{-1}b) ,$$

we obtain

$$P\theta \wedge (b^{-1}\omega) ((bP)\theta) = P\theta$$
,

and from this it follows that $(b\omega)(P\theta) \leq (bP)\theta$.

To extend the map θ to \mathcal{X} we use (P4) to express an arbitrary X in \mathcal{X}^* in the form bP, where $b \in B^*$ and $P \in \mathcal{Y}^*$, and define $X\theta$ to be $(b\omega)(P\theta)$. To show that this defines $X\theta$ uniquely, we must show that bP = cQ implies that $(b\omega)(P\theta) = (c\omega)(Q\theta)$. In fact we shall deduce this from the result that

$$bP \le cQ \implies (b\omega)(P\theta) \le (c\omega)(Q\theta)$$
,

and so obtain also the information that θ is order-preserving on \mathcal{X} . So suppose that $bP \leq cQ$. Then $bP \in \text{dom}(c^{-1})$, and so we may deduce that $c^{-1}bP \leq Q$ in \mathcal{Y} . From Lemmas 4.3 and 4.4 we deduce that $((c^{-1}b)\omega)(P\theta) \leq Q\theta$, which immediately gives the required inequality.

It is now easy to see that $\theta: \mathcal{X} \to \mathcal{X}'$ is a bijection. To show that it is one-one, suppose that $X\theta = Y\theta$, where X = bP and Y = cQ, with b, c in B^* and P, Q in \mathcal{Y}^* . Then $(b\omega)(P\theta) = (c\omega)(Q\theta)$, and so, in \mathcal{Y}' ,

$$(c^{-1}bP)\theta = ((c\omega)^{-1}(b\omega))(P\theta) = Q\theta$$

Hence $c^{-1}bP = Q$, and from this it is immediate that X = Y. To show that θ is onto, consider an element X' = b'P' in \mathcal{X}' , where $b' \in (B')^*$ and $P' \in (\mathcal{Y}')^*$. Then there exist b in B and P in \mathcal{Y} such that $b\omega = b'$ and $P\theta = P'$, and so $(bP)\theta = b'P' = X'$.

Finally, we show that the equality (8) holds for all b in B^* and all X in \mathcal{X}^* . Let X = cP, where $c \in B^*$ and $P \in \mathcal{Y}^*$. Then

$$(bX)\theta = (b(cP))\theta = ((bc)P)\theta = ((bc)\omega)(P\theta)$$
$$= (b\omega)[(c\omega)(P\theta)] = (b\omega)(X\theta) .$$

This completes the proof of Theorem 4.1. \blacksquare

REFERENCES

- BILLHARDT, B. On a wreath product embedding and idempotent pure congruences on inverse semigroups, *Semigroup Forum*, 45 (1992), 45–54.
- [2] GOMES, G.M.S. and SZENDREI, M. *Idempotent-pure extensions of inverse semi*groups via quivers, submitted.
- [3] HOWIE, J.M. Fundamentals of semigroup theory, Oxford University Press, 1995.
- [4] MCALISTER, D.B. Groups, semilattices and inverse semigroups, Trans. American Math. Soc., 192 (1974), 227–244.
- [5] MCALISTER, D.B. Groups, semilattices and inverse semigroups, II, Trans. American Math. Soc., 196 (1974), 351–370.

- [6] MARGOLIS, S. and PIN, J.-E. Inverse semigroups and extensions of groups by semilattices, J. Algebra, 110 (1987), 277–297.
- [7] MUNN, W.D. A class of irreducible representations of an arbitrary inverse semigroup, Proc. Glasgow Math. Assoc., 5 (1961), 41–48.
- [8] MUNN, W.D. Brandt congruences on inverse semigroups, Proc. London Math. Soc., 14(3) (1964), 154–164.
- [9] MUNN, W.D. A note on *E*-unitary inverse semigroups, *Bull. London Math. Soc.*, 8 (1976), 71–76.
- [10] O'CARROLL, L. Inverse semigroups as extensions of semilattices, Glasgow Math. J., 16 (1975), 12–21.
- [11] PETRICH, M. Inverse semigroups, Wiley, New York, 1984.
- [12] PRESTON, G.B. Inverse semi-groups, J. London Math. Soc., 29 (1954), 396–403.
- [13] PRESTON, G.B. Inverse semi-groups with minimal right ideals, J. London Math. Soc., 29 (1954), 404–411.
- [14] PRESTON, G.B. Representations of inverse semigroups, J. London Math. Soc., 29 (1954), 412–419.
- [15] SCHEIN, B.M. A new proof for the McAlister P-theorem, Semigroup Forum, 10 (1975), 185–188.
- [16] SZENDREI, M.B. A generalization of McAlister's P-theorem for E-unitary regular semigroups, Acta Sci. Math. (Szeged), 57 (1987), 229–249.
- [17] VAGNER, V.V. Generalized groups, Doklady Akad. Nauk SSSR, 84 (1952), 1119–1122 (Russian).
- [18] VAGNER, V.V. Theory of generalized groups and generalized heaps, Mat. Sbornik (N.S.), 32 (1953), 545–632.

Gracinda M.S. Gomes, Centro de Álgebra, Universidade de Lisboa, Avenida Prof. Gama Pinto 2, 1699 Lisboa Codex – PORTUGAL E-mail: ggomes@alf1.cii.fc.ul.pt

and

John M. Howie, Mathematical Institute, University of St Andrews, North Haugh, St. Andrews KY16 9SS – U.K. E-mail: jmh@st-and.ac.uk