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SOME RESULTS ON THE SPECTRAL ANALYSIS OF
NONSTATIONARY TIME SERIES

Nuno Crato

Abstract: We present some results regarding the periodogram analysis of nonsta-

tionary time series, allowing for the extension of spectral regression methods to cases in

which the degree of integration d of a process is not in the stationary range.

1 – Introduction

Periodogram analysis has been a standard tool in stationary time series anal-

ysis. More recently, with the interest in long-memory fractionally differenced

models, periodogram regression methods have been suggested to estimate the

degree of integration of a stationary time series.

Let (εt) be a white noise, i.e., an uncorrelated zero-mean process: E εt = 0

and E ε2
t = σ2

ε , for all t and E εt εt+h = 0 for all h 6= 0. Let B represent the

backwards shift operator, i.e., BXt = Xt, and let ∇ = 1 − B represent the

differencing operator. For d ∈ (−.5, .5) the process (Xt) is said to be a fractional

noise if

(1) ∇dXt = εt ,

where the operator ∇d can be defined trough the binomial expansion of (1−B)d.

In this case, the process (Xt) has the spectral density

(2) f(λ)X = |1− e−iλ|−2d fε(λ) ,

where fε(λ) = σ2
ε/(2π) is the spectral density of the noise. See Brockwell and

Davis ([1], section 13.2) for details.
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Noting that the behavior of fX(λ) near zero is determined by the value of

d, Geweke and Porter-Hudak ([4]), among others, have suggested a regression

over the finite sample counterpart of the spectrum, the periodogram, in order to

estimate the degree of integration d of the process. A variant of this procedure

has recently been rigorously developed by Robinson ([6]).

If the process has autoregressive and moving average components, then the

spectral regression procedure has nonnegligible biases. Nevertheless, other es-

timation procedures also have significant drawbacks, and simulation results in

Cheung and Diebold ([3]) show that the spectral procedures have performances

that are competitive and present significant computational advantages in large

samples.

In practical situations, the use of the spectral estimator procedure to estimate

the degree of integration d of a time series can yield a nonstationary value. In

this situation, we are immediately faced with a major obstacle: the spectrum of

a non-stationary model, as the random walk, is not defined. Does an estimate

d̂ ≈ 1 suggest that the series is not stationary, being instead generated by an

integrated process of order 1, as a random walk? This question is of practical

interest, and the spectral theory for stationary processes does not provide an

answer. Of course, taking differences of an integrated process would lead to a

stationary process on which the existing theory can be applied. But the question

at stake is: without rigorous results regarding the nonstationary case, how do we

know whether a periodogram indicates that further differencing is needed?

In this paper, we present some partial results in the spectral characterization

of nonstationary processes. Our approach is directly focused on the periodogram.

2 – Periodogram behavior of random walk type processes

The variance of a nonstationary process is not defined. We will condition

on the first observation and assume throughout, without loss of generality, that

X0 = 0.

The spectrum of a nonstationary model is also not defined. We will always

work with the periodograms. For a finite sample of size n, the periodogram

IX,n(ωj), with Fourier frequencies ωj = 2πj/n ∈ [0, π], and the finite Fourier
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transforms JX(λ), with λ ∈ [0, π], are always well defined

(3)

IX,n(ωj) :=n−1
∣

∣

∣

n
∑

t=1

Xt e
−iωjt

∣

∣

∣

2

=
(

n−1/2
n
∑

t=1

Xt e
−iωjt

) (

n−1/2
n
∑

t=1

Xt e
iωjt

)

:= JX(−λ) JX(λ), with λ = ωj .

We will find it convenient to extend this definition in order to work with any

frequency λ ∈ (0, π):

(4) IX,n(λ) := IX,n(ωj) with ωj − π/n < λ ≤ ωj + π/n .

Our first theorem fixes the spectral frequency and presents an asymptotic

result.

Theorem 1. Let (Xt) be a random walk ARIMA, ∇Xt = εt. Consider the

realization sample (Xt)
n
t=0 and assume that X0 = 0. Then the periodograms of

(Xt)
n
t=0, say IX,n(λ), and of (εt)

n
t=1, say Iε,n(λ), are related through the identity

(5) |1− e−iλ|2 IX,n(λ) = Iε,n(λ) + n−1 X2
n −Rn(λ) ,

where, for any fixed λ ∈ (0, π),

(6) E |Rn(λ)| → 0 as n→∞ .

Proof: Since εt = Xt −Xt−1, we get

Jε(λ) :=n−1/2
n
∑

t=1

εt e
−iλt

= n−1/2 (1− e−iλ)
n
∑

t=1

Xt e
−iλt + n−1/2 (Xn e

−iλ(n+1) −X0 e
−iλ) ,

and

(7) (1− e−iλ) JX(λ) = Jε(λ)− n−1/2 e−iλ(n+1) Xn .

Multiplying each side of (7) by its conjugate, we get

|1− e−iλ|2 IX,n(λ) = Iε,n(λ) + n−1 X2
n −Rn(λ) ,
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where

(8)
Rn(λ) := Jε(−λ)n

−1/2 e−iλ(n+1) Xn + Jε(λ)n
−1/2 eiλ(n+1) Xn

:=Qn(λ) +Qn(−λ) .

Since Xn =
∑n

t=1 εt, we get

(9)

EQn(λ) = n−1/2 e−iλ(n+1) E

[

(

n−1/2
n
∑

t=1

εt e
iλt

) (

n
∑

t=1

εt
)

]

= n−1
n
∑

t=1

e−iλt σ2
ε .

After similar computations for Qn(−λ) we have

ERn(λ) = n−1 σ2
ε

n
∑

t=1

(eiλt + e−iλt) = n−1 σ2
ε

n
∑

t=1

2 cosλt .

For λ ∈ (0, π) we have the upper bound,

(10)

E |Rn(λ)| = n−1 σ2
ε 2

∣

∣

∣

n
∑

t=1

cosλt
∣

∣

∣

= n−1 σ2
ε

∣

∣

∣

∣

sin(n+ 1/2)λ

sin(λ/2)
− 1

∣

∣

∣

∣

≤ n−1 σ2
ε

(

π

λ
+ 1

)

.

Hence, for any fixed λ > 0, E |Rn(λ)| → 0 as n→∞.

The next theorem presents a result for any j-th Fourier frequency of the

periodogram. This frequency converges to zero as the number of observations n

increases.

Theorem 2. Let (Xt) be a random walk ∇Xt = εt. Consider the realization

sample (Xt)
n
t=0 and assume that X0 = 0. Then the periodograms of (Xt)

n
t=0 and

of (εt)
n
t=1 are related through the identity

(11) |1− e−iωj |2 IX,n(ωj) = Iε,n(ωj) + n−1 X2
n −Rn(ωj) ,

where, for any j-th Fourier frequency ωj = 2πj/n ∈ (0, π),

(12) ERn(ωj) = 0 .
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Proof: If λ is a Fourier frequency, then

(13)
n
∑

t=1

eiλt =
1− einλ

1− eiλ
eiλ = 0 .

Hence, we get directly from (8) and (9) that ERn(ωj) = 0 + 0 = 0.

As suggested by Künsch ([5]) and Robinson ([6]), long-memory properties of

a stationary time series with fractional degree of integration d ∈ (0, 1/2) can be

detected by analysing the periodogram on an interval neighboring zero but ex-

cluding the zero frequency . To be specific, consider the periodogram ordinates for

Fourier frequencies ωj such that n1/3 ≤ ωj ≤ n1/2, thus satisfying the conditions

for the spectral regression in Robinson ([6]). Then, from (5), as |1− e−iλ|2 ∼ λ2

when λ → 0+, the results above imply that a sufficiently long realization of an

ARIMA(0,1,0) will display a singularity of order 2 at these low-order Fourier

frequencies.

These results also imply that an ARIMA(p, 1, q), having a limiting peri-

odogram, at low-order frequencies, as the one of an ARIMA(0,1,0), should have

a spectral singularity of order 2 for a sufficiently large realization. By restrict-

ing the analysis to low-order frequencies and sufficiently large time series, the

influence of the ARMA parameters on the periodogram can be appropriately re-

duced. Thus, these results provide a spectral characterization of a certain type

of nonstationarity, although they do not provide any finite sample distribution

theory.

We now discuss the joint statistical properties of the random variables Iε,n(ωj)

and Rn(ωj).

Theorem 3. Let (Xt) be a random walk ∇Xt = εt, with εt ∼ iid(0, σ2
ε) and

E ε4
t < ∞. Consider the realization sample (Xt)

n
t=0 and assume without loss of

generality that X0 = 0. Let Rn(ωj) be defined as in (8). Then,

(14) ERn(ωj)
2 = 2σ4

ε + 2n−1(E ε4
t − 3σ4

ε) → 2σ4
ε ,

and, if (εt) is Gaussian,

(15) ERn(ωj)
2 = 2σ4

ε .

Moreover, for Fourier frequencies ωk, ωj ,

(16) E[Rn(ωk)Rn(ωj)] = 0, if ωk 6= ωj ,

and

(17) E[Iε,n(ωk)Rn(ωj)] = 0 , ∀ωk, ωj .
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Proof: We have, following the notation in (8),

EQn(λ)
2 = E

∣

∣

∣

∣

(

n−1/2
n
∑

t=1

εt e
−iλt

)

n−1/2 eiλ(n+1)
(

n
∑

t=1

εt
)

∣

∣

∣

∣

2

= n−2 E

∣

∣

∣

∣

n
∑

t=1

εt e
−iλt

n
∑

t=1

εt e
−iλt

n
∑

t=1

εt

n
∑

t=1

εt

∣

∣

∣

∣

≤ n−2
∣

∣

∣

n
∑

t=1

e−2iλt
∣

∣

∣E ε4
t + n−2

∣

∣

∣

n
∑

t=1

e−2iλt
∣

∣

∣σ2
ε

∑

j 6=t

σ2
ε

+ 2n−2
∣

∣

∣

n
∑

t=1

e−iλt σ2
ε

∑

j 6=t

e−iλj
∣

∣

∣σ2
ε .

For λ = ωj = 2πj/n ∈ (0, π) the first two terms vanish by direct application of

(13). The third term also vanishes since

n
∑

t=1

e−iλt
∑

j 6=t

e−iλj =
n
∑

t=1

e−iλt
n
∑

j=1

e−iλj −
n
∑

t=1

e−iλt e−iλt = 0− 0 .

The same argument applies to Qn(−λ); thus

EQn(ωj)
2 = EQn(−ωj)

2 = 0 .

After tedious but similar routine computations we get

(18) 2E
[

Qn(λ)Qn(−λ)
]

= 2σ4
ε + 2n−1(E ε4

t − 3σ4
ε) .

Hence

E [Rn(ωj)]
2 = E [Qn(ωj)]

2 + E [Qn(−ωj)]
2 + 2E

[

Qn(ωj)Qn(−ωj)
]

= 0 + 0 + 2σ4
ε + 2n−1(E ε4

t − 3σ4
ε) ,

and (14) holds. If the noise is Gaussian Eε4
t = 3σ4

ε , then (15). In order to prove

(16) and (17) we apply similar arguments.

3 – Extension to general ARIMA and ARFIMA processes

The previous results can be extended to the general ARIMA(p, 1, q) case. We

were not able, however, to obtain results as strong as the ones obtained before.
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Theorem 4. Let (Xt) be an ARIMA(p, 1, q) process. Consider the realization

sample (Xt)
n
t=0 and assume that X0 = 0. Then, the periodograms of (Xt)

n
t=0 and

of (∇Xt)
n
t=1 are related through the identity

(19) |1− e−iωj |2 IX,n(ωj) = I∇X,n(ωj) + n−1X2
n −Rn(ωj) ,

where

(20) E |Rn(ωj)| ≤
(

2π f∇X(ωj)
∑

|k|<n

|γ∇X(k)|
)1/2

−→ 2π
(

f∇X(ωj) f∇X(0)
)1/2

,

with γ∇X and f∇X representing, respectively, the autocovariance and the spectral

density of the stationary process (∇Xt).

Proof: The expression (19) is obtained as in Theorem 2. To prove (20) write

‖J∇X(−λ)‖ :=E1/2 I∇X,n(−λ) =
√

f∇X(λ) 2π

and
‖n−1/2 e−λ(n+1) Xn‖ :=n−1/2 E1/2 X2

n

= n−1/2 Var1/2
[

n
∑

t=1

∇Xt

]

=

(

∑

|k|<n

(

1−
k

n

)

γ∇X(k)

)1/2

≤
(

∑

|k|<n

|γ∇X(k)|
)1/2

.

Then, applying the Cauchy–Schwarz inequality we have

E |Rn(λ)| =

∣

∣

∣

∣

〈Jε(−λ), n
−1/2 eiλ(n+1) Xn〉

∣

∣

∣

∣

≤

(

2π f∇X(λ)
∑

|k|<n

|γ∇X(k)|biggr)
1/2 .

Since (∇Xt) is an ARMA, it results from Theorem 7.11 of Brockwell and Davis

([1]) that n−1/2 Var1/2[
∑n

t=1∇Xt]→ (2π f∇X(0))
1/2. Hence (20).

Corollary 5. For low-order Fourier frequencies ωj the bound (20) can be

approximated as follows

(21) E |Rn(ωj)| ≤ 2π
(

f∇X(ωj) f∇X(0)
)1/2

' 2π f∇X(0) .

Proof: As (∇Xt) is an ARMA process, it has bounded continuous rational

spectral density function. Then f∇X(ωj) can be approximated by f∇X(0).
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If we only consider causal and invertible ARMA processes then f∇X(0) is

bounded and has a non-zero value. This fact shows that the relation (19) is

dominated by |1− e−iωj |2 for sufficiently low-order Fourier frequencies.

4 – Concluding remark

The results we have presented show that the behavior of the periodogram

of nonstationary integrated processes is dominated by the transfer function of

the differencing operator. This suggests the extension of a spectral regression

method, as Robinson’s ([6]), to nonstationary ARIMA or ARFIMA processes.

Simulation results in Crato ([2]) show that tests for stationarity based on such

regression methods have quite reasonable properties.
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