DEGENERATE ELLIPTIC EQUATION INVOLVING A SUBCRITICAL SOBOLEV EXPONENT

J. Chabrowski

Abstract

We prove the existence of a solution of degenerate elliptic equation (1) involving a subcritical Sobolev exponent. To solve (1) we establish the existence of a solution of the constrained minimization problem (3). A relative compactness of a minimizing sequence is obtained by examining a possible loss of a mass at infinity of a minimizing sequence.

1 - Introduction

The purpose of this article is to investigate the existence of a nontrivial solution of the degenerate equation

$$
\begin{equation*}
-D_{i}\left(a(x) D_{i} u\right)+\lambda u=K(x)|u|^{p-2} u \quad \text { in } \quad \mathbb{R}^{N} \tag{1}
\end{equation*}
$$

in a weighted Sobolev space which will be defined in Section 2, where $\lambda>0$ is a parameter, $2<p<\frac{2 N}{N-2}$ and $N \geq 3$. We assume that $a(x)$ and $K(x)$ are continuous and bounded in \mathbb{R}^{N} and moreover $a(x) \geq 0$ and $a(x) \not \equiv 0$ on \mathbb{R}^{N} and $\alpha \leq K(x) \leq \beta$ on \mathbb{R}^{N}, for some constants $\alpha>0$ and $\beta>0$. We establish the existence of a nontrivial solution under assumptions on a and K, which control the location of zeros of $a(x)$ and the behaviour of $a(x)$ and $K(x)$ at infinity. The latter assumption can be replaced by the periodicity assumption on $K(x)$. However, we only need a periodicity assumption either on K or a. The case of a periodic function a is only treated for a uniformly elliptic equation.

Unlike the case of unbounded domains, degenerate equations in bounded domains, in particular the Dirichlet problem, have a quite extensive literature [MS], [SA], where further bibliographical references can be found.

[^0]A variational problem (3) (Section 2) associated with (1) is characterized by a lack of compactness. In Section 3 we give a description of a possible loss of mass at infinity of a mimmizing sequence in quantitative terms. This will be used to show that a minimizing sequence is relatively compact.

2 - Preliminaries

The appropriate Sobolev space for equation (1) is $H_{a}^{1}\left(\mathbb{R}^{N}\right)$, defined as a completion of C_{0}^{∞} with respect to the norm

$$
\|u\|_{a}^{2}=\int_{\mathbb{R}^{N}}\left(a(x)|D u|^{2}+\lambda u^{2}\right) d x
$$

The dual space is denoted by $H_{a}^{-1}\left(\mathbb{R}^{N}\right)$, that is $H_{a}^{1}\left(\mathbb{R}^{N}\right)^{*}=H_{a}^{-1}\left(\mathbb{R}^{N}\right)$. Since a is a bounded function, the Sobolev space $H^{1}\left(\mathbb{R}^{N}\right)$ is continuously embedded in $H_{a}^{1}\left(\mathbb{R}^{N}\right)$.

In this paper we always denote in a given Banach space X a weak convergence by " \rightharpoonup " and a strong convergence by " \rightarrow ".

A function $u \in H_{a}^{1}\left(\mathbb{R}^{N}\right)$ is a solution of (1) if

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left(a(x) D u D \phi+\lambda u \phi-K(x)|u|^{p-2} u \phi\right) d x=0 \tag{2}
\end{equation*}
$$

for each $\phi \in C_{0}^{\infty}\left(\mathbf{R}^{N}\right)$.
To find a solution to equation (1), we consider the constrained minimization problem

$$
\begin{equation*}
M_{a, K}=\inf \left\{\int_{\mathbb{R}^{N}} a(x)|D u|^{2} d x ; u \in H_{a}^{1}\left(\mathbb{R}^{N}\right), \int_{\mathbb{R}^{N}} K(x)|u|^{p} d x=1\right\} \tag{3}
\end{equation*}
$$

To ensure that $M_{a, K}>0$ we impose the following condition on a
(A) There exists $R_{0}>0$ such that

$$
\{x ; a(x)=0\} \subset B\left(0, R_{0}\right) \quad \text { and } \quad \frac{1}{a} \in L^{q}\left(B\left(0, R_{0}\right)\right)
$$

for some $q>\frac{N_{p}}{2 N+2 p-N p}$.
Then we have the following result:
Proposition 1. Suppose that (A) holds and that $\inf _{\mathbb{R}^{N}-B\left(0, R_{0}\right)} a(x)>0$. Then there exists a constant $C>0$ such that

$$
\begin{equation*}
\left(\int_{\mathbb{R}^{N}}|u|^{p} d x\right)^{\frac{1}{p}} \leq C\left(\int_{\mathbb{R}^{N}}\left(a(x)|D u|^{2}+\lambda u^{2}\right) d x\right)^{\frac{1}{2}} \tag{4}
\end{equation*}
$$

for all $u \in H_{a}^{1}\left(\mathbb{R}^{N}\right)$.

Proof: We follow the argument from paper [PA] (Proposition 2.1). We may assume, by taking R_{0} larger if necessary, that $\{x ; a(x)=0\} \subset B\left(0, R_{0}-2\right)$ and $\inf _{\mathbb{R}^{N}-B\left(0, R_{0}-2\right)} a(x)>0$. Let $r=\frac{2 q}{1+q}$. Then $q>\frac{N p}{2 N+2 p-N p}$ implies $p<\frac{N r}{N-r}(1<r<2<N)$. Consequently by the Sobolev embedding theorem $H_{0}^{1, r}\left(B\left(0, R_{0}\right)\right)$ is continuously (compactly) embedded in $L^{p}\left(B\left(0, R_{0}\right)\right)$. This fact will be used to establish (4). Toward this end we define for every $R>0$ a function $\phi_{R} \in C^{1}\left(\mathbb{R}^{N}\right)$ such that $\phi_{R}(x)=1$ on $B(0, R), \phi_{R}(x)=0$ on $\mathbb{R}^{N}-B(0, R+1)$ and $0 \leq \phi_{R}(x) \leq 1$ on \mathbb{R}^{N}. Applying the Hölder inequality we get

$$
\begin{align*}
\int_{B\left(0, R_{0}\right)}|D u|^{r} d x & \leq \int_{B\left(0, R_{0}+1\right)}\left|D\left(u \phi_{R_{0}}\right)\right|^{r} d x \\
& =\int_{B\left(0, R_{0}+1\right)} a^{\frac{q}{1+q}} \left\lvert\, D\left(u \phi_{R_{0}}\right)^{\frac{2 q}{q+1}} \frac{1}{a^{\frac{q}{q+1}}} d x\right. \tag{5}\\
& \leq C\left(\int_{B\left(0, R_{0}+1\right)} \frac{1}{a^{q}} d x\right)^{\frac{1}{q+1}}\left(\int_{B\left(0, R_{0}+1\right)}\left(a|D u|^{2}+\lambda u^{2}\right) d x\right)^{\frac{q}{q+1}}
\end{align*}
$$

for some constant $C>0$. Inequality (5) combined with the Sobolev inequality implies

$$
\begin{align*}
\left(\int_{B\left(0, R_{0}-1\right)}|u|^{p} d x\right)^{\frac{1}{p}} & \leq C\left(\int_{B\left(0, R_{0}\right)}\left|u \phi_{R_{0}-1}\right|^{p} d x\right)^{\frac{1}{p}} \\
& \leq C\left(\int_{B\left(0, R_{0}\right)}\left|D\left(u \phi_{R_{0}-1}\right)\right|^{r} d x\right)^{\frac{1}{r}} \\
& \leq C\left(\int_{B\left(0, R_{0}\right)}\left(|D u|^{r}+\lambda|u|^{r}\right) d x\right)^{\frac{1}{r}} \tag{6}\\
& \leq C\left(\int_{B\left(0, R_{0}+1\right)}\left(a|D u|^{2}+\lambda u^{2}\right) d x\right)^{\frac{q}{r(q+1)}} \\
& =C\left(\int_{B\left(0, R_{0}+1\right)}\left(a|D u|^{2}+\lambda u^{2}\right) d x\right)^{\frac{1}{2}} .
\end{align*}
$$

Letting $\psi_{R}=1-\phi_{R}$, we see that $\psi_{R}(x)=1$ on $\mathbb{R}^{N}-B(0, R+1)$. Then the Sobolev inequality implies

$$
\begin{align*}
\left(\int_{\mathbb{R}^{N}-B\left(0, R_{0}-1\right)}|u|^{p} d x\right)^{\frac{1}{p}} & \leq\left(\int_{\mathbb{R}^{N}-B\left(0, R_{0}-2\right)}\left|u \psi_{R_{0}-2}\right|^{p} d x\right)^{\frac{1}{p}} \tag{7}\\
& \leq C\left(\int_{\mathbb{R}^{N}}\left(a|D u|^{2}+\lambda u^{2}\right) d x\right)^{\frac{1}{2}} .
\end{align*}
$$

Here we have used the assumption $\inf _{\mathbb{R}^{N}-B\left(0, R_{0}-2\right)} a(x)>0$. Estimates (6) and (7) then imply the assertion of Proposition 1.

Since we always assume that $\alpha \leq K(x) \leq \beta$ on \mathbb{R}^{N}, for some constants $0<\alpha<\beta$ (see Introduction), estimate (4) can be rewritten as

$$
\begin{equation*}
\left(\int_{\mathbb{R}^{N}} K(x)|u|^{p} d x\right)^{\frac{1}{p}} \leq C\left(\int_{\mathbb{R}^{N}}\left(a(x)|D u|^{2}+\lambda u^{2}\right) d x\right)^{\frac{1}{2}} \tag{8}
\end{equation*}
$$

for some constant $C>0$. As an immediate consequence of Proposition 1, we have $M_{a, K}>0$.

It may happen that $M_{a, K}=0$ if condition (A) is not satisfied. For instance this occurs if

$$
\begin{equation*}
a(x) \leq C|x|^{b} \quad \text { for } \quad|x| \leq \delta \tag{9}
\end{equation*}
$$

for some constants $\delta>0$ and $b>\frac{2 N+2 p-N p}{p}$ and $a(x)>0$ for $x \neq 0$.
Indeed, let $w \in C_{0}^{1}\left(\mathbb{R}^{N}\right)$ with $\int_{\mathbb{R}^{N}} K(x)|w|^{p} d x=1$ and set

$$
\phi(x)=\frac{w(x \sigma) \sigma^{\frac{N}{p}}}{\left(\int_{\mathbb{R}^{N}} K\left(\frac{x}{\sigma}\right)|w(x)|^{p} d x\right)^{\frac{1}{p}}} \quad \text { for } \sigma>0
$$

Then

$$
\begin{aligned}
& M_{a, K}\left(\int_{\mathbb{R}^{N}} K\left(\frac{x}{\sigma}\right)|w(x)|^{p} d x\right)^{\frac{2}{p}} \leq \\
& \quad \leq \int_{\mathbb{R}^{N}}\left(a\left(\frac{x}{\sigma}\right)|D w(x)|^{2} \sigma^{\frac{2 N+2 p-N p}{p}}+\lambda w(x)^{2} \sigma^{\frac{2 N}{p}-N}\right) d x \\
& \quad \leq C \int_{\mathbb{R}^{N}}|x|^{b}|D w(x)|^{2} \sigma^{\frac{2 N+2 p-N p}{p}-b} d x+\lambda \int_{\mathbb{R}^{N}} w(x)^{2} \sigma^{\frac{2 N}{p}-N} d x \rightarrow 0
\end{aligned}
$$

as $\sigma \rightarrow \infty$, where C is a positive constant independent of σ.
It is clear that if a satisfies (9) then $\int_{B\left(0, R_{0}\right)} \frac{1}{a^{q}} d x=\infty$.
To proceed further we introduce a functional $F: H_{a}^{1}\left(\mathbb{R}^{N}\right) \rightarrow \mathbb{R}$ defined by

$$
F(u)=\frac{1}{2} \int_{\mathbb{R}^{N}}\left(a(x)|D u|^{2}+\lambda u^{2}\right) d x-\frac{1}{p} \int_{\mathbb{R}^{N}} K(x)|u|^{p} d x,
$$

which is of class C^{1}. It is routine calculation to show that (see Theorem 2.1 [LTW]):

Proposition 2. Suppose that (A) holds and that $\inf _{\mathbb{R}^{N}-B\left(0, R_{0}\right)} a(x)>0$ and let $\left\{u_{m}\right\} \subset H_{a}^{1}\left(\mathbb{R}^{N}\right)$ be a minimizing sequence for problem (3). Then
$v_{m}=M_{a, K}^{\frac{1}{p-2}} u_{m}$ satisfies

$$
\begin{aligned}
& \text { (i) } \quad F\left(v_{m}\right) \rightarrow\left(\frac{1}{2}-\frac{1}{p}\right) M_{a, K}^{\frac{p}{p-2}} \quad \text { as } m \rightarrow \infty \\
& \text { (ii) } \quad F^{\prime}\left(v_{m}\right) \rightarrow 0 \quad \text { in } H_{a}^{-1}\left(\mathbf{R}^{N}\right) \text { as } m \rightarrow \infty
\end{aligned}
$$

This result implies that if a minimizing sequence $\left\{u_{m}\right\} \subset H_{a}^{1}\left(\mathbb{R}^{N}\right)$ has a limit point u, then $M_{a, K}^{\frac{1}{p-2}} u$ satisfies equation (1).

3 - Existence result

In order to show that a minimizing sequence of (3) is relatively compact in $H_{a}^{1}\left(\mathbb{R}^{N}\right)$ we introduce quantities which control a possible loss of mass of this sequence at infinity.

Let $a(x)$ satisfy (A) and suppose that $\inf _{\mathbb{R}^{N}-B\left(0, R_{0}\right)} a(x)>0$. If $\left\{u_{m}\right\} \subset$ $H_{a}^{1}\left(\mathbb{R}^{N}\right)$ is a minimizing sequence for (3), then $\left\{u_{m}\right\}$ is bounded in $H_{a}^{1}\left(\mathbb{R}^{N}\right)$ and restricted to $\mathbb{R}^{N}-B\left(0, R_{0}\right)$ is bounded in $H^{1}\left(\mathbb{R}^{N}-B\left(0, R_{0}\right)\right)$. It also follows from Proposition 1 that $\left\{u_{m}\right\}$ restricted to $B\left(0, R_{0}\right)$, is bounded in $H^{1, r}\left(B\left(0, R_{0}\right)\right)$, $p<\frac{N r}{N-r}$. Therefore we may assume that $u_{m} \rightharpoonup u$ in $H_{0}^{1}\left(\mathbf{R}^{N}\right)$ and $u_{m} \rightarrow u$ in $L_{\mathrm{loc}}^{p}\left(\mathbf{R}^{N}\right)$. It is clear that the following quantities are well defined:

$$
\begin{aligned}
\alpha_{\infty} & =\lim _{R \rightarrow \infty} \limsup _{m \rightarrow \infty} \int_{\mathbb{R}^{N}-B(0, R)}\left|u_{m}\right|^{p} d x \\
\beta_{\infty} & =\lim _{R \rightarrow \infty} \limsup _{m \rightarrow \infty} \int_{\mathbb{R}^{N}-B(0, R)}\left(\left|D u_{m}\right|^{2}+\lambda u_{m}^{2}\right) d x \\
\alpha_{K, \infty} & =\lim _{R \rightarrow \infty} \limsup _{m \rightarrow \infty} \int_{\mathbb{R}^{N}-B(0, R)} K(x)\left|u_{m}\right|^{p} d x
\end{aligned}
$$

and

$$
\beta_{a, \infty}=\lim _{R \rightarrow \infty} \limsup _{m \rightarrow \infty} \int_{\mathbb{R}^{N}-B(0, R)}\left(a(x)\left|D u_{m}\right|^{2}+\lambda u_{m}^{2}\right) d x
$$

It is easy to check that if $\lim _{|x| \rightarrow \infty} K(x)=K(\infty)$ and $\lim _{|x| \rightarrow \infty} a(x)=a(\infty)$, then $\alpha_{K, \infty}=K(\infty) \alpha_{\infty}$ and $\beta_{a, \infty}=a(\infty) \beta_{\infty}$.

Writing for each $R>0$

$$
1=\int_{\mathbb{R}^{N}} K(x)\left|u_{m}\right|^{p} d x=\int_{B(0, R)} K(x)\left|u_{m}\right|^{p} d x+\int_{\mathbb{R}^{N}-B(0, R)} K(x)\left|u_{m}\right|^{p} d x
$$

and letting $m \rightarrow \infty$ and then $R \rightarrow \infty$ we get

$$
\begin{equation*}
1=\int_{\mathbb{R}^{N}} K(x)|u|^{p} d x+\alpha_{K, \infty} . \tag{10}
\end{equation*}
$$

Therefore to show that u is a solution of the minimization problem (3), it is enough to show that $\alpha_{K, \infty}=0$.

Since the norm is weakly lower semicontinuous with respect to weak convergence we derive in a similar manner the inequality
(11) $M_{a, K}=\lim _{m \rightarrow \infty} \int_{\mathbb{R}^{N}}\left(a\left|D u_{m}\right|^{2}+\lambda u_{m}^{2}\right) d x \geq \int_{\mathbb{R}^{N}}\left(a|D u|^{2}+\lambda u^{2}\right) d x+\beta_{a, \infty}$.

Finally, by writing for each $R>0$,

$$
M_{a, K}\left(\int_{\mathbb{R}^{N}} K(x)\left|u_{m} \psi_{R}\right|^{p} d x\right)^{\frac{2}{p}} \leq \int_{\mathbb{R}^{N}}\left(a\left|D\left(u_{m} \psi_{R}\right)\right|^{2}+\lambda\left(u_{m} \psi_{R}\right)^{2}\right) d x
$$

where ψ_{R} is a function introduced in the proof of Proposition 1, we easily derive

$$
\begin{equation*}
M_{a, K}\left(\alpha_{K, \infty}\right)^{\frac{2}{p}} \leq \beta_{a, \infty} . \tag{12}
\end{equation*}
$$

We commence with the following technical lemma.
Lemma 1. Suppose that (A) holds and that $\inf _{\mathbb{R}^{N}-B\left(0, R_{0}\right)} a(x)>0$. Let $\left\{u_{m}\right\} \subset H_{a}^{1}\left(\mathbb{R}^{N}\right)$ be a minimizing sequence for problem (3). If $u_{m} \rightharpoonup u \not \equiv 0$ in $H_{a}^{1}\left(\mathbb{R}^{N}\right)$, then u is a solution of problem (3).

Proof: According to the above discussion we need to show that $\alpha_{K, \infty}=0$. Arguing indirectly, let us assume that $\alpha_{K, \infty}>0$. Then by (10) we have

$$
\begin{equation*}
0<\int_{\mathbb{R}^{N}} K(x)|u|^{p} d x<1 . \tag{13}
\end{equation*}
$$

Since $\lim _{m \rightarrow \infty}\left\langle F^{\prime}\left(u_{m} M_{a, K}^{\frac{1}{p-2}}\right), u_{m} M_{a, K}^{\frac{1}{p-2}} \psi_{R}\right\rangle=0$ uniformly in $R \geq 1$, we see that

$$
\begin{equation*}
\beta_{a, \infty}=\alpha_{K, \infty} M_{a, K} . \tag{14}
\end{equation*}
$$

Combining (14), (10) and (11), we have

$$
\int_{\mathbb{R}^{N}}\left(a|D u|^{2}+\lambda u^{2}\right) d x \leq M_{a, K} \int_{\mathbb{R}^{N}} K|u|^{p} d x .
$$

Since we always have

$$
M_{a, K}\left(\int_{\mathbb{R}^{N}} K|u|^{p} d x\right)^{\frac{2}{p}} \leq \int_{\mathbb{R}^{N}}\left(a|D u|^{2}+\lambda u^{2}\right) d x
$$

we see that the last two inequalities imply

$$
\int_{\mathbb{R}^{N}} K|u|^{p} d x \geq 1
$$

which contradicts (13).
We are now in a position to establish the following existence result.
Theorem 1. Suppose that (A) holds. If $a(x) \leq a(\infty)$ on \mathbb{R}^{N}, where $a(\infty)=\lim _{|x| \rightarrow \infty} a(x)$ with the strict inequality on a set of positive measure in \mathbb{R}^{N} and $K(x) \geq K(\infty)$ on \mathbb{R}^{N}, where $K(\infty)=\lim _{|x| \rightarrow \infty} K(x)$. Then problem (3) has a solution $u \in H_{a}^{1}\left(\mathbb{R}^{N}\right)$. Moreover, $u \in H^{1}\left(\mathbb{R}^{N}-B\left(0, R_{0}\right)\right)$ and $u \in$ $H^{1, r}\left(B\left(0, R_{0}\right)\right)$ with $r=\frac{2 q}{1+q}$.

Proof: Let $\left\{u_{m}\right\} \subset H_{a}^{1}\left(\mathbb{R}^{N}\right)$ be a minimizing sequence for problem (3). According to the comments made at the beginning of this section we may assume that $u_{m} \rightharpoonup u$ in $H_{a}^{1}\left(\mathbb{R}^{N}\right)$ and $u \rightarrow u$ in $L_{\text {loc }}^{p}\left(\mathbb{R}^{N}\right)$. By virtue of Lemma 1 , it is sufficient to show that $u \not \equiv 0$ on \mathbb{R}^{N}. Assuming that $u \equiv 0$ on \mathbb{R}^{N}, we see that $\alpha_{K, \infty}=1$. As in the proof of Lemma 1 , we check that $M_{a, K}=\beta_{a, \infty}$. We now compare $M_{a, K}$ with M_{∞} defined by

$$
M_{\infty}=\inf \left\{\int_{\mathbb{R}^{N}}\left(a(\infty)|D u|^{2}+\lambda u^{2}\right) d x ; u \in H^{1}\left(\mathbb{R}^{N}\right), \int_{\mathbb{R}^{N}} K(\infty)|u|^{p} d x=1\right\}
$$

It is well known that this problem has a positive radially symmetric solution \bar{u} with an exponential decay at infinity which is unique up to a translation (see [KW]). It follows from the definition of M_{∞} that

$$
M_{\infty}\left(K(\infty) \int_{\mathbb{R}^{N}}\left|u_{m} \psi_{R}\right|^{p} d x\right)^{\frac{2}{p}} \leq \int_{\mathbb{R}^{N}}\left(a(\infty)\left|D\left(u_{m} \psi_{R}\right)\right|^{2}+\lambda\left(u_{m} \psi_{R}\right)^{2}\right) d x
$$

Letting $m \rightarrow \infty$ and then $R \rightarrow \infty$ gives

$$
M_{\infty}=M_{\infty}\left(K(\infty) \alpha_{\infty}\right)^{\frac{2}{p}} \leq a(\infty) \beta_{\infty}=\beta_{a, \infty}
$$

which is equivalent to

$$
M_{\infty} \leq M_{a, K}
$$

On the other hand we have

$$
\begin{aligned}
& M_{a, K}=M_{a, K}\left(K(\infty) \int_{\mathbb{R}^{N}}|\bar{u}|^{p} d x\right)^{\frac{2}{p}} \leq M_{a, K}\left(\int_{\mathbb{R}^{N}} K(x)|\bar{u}|^{p} d x\right)^{\frac{2}{p}} \leq \\
& \quad \leq \int_{\mathbb{R}^{N}}\left(a(x)|D \bar{u}|^{2}+\lambda \bar{u}^{2}\right) d x<\int_{\mathbb{R}^{N}}\left(a(\infty)|D \bar{u}|^{2}+\lambda \bar{u}^{2}\right) d x=M_{\infty}
\end{aligned}
$$

and we arrived at a contradiction. We also show that $u_{m} \rightarrow u$ in $H_{a}^{1}\left(\mathbb{R}^{N}\right)$. For u is a solution of problem (3) we have $\alpha_{K, \infty}=0$. Then $u_{m} \rightarrow u$ in $L^{p}\left(\mathbb{R}^{N}\right)$ due to the uniform convexity of the space $L^{p}\left(\mathbb{R}^{N}\right)$. The convergence $u_{m} \rightarrow u$ in $H_{a}^{1}\left(\mathbb{R}^{N}\right)$ follows then from the following identity

$$
\begin{gathered}
\int_{\mathbb{R}^{N}}\left(a(x)\left|D w_{m}-w_{n}\right|^{2}+\lambda\left(w_{m}-w_{n}\right)^{2}\right) d x= \\
=\left\langle F^{\prime}\left(w_{m}\right)-F^{\prime}\left(w_{n}\right), w_{m}-w_{n}\right\rangle+\int_{\mathbb{R}^{N}} K\left(\left|w_{m}\right|^{p-2} w_{m}-\left|w_{n}\right|^{p-2} w_{n}\right)\left(w_{m}-w_{n}\right) d x,
\end{gathered}
$$

where $w_{m}=M_{a, K}^{\frac{1}{p-2}} u_{m} \cdot$ ■
Since $F(u)=F(|u|)$, by the maximum principle the solution u can be chosen to be positive on \mathbb{R}^{N}.

Obviously the assumption " $a(x) \leq a(\infty)$ on \mathbb{R}^{N} with strict inequality on a set of positive measure in $\mathbb{R}^{N "}$ can be replaced by " $K(x) \geq K(\infty)$ on \mathbb{R}^{N} with strict inequality on a set of positive measure".

4 - Case of K periodic

It is known ([EL], Corollary II. 2 or [L1], Corollary II.3) that for a uniformly elliptic equation on \mathbb{R}^{N}, with a and K periodic on \mathbb{R}^{N} with the same period, problem (3) has a solution. At the end of this section we give a simple proof of this result based on an analysis of quantities $\alpha_{K, \infty}$ and $\beta_{a, \infty}$. In Theorem 2 below we show, using the above mentioned results, that if a satisfies the assumptions of Theorem 1 and K is periodic on \mathbb{R}^{N}, then problem (3) has a solution. This means that if $\{x: a(x)=0\}=\emptyset$, that is equation (1) is uniformly elliptic, we only need the periodicity of K. However, we must retain the assumption on behaviour of a at infinity. In the final result of this paper, Theorem 3, we prove the existence of solution of problem (3) in the case of a uniformly elliptic equation (1), assuming that a is periodic on \mathbb{R}^{N} and K satisfies assumptions of Theorem 1.

Theorem 2. Suppose that a satisfies assumptions of Theorem 1. If K is a periodic function on \mathbb{R}^{N}, then problem (3) has a solution in $H_{a}^{1}\left(\mathbf{R}^{N}\right)$.

Proof: Let $\left\{u_{m}\right\} \subset H_{a}^{1}\left(\mathbb{R}^{N}\right)$ be a minimizing sequence for problem (3). As in the proof of Theorem 1 we may assume that $u_{m} \rightharpoonup u$ in $H_{a}^{1}\left(\mathbb{R}^{N}\right), u_{m} \rightarrow u$ in $L_{\mathrm{loc}}^{p}\left(\mathbb{R}^{N}\right)$. It is enough to show that $u \not \equiv 0$ on \mathbb{R}^{N}. Assuming that $u \equiv 0$ on \mathbb{R}^{N}, we have $\alpha_{K, \infty}=1$. It follows from the proof of Theorem 1 that $M_{a, K}=\beta_{a, \infty}$.

To proceed further we consider the minimization problem

$$
M_{P}=\inf \left\{\int_{\mathbb{R}^{N}}\left(a(\infty)|D u|^{2}+\lambda u^{2}\right) d x ; u \in H_{a}^{1}\left(\mathbb{R}^{N}\right), \int_{\mathbb{R}^{N}} K(x)|u|^{p} d x=1\right\}
$$

Because the coefficients $a(\infty)$ and $K(x)$ are periodic, this problem has a positive solution $\bar{u} \in H^{1}\left(\mathbb{R}^{N}\right)$. Considering the inequality

$$
M_{P}\left(\int_{\mathbb{R}^{N}} K(x)\left|\left(u_{m} \psi_{R}\right)\right|^{p} d x\right)^{\frac{2}{p}} \leq \int_{\mathbb{R}^{N}}\left(a(\infty)\left|D\left(u_{m} \psi_{R}\right)\right|^{2}+\lambda\left(u_{m} \psi_{R}\right)^{2}\right) d x
$$

we show that

$$
\begin{equation*}
M_{P}=M_{P}\left(\alpha_{K, \infty}\right)^{\frac{2}{p}} \leq \beta_{\infty} a(\infty)=\beta_{a, \infty}=M_{a, K} \tag{15}
\end{equation*}
$$

On the other hand we have

$$
\begin{aligned}
M_{a, K}=M_{a, K}\left(\int_{\mathbb{R}^{N}} K(x)|\bar{u}|^{p} d x\right)^{\frac{2}{p}} & \leq \int_{\mathbb{R}^{N}}\left(a(x)|D \bar{u}|^{2} d x+\lambda \bar{u}^{2}\right) d x \\
& <\int_{\mathbb{R}^{N}}\left(a(\infty)|D \bar{u}|^{2}+\lambda \bar{u}^{2}\right) d x=M_{P}
\end{aligned}
$$

and this contradicts inequality (15).
In case of a uniformly elliptic equation, we can interchange assumptions on a and K in the sense that a is periodic on \mathbb{R}^{N} and K satisfies condition $K(x) \geq$ $K(\infty)$ on \mathbb{R}^{N}.

We need the following result which is well known and can be obtained as a by-product of the proof of Lemma 3.1 in [BC] or Theorem 4.1 in [LTW].

Lemma 2. Suppose that $0<a_{1} \leq a(x) \leq a_{2}$ on \mathbb{R}^{N} for some constants a_{1} and a_{2}. Then for each minimizing sequence $\left\{u_{m}\right\} \subset H^{1}\left(\mathbb{R}^{N}\right)$ of problem (3), there exist a subsequence of $\left\{u_{m}\right\}$, denoted again by $\left\{u_{m}\right\}$, and a sequence $\left\{y_{m}\right\} \subset \mathbf{Z}^{N}$ such that $u_{m}\left(\cdot+y_{m}\right) \rightharpoonup u \not \equiv 0$ in $H^{1}\left(\mathbb{R}^{N}\right)$.

Combining Lemmas 1 and 2 we obtain
Corollary 1. Suppose that a and K are both periodic with the same period $y \in \mathbf{Z}^{N}$ and that $0<a_{1} \leq a(x) \leq a_{2}$ on \mathbb{R}^{N} for some constants a_{1} and a_{2}. Then problem (3) has a solution.

Theorem 3. Let $0<a_{1} \leq a(x) \leq a_{2}$ on \mathbb{R}^{N} for some constants a_{1} and a_{2} and suppose that a is periodic on \mathbb{R}^{N}, that is $a(x+y)=a(x)$ for all $x \in \mathbb{R}^{N}$
and $y \in \mathbf{Z}^{N}$. If $K(x) \geq K(\infty)=\lim _{|x| \rightarrow \infty} K(x)$ on \mathbb{R}^{N}, then problem (3) has a solution.

Proof: We have to consider the case where $K(x) \geq K(\infty)$ with strict inequality on a set of positive measure on \mathbb{R}^{N}, since otherwise the result follows by Corollary 1 . Since $\left\{u_{m}\right\}$ is bounded in $H^{1}\left(\mathbb{R}^{N}\right)$ we may assume that $u_{m} \rightharpoonup u$ in $H^{1}\left(\mathbf{R}^{N}\right)$ and $u_{m} \rightarrow u$ in $L_{\mathrm{loc}}^{p}\left(\mathbb{R}^{N}\right)$. The assertion will follow from Lemma 1 if we can show that $u \not \equiv 0$. Arguing indirectly, assume that $u \equiv 0$ on \mathbb{R}^{N}. This implies that $\alpha_{K, \infty}=1$. As in the proof of Lemma 1 we check that $\beta_{a, \infty}=M_{a, K}$. We now consider the minimization problem
$M_{P, \infty}=\inf \left\{\int_{\mathbb{R}^{N}}\left(a(x)|D u|^{2}+\lambda u^{2}\right) d x ; u \in H^{1}\left(\mathbb{R}^{N}\right), \int_{\mathbb{R}^{N}} K(\infty)|u|^{p} d x=1\right\}$.
Since a and $K(\infty)$ are periodic on \mathbb{R}^{N} there exists a positive function $\bar{u} \in$ $H^{1}\left(\mathbf{R}^{N}\right)$ such that

$$
\int_{\mathbb{R}^{N}} K(\infty)|\bar{u}|^{p} d x=1 \quad \text { and } \quad M_{P, \infty}=\int_{\mathbb{R}^{N}}\left(a(x)|D \bar{u}|^{2}+\lambda \bar{u}^{2}\right) d x
$$

Let ψ_{R} be a function from Proposition 1, then

$$
M_{P, \infty}\left(\int_{\mathbb{R}^{N}} K(\infty)\left|u_{m} \psi_{R}\right|^{p} d x\right)^{\frac{2}{p}} \leq \int_{\mathbb{R}^{N}}\left(a(x)\left|D\left(u_{m} \psi_{R}\right)\right|^{2}+\lambda\left(u_{m} \psi\right)^{2}\right) d x
$$

Letting $m \rightarrow \infty$ and then $R \rightarrow \infty$ we obtain

$$
\begin{equation*}
M_{P, \infty}=M_{P, \infty}\left(\alpha_{K, \infty}\right)^{\frac{2}{p}} \leq \beta_{a, \infty}=M_{a, K} \tag{16}
\end{equation*}
$$

Since $M_{P, \infty}$ is achieved by $\bar{u} \in H^{1}\left(\mathbb{R}^{N}\right)$, we have

$$
M_{a, K}\left(\int_{\mathbb{R}^{N}} K(x)|\bar{u}|^{p} d x\right)^{\frac{2}{p}} \leq \int_{\mathbb{R}^{N}}\left(a(x)|D \bar{u}|^{2}+\lambda \bar{u}^{2}\right) d x=M_{P, \infty}
$$

Since $\bar{u}>0$ on \mathbb{R}^{N}, and $K(x)>K(\infty)$ on a set of positive measure in \mathbb{R}^{N}, we get that $M_{a, K}<M_{P, \infty}$ which contradicts (16).

ACKNOWLEDGEMENT - The author wishes to thank the referee for suggestions and corrections.

REFERENCES

[BC] Benci, V. and Cerami, G. - Positive solutions of some nonlinear elliptic problems, Arch. Rat. Mech. Anal., 99 (1987), 283-300.
[EL] Esteban, M.J. and Lions, P.L. - Γ-convergence and the concentration compactness method for some variational problems with lack of compactness, Ricerche di Matematica, 36(1) (1987), 73-101.
[KW] Kwong, M.K. - Uniqueness of positive solutions of $\Delta u-u+u^{p}=0$ in \mathbb{R}_{N}, Arch. Rat. Mech. Anal., 105 (1989), 243-266.
[LI1] Lions, P.L. - On positive solutions of semilinear elliptic equations in unbounded domains, Nonlinear Equations and their Equilibrium States (1988), 85-122.
[PL2] Lions, P.L. - The concentration - compactness principle in the calculus of variations, The locally compact case, part 2, Ann. Inst. H. Poincaré, 1(4) (1984), 223-283.
[MS] Murthy, M.K.V. and Stampacchia, G. - Boundary value problems for some degenerate elliptic operators, Annali Mat. Pura Appl., 80 (1968), 1-122.
[PA] Passaseo, D. - Some concentration phenomena in degenerate semilinear elliptic problems, Nonlinear Analysis, TMA 24(7) (1995), 1011-1025.
[LTW] Wen - Chig Lien, Shyuh - Yaur Tzeng and Hwai - Chinan Wang Existence of solutions of semilinear elliptic problems in unbounded domains, Diff. Int. Equations, 6(6) (1993), 1281-1298.
[SA] Leonardi Salvatore - The best constant in a weighted Poincaré and Friedrichs inequality, Ren. Sem. Mat. Univ. Padova, 92 (1994), 195-208.

J. Chabrowski,

The University of Queensland, Department of Mathematics, St. Lucia, 4072 Queensland - AUSTRALIA

[^0]: Received: June 2, 1995; Revised: July 7, 1995.

