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Introduction

Let G be a finite group and R be any ring with identity 1R 6= 0. The separa-

bility of the group-ring RG over certain subrings of RG has been studied by many

authors (see [1], [2], [8], [9]). It is well known that RG is a separable extension

of R if and only if |G| 1R is invertible in R. If RG is a separable extension of R,

then RG has unique separating idempotent over R if and only if G is abelian. Let

G be an arbitrary group (not necessarily finite) and H be a subgroup of G. On

similar lines as for the above mentioned results, we prove the following results

i) RG is a separable extension of RH if and only if [G : H] is finite and

[G : H] 1R is invertible in R.

ii) Let RG be a separable extension of RH; then RG has only one separating

idempotent over RH if and only if every finite conjugate class in G is an

H-orbit, in the sense that if two elements a, b ∈ G are in the same finite

conjugate class, then b = x−1 a x for some x ∈ H.

This leads to the following condition on a subgroup H of a finite group.

(S) Any conjugate class in G is an H-orbit .

There exist large number of pairs (G,H), such that H satisfies (S), but G 6=

HK, for any normal subgroup K of G, with H ∩K = 1. Such pairs of 2-groups

were found by using GAP -computer package [6]. For all such pairs (G,H), with

G a 2-group, |G| ≤ 32, we observed that G = HZ(G). But we found three groups

G, of order 64, having subgroups H, satisfying (S), |H| = 32, but G 6= HZ(G);

in fact Z(H) = Z(G). In section 2, we endeavor to prove that for any group

G of order less than 64, if a subgroup H of G satisfies (S) then G = HZ(G).
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Answer is given in the affirmative except for |G| = 48. However, in the results

(3.2) through (3.5), some general, sufficient conditions on the orders of G and H

are given under which G = HZ(G), whenever H satisfies (S).

1 – Preliminaries

Let R be any ring with identity 1 6= 0 and S be any subring of R containing

1. Let ϕ : R ⊗S R → R be the (R,R)-homomorphism such that ϕ(
∑

i ai ⊗ bi) =
∑

ai bi. As defined by Hirata and Sugano [3], R is called a separable extension

of S, if there exists z =
∑

i ai ⊗ bi ∈ R ⊗S R such that ϕ(z) = 1 and r z = z r

for every r ∈ R; such an element z is called a separating idempotent of R over

S. The center of R will be denoted by Z(R). Let G be any group and H be a

subgroup of G. Any a, b ∈ G are said to be in the same H-orbit if b = x−1 a x

for some x ∈ H. A set {gα : α ∈ Λ} of right coset representatives of H in G is

called a right transversal of H in G ([4, p. 5]). Z(G) and ∆(G) denote the center

and the F.C subgroup of G, respectively [4]. Let K be a non empty subset of

G, then the subgroup of G generated by K and the centralizer of K are denoted

by 〈K〉 and Centl(K), respectively. For a, b ∈ G, [a, b], N(a) and o(a) denote

the commutator a−1 b−1 a b, the centralizer of a and the order of a, respectively.

Consider a non zero x =
∑

ag g ∈ RG, then the support of x, denoted by supt(x),

is the set {g ∈ G : ag 6= 0}. For any set X, |X| denotes the cardinality of X. For

some general concepts on rings and modules, one may refer to Stenström [7], and

for group-rings to Passman [4].

2 – Group rings

Throughout H is a subgroup of a group G, T = {gα : α ∈ Λ} is a right

transversal of H in G, with g1 = 1 ∈ T , and R is any ring with identity 1 6= 0.

Any element of RG ⊗RH RG is uniquely expressible as
∑

α aα ⊗ gα, aα ∈ RG,

and aα 6= 0 for finitely many α ∈ Λ. An x ∈ RG⊗RH RG is called a commutant

element if a x = x a for every a ∈ RG. We write P for RG ⊗RH RG. The proof

of the following is on familiar lines, as for the special case of H = 1 (see proof of

[8, Lemma 1]).

Lemma 2.1. An x =
∑

α aα ⊗ gα 6= 0 in P , is a commutant element if and

only if, [G : H] <∞, aβ = g−1
β a1, for every β ∈ Λ and a1 =

∑

g rg g ∈ Z(R)∆(G)

such that for g ∈ supt(a1), rg = rg′ whenever g
′ is in the H-orbit of g.
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For any finite non empty subsetX of G, yx denotes the sum in RG, of elements

of X. Clearly, y{1} = 1. Consider a non zero commutant element x ∈ P , then

x =
∑

β g
−1
β a1 ⊗ gβ . The above lemma gives

a1 = r1 +
k
∑

i=2

rAi
yAi

,

where Ai are finitely many finite H-orbits in G none equal to {1}, and r1, rAi
∈

Z(R).

Lemma 2.2. Let C be a conjugate class in G, b, b′ ∈ C, and A be any

H-orbit in C. Then

B =
{

α ∈ Λ: g−1
α u gα = b for some u ∈ A

}

and

B′ =
{

α ∈ Λ: g−1
α u gα = b′ for some u ∈ A

}

have the same cardinality.

Proof: Now, b′ = x−1 b x for some x ∈ G. Let α ∈ B, then for some u ∈ A,

g−1
α u gα = b. Now, gα x = ht(α) gt(α) for some ht(α) ∈ H and t(α) ∈ Λ,

u′ = h−1
t(α) uht(α) ∈ A ,

and

b′ = g−1
t(α) u

′ gt(α) .

This gives t(α) ∈ B′. The mapping t ↪→ t(α) is a one-to-one mapping of B

into B′. So that, |B| ≤ |B′|. Similarly, |B′| ≤ |B|. Hence, |B| = |B′|.

Henceforth, let |Λ| < ∞. Let C be a finite conjugate class in G. Consider

an H-orbit A in C. The above lemma gives a positive integer λA which for any

b ∈ C, equals
∣

∣

∣

{

α ∈ Λ: g−1
α u gα = b for some u ∈ A

}∣

∣

∣ .

Let us call λA, the weight of C relative to A. If C = {b1, b2, ..., bt}, and

C = A1 ∪ A2 ∪ ... ∪ Ak is the decomposition of C into H-orbits, then for any

ri ∈ R,

∑

α

∑

i

g−1
α ri yAi

gα =
t
∑

j=1

(

∑

i

λAi
ri
)

bj =
(

∑

i

λAi
ri
)

yC .
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The following theorem generalizes [8, Theorem 2] and some other results in [9].

Theorem 2.3. Let H be any subgroup of a group G, and R be any ring.

The following hold.

i) RG is a separable extension of RH if and only if [G : H] < ∞ and

[G : H] 1R is invertible in R.

ii) If RG is separable over RH, then RG has a unique separating idempotent

over RH if and only if each finite conjugate class in G is an H-orbit.

Proof: i) Let RG be a separable extension of RH. So, there exists

z ∈ RG ⊗RH RG such that under the RG-bimodule homomorphism

ϕ : RG ⊗RH RG → RG, such that ϕ(a ⊗ b) = a b, we have ϕ(z) = 1 and

a z = z a for any a, b ∈ RG. By (2.1), [G : H] = n <∞ and z =
∑

α g
−1
α a1 ⊗ gα

with a1 = r1 +
∑

i ri yAi
, where Ai are some finite H-orbits other than {1};

r1, ri ∈ Z(R). Then

1 = ϕ(z) = n r1 +
∑

i,α

g−1
α ri yAi

gα

yields n r1 = 1. Thus, n 1R is invertible in R. Conversely, if s = n 1R is invertible

in R, then

z0 =
1

s

∑

α

g−1
α ⊗ gα

is a separating idempotent of RG over RH.

ii) Let RG be separable over RH. Let RG have only one separating idem-

potent over RH. This one is z′ = 1
s

∑

α g
−1
α ⊗ gα. Suppose there exists a finite

conjugate class C in G, such that C = A1 ∪ A2 ∪ ... ∪ Ak, where Ai are disjoint

H-orbits, and k ≥ 2. If one of λA1
and λA2

is non zero in R, then

z =
∑

α

g−1
α (λA2

yA1
− λA1

yA2
)⊗ gα 6= 0 ,

and

ϕ(z) = (λA1
λA2

− λA2
λA1

) yC = 0 .

This gives a separating idempotent z0 + z different from z0. If λA1
= 0 = λA2

in R, then

z0 +
∑

α

g1
α(yA1

+ yA2
)⊗ gα

is a separating idempotent other than z0. This is a contradiction. Hence every

finite conjugate class in G is an H-orbit. Conversely, let every finite conjugate
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class in G be an H-orbit, then any non zero commutant element in RG⊗RH RG

is of the form

z =
∑

α

g−1
α a1 ⊗ gα

where a1 =
∑

i ri yCi
, for some finitely many distinct finite conjugate classes Ci

in G and ri 6= 0 in Z(R), ϕ(z) = n
∑

i ri yCi
, n = [G : H], gives ϕ(z) 6= 0. Hence,

R has only one separating idempotent over RH.

3 – Finite groups

Throughout G is a finite group, and H is a subgroup of G. We consider the

condition

(S) Any conjugate class in G is an H-orbit .

If R is any ring such that |G| is invertible in R, by (2.3) RG has only one

separating idempotent over RH if and only if H satisfies (S). This observation

motivates us to study the above condition. If G = HZ(G), obviously, H satisfies

(S). There exist groups G having subgroups H satisfying (S), but G 6= HZ(G).

Some such groups of order 64 were found by using GAP [6]. One such a group is

described at the end of this paper. We endeavor to prove that for any group G

of order less than 64, if a subgroup H satisfies (S), then G = HZ(G). We shall

give a number of sufficient conditions on |H| and |G| under which G = HZ(G),

whenever H satisfies (S). We start with the following obvious results.

Lemma 3.1. Let H be a subgroup of a finite group G. Then:

i) H satisfies (S) if and only if G = HN(a) for every a ∈ G.

ii) If H satisfies (S), then Centl(H) ≤ Z(G), and Z(G) ∩H = Z(H).

iii) IfH satisfies (S), then G/H is an abelian group, G′ = [H,G] = H ′; further

if H is abelian, then G is abelian.

iv) If H satisfies (S), then any normal subgroup of H is a normal subgroup

of G.

Proposition 3.2. If |G| = p q s, where p and q are two distinct primes, and

H is a non abelian subgroup of G of order p q, satisfying (S), then G = HZ(G).

Proof: Z(H) = 1. Let a, b ∈ H, such that o(a) = p, o(b) = q. To be definite,

let p < q. As G = HN(a), by (3.1), |N(a)| = p s. Similarly, |N(b)| = q s. As 〈b〉 is
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a normal subgroup of H, by (3.l) iv), 〈b〉 is a normal subgroup of G. So, N(b) is a

normal subgroup of G. Then p q | |N(a)N(b)| yields s | |N(a)∩N(b)|. Obviously,

N(a) ∩ N(b) = Centl(H). So, N(a) ∩ N(b) ≤ Z(G), by (3.1) ii). However,

N(a) ∩N(b) ∩H = 1. This yields, Z(G) = N(a) ∩N(b), and G = HZ(G).

Theorem 3.3. Let |G| = p2 q s, where p and q are primes, such that p < q,

and H he a subgroup of G of order p2 q, satisfying (S), then G = HZ(G).

Proof: Let K = 〈c〉, be a Sylow q-subgroup of H. Consider q > 3. Then, K

is a normal subgroup of H, hence by (3.1) iv) it is normal in G. Now |Z(H)| is

1 or p. Let P be a Sylow p-subgroup of H.

Case (I): Z(H) = 1. Then P is cyclic. Let P = 〈d〉. As G = HN(d),

|N(d)| = p2 s. Also, |N(c)| = q s. H = 〈c, d〉, yields N(c) ∩N(d) = Centl(H) ≤

Z(G), H ∩ (N(c) ∩N(d)) = 1. Also H ≤ N(c)N(d), yields G = N(c)N(d). So

that p2 q s = |N(d)N(c)|, |N(d) ∩N(c)| = s. Hence, G = HZ(G).

Case (II): |Z(H)| = p. Then, |N(c)| = p q s. Let P be cyclic. Then

|N(c) ∩N(d)| = p s, and once again G = HZ(G). Suppose P is not cyclic, then

H = Z(H)× L, where |L| = p q. Then for any x ∈ G, G = HN(x) = LN(x). So

by (3.2), G = LZ(G) = HZ(G).

We now consider q = 3. Then p = 2, |H| = 12. If a Sylow 2-subgroup of

H is cyclic, on similar lines as when q > 3, we get G = HZ(G). Let Sylow

2-subgroup of H be not cyclic. Suppose Sylow 3-subgroup of H is not normal.

We get another Sylow 3-subgroup K ′ = 〈c′〉 of H. Then |N(c)| = |N(c′)| = 3s,

N(c)∩N(c′)∩H = 1. Then, |N(c)N(c′)| ≤ 12 s, yields |N(c)∩N(c′)| ≥ 3
4 s and

hence, |H(N(c)∩N(c′))| ≥ 3
4 |G|. Consequently, G = H(N(c)∩N(c′)). However,

H = 〈c, c′〉. Thus, N(c) ∩ N(c′) ≤ Z(G). If Sylow 3-subgroup of H is normal,

then H = L× L1, |L| = 6, |L1| = 2. Once again by (3.2), G = HZ(G).

Theorem 3.4. Let |G| = p2 q s, where p, q and s are prime numbers and

p > q, then for any nonabelian subgroup H of G of order p2 q, satisfying (S),

G = HZ(G).

Proof: Let P be a Sylow p-subgroup of H, and K = 〈c〉 be a Sylow

q-subgroup of H. Now P is a normal subgroup of G.

Case (I): P , a cyclic group. So for some a ∈ P , P = 〈a〉; then Z(H) = 1. By

using (3.1), we get |N(a)| = p2 s, |N(c)| = q s, and |N(a) ∩N(c)| ≥ s. However,

H ∩N(a) ∩N(c) = 1 and N(a) ∩N(c) ≤ Z(G). This yields G = H × Z(G).
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Case (II): P is not cyclic. If Z(H) 6= 1, then H = Z(H)×L1 with |L1| = p q.

By (3.2), G = L1Z(G) = HZ(G). Let Z(H) = 1. If for some a ∈ H with

o(a) = p, H = 〈a, c〉, as in Case (I), we get G = HZ(G). Suppose H 6= 〈a, c〉,

for any a ∈ H with o(a) = p, then H = 〈a, b, c〉 for some a, b ∈ H satisfying

o(a) = p = o(b), c−1 a c = aλ, c−1 b c = bλ for some λ, satisfying 2 ≤ λ ≤ p − 1,

c1 x c = xλ for any x ∈ P . If N(a) = N(b), then N(a) ∩ N(c) ≤ Z(G) and

|N(a) ∩N(c)| ≥ s. So, G = HZ(G).

Let N(x) 6= N(y) for any x, y ∈ H for which P = 〈x, y〉. As [G : N(a)] = q,

G = N(a)N(b), and |N(a) ∩N(b)| = p2( s
q
). So, s = q, |G| = p2 q2, |N(c)| = q2,

|N(a)| = p2 q, P = N(a)∩N(b), and |N(a)∩N(c)| = q = |N(b)∩N(c)|. Suppose

N(c) is cyclic, then N(a) ∩ N(c) being the unique subgroup of N(c) of order

q, give N(a) ∩ N(c) = 〈c〉 = N(b) ∩ N(c). This gives H is abelian. This is a

contradiction. Hence N(c) is not cyclic. If N(a) ∩ N(c) = N(b) ∩ N(c), then

for some d ∈ N(c), such that d /∈ 〈c〉, d ∈ N(a) ∩ N(b). This gives N(a) =

P 〈d〉 = N(b). This is a contradiction. So, N(a) ∩N(c) 6= N(b) ∩N(c). We get

g ∈ (N(a) ∩ N(c))\(N(b) ∩ N(c)). Then N(c) = 〈c, g〉, g−1 b g = bj for some

j, with 2 ≤ j ≤ p − 1. Then N(ab) ∩ N(c) = 1. On the other hand, as for a,

|N(ab) ∩N(c)| = q. This is a contradiction. Hence the result follows.

Proposition 3.5. If |G| = p3 s, for some prime number p, and H is a

nonabelian subgroup of G of order p3, satisfying (S), then G = HZ(G).

Proof: Now, H = 〈a, b〉, for some a, b not in Z(H), and |Z(H)| = p.

By using (3.1) we get |N(a)| = p2 s = |N(b)|, |H ∩ N(a) ∩ N(b)| = p and

N(a)∩N(b) ≤ Z(G). As |N(a)∩N(b)| ≥ p s, it is immediate that G = HZ(G).

Let n be any positive integer less than 64, other than 32, 48 and 60. Let G be

a group of order n, then any proper subgroup of G is either abelian or of order

of the form given in (3.2) to (3.5), so G = HZ(G). Let |G| = 60, in view of (3.2)

to (3.5), we consider a nonabelian subgroup H of G of order 30, satisfying (S).

H has a normal cyclic subgroup L = 〈a〉 of order 15. Let b ∈ H be of order 2.

Then |N(a)| = 30, 4 | |N(b)|. So that 2 | |Z(G)|. If Z(G) 6≤ H, then G = HZ(G).

If Z(G) ≤ H, then H = LZ(G), and L satisfies (S). By (3.2), G = LZ(G). This

is a contradiction. Hence, Z(G) 6≤ H, and G = HZ(G). We get:

Lemma 3.6. Let |G| = 60, then for any subgroup H of G satisfying (S),

G = HZ(G).



164 S. SINGH and L.A.-M. HANNA

Lemma 3.7. Let |G| = 32, then for any nonabelian subgroup H of G,

satisfying (S), G = HZ(G).

Proof: In view of (3.5) we only consider the case H=16. Suppose Z(G)≤H.

Then by (3.1), Z(H) = Z(G). By Scott, [6.5.1, p. 146],H has an abelian subgroup

L of order 8. Suppose H has another abelian subgroup L1 of order 8. Then

|L ∩ L1| = 4, Z(H) = L ∩ L1 and L/Z(H) = 〈x〉 for some x ∈ L\Z(H). Then

for any a, b in L\Z(H), N(a) = N(b), and by (3.1) |N(a)| = 16. Thus, T =

Centl(L) = N(a) for any a ∈ L\Z(H). Similarly, T1 = Centl(L1) is of order

16. Further T and T1 are abelian, T ∩ T1 ≤ Z(G) and |T ∩ T1| ≥ 8. This is a

contradiction. Hence H has a unique abelian subgroup L of order 8. This in turn

yields, |Z(H)| = 2. Suppose H = H/Z(H) has an element a of order 4. Then

|N(a)| = 16, 〈Z(H), a〉 ≤ Z(N(a)), gives N(a) is abelian. Choose a, b ∈ H such

that a b 6= b a. Then |N(b)| ≥ 8. As 〈Z(H), b〉 ≤ Z(N(b)), we get a subgroup

T of N(b) of order 8 such that 〈Z(H), b〉 ≤ T . As N(a) is an abelian normal

subgroup of order 16, G = N(a)T , |N(a) ∩ T | = 4 and N(a) ∩ T ≤ Z(G).

This is a contradiction, as |Z(G)| = 2. Hence, H is elementary abelian. Let

Z(H) = {e, d}. We can find a, b, c ∈ H such thatH = 〈a, b, c〉, L = 〈a, b, d〉. Then

a b 6= b a, a c 6= c a, otherwise we get an abelian subgroup of H of order 8, other

than L. Now N(a) ∩ L = {e, d}, |N(a)| ≥ 8, gives G = LN(a). As a b = b a, we

get b a = a b d. Similarly, c a = a c d. Then, c b a = c a b d = a c d b d = a c b. Thus,

c b ∈ N(a) ∩ L. This is a contradiction. Hence, Z(G) 6≤ H and G = H Z(G).

Thus, we get the following

Theorem 3.8. Let G be any group of order less than 64, and different from

48. If a subgroup H of G satisfies (S), then G = HZ(G).

For |G| = 48, we require to discuss only the case when |H| = 24. However,

there are large number of possibilities for this case. This case is left untackled

for the time being.

There exist large number of pairs (G,H), where H satisfies (S), but G 6=

HZ(G). Such pairs of 2-groups have been found by usingGAP -computer package

[6]. Here we describe a pair (G,H) with |G| = 64, |H| = 32, Z(G) = Z(H); so

that G 6= HZ(G). We could discover three different groups G, of order 64,

numbered as 257, 258, and 259, in the 2-group library of the package. In each

of them we could find six subgroups H of order 32, satisfying (S) and containing

Z(G). One such is the following. This is numbered 257.
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Example: C = 〈a, b, c, d〉 with relations a2 = b2 = c2 = d2 = 1, ac = ca,

ad = da, bc = cb, bd = db, [d, c] = [b, a]2 = [[b, a], a], [d, c]c = c[d, c], [d, c] d =

d[d, c], [d, c]2 = 1. Here, Z(G) = {I, [d, c]}, |G| = 64, H = 〈b, d, [b, a], [d, c], ac〉,

|H| = 32.

ACKNOWLEDGEMENT – This research was partially supported by the Kuwait Uni-

versity Research Grant No. SMO75. We thank the referee for his suggestions.

REFERENCES

[1] De Meyer, F.R. and Ingraham, E. – Separable algebras over commutative rings,
Lecture Notes in Mathematics, Vol. 181, Springer-Verlag, 1971.

[2] De Meyer, F.R. and Janusz, G.J. – Group rings which are Azumaya Algebras,
Trans. Amer. Math. Soc., 279 (1983), 389–395.

[3] Hirata, K. and Sagano, K. – On semi-simple extensions and separable extensions
over noncommutative rings, J. Math. Soc. Japan, 18 (1966), 360–373.

[4] Passman, D.S. – The Algebraic Structure of Group Rings, John Wiley and Sons,
1977.

[5] Scott, W.R. – Group Theory, Prentice-Hall Inc., 1964.
[6] Schonert, M. et al – GAP, Groups, Algorithm, Programming, Lehrstuhl D für

Mathematik, RWTH Achen, 1992.
[7] Stenström, B. – Rings of Quotients, Die Grundlehren der mathematischen Wis-

senschaften, 2l7, Springer-Verlag, 1975.
[8] Szeto, G. – On separable extensions of group rings and quaternion rings, Internat.

J. Math. & Math. Sci., 1 (1978), 433–438.
[9] Szeto, G. and Wong, Y.E. – A general Maschke Theorem, Nanta Math., 12

(1979), 1–4.

Surjeet Singh and L.A.-M. Hanna,

Department of Mathematics, Kuwait University,

P.O. Box 5969, Safat 13060 – KUWAIT


