PORTUGALIAE MATHEMATICA Vol. 53 Fasc. 2 – 1996

SEPARABLE GROUP-RING EXTENSIONS

SURJEET SINGH and L.A.-M. HANNA

Introduction

Let G be a finite group and R be any ring with identity $1_R \neq 0$. The separability of the group-ring RG over certain subrings of RG has been studied by many authors (see [1], [2], [8], [9]). It is well known that RG is a separable extension of R if and only if $|G| 1_R$ is invertible in R. If RG is a separable extension of R, then RG has unique separating idempotent over R if and only if G is abelian. Let G be an arbitrary group (not necessarily finite) and H be a subgroup of G. On similar lines as for the above mentioned results, we prove the following results

- i) RG is a separable extension of RH if and only if [G : H] is finite and $[G : H] 1_R$ is invertible in R.
- ii) Let RG be a separable extension of RH; then RG has only one separating idempotent over RH if and only if every finite conjugate class in G is an H-orbit, in the sense that if two elements $a, b \in G$ are in the same finite conjugate class, then $b = x^{-1} a x$ for some $x \in H$.

This leads to the following condition on a subgroup H of a finite group.

(S) Any conjugate class in G is an H-orbit.

There exist large number of pairs (G, H), such that H satisfies (S), but $G \neq HK$, for any normal subgroup K of G, with $H \cap K = 1$. Such pairs of 2-groups were found by using GAP-computer package [6]. For all such pairs (G, H), with G a 2-group, $|G| \leq 32$, we observed that G = HZ(G). But we found three groups G, of order 64, having subgroups H, satisfying (S), |H| = 32, but $G \neq HZ(G)$; in fact Z(H) = Z(G). In section 2, we endeavor to prove that for any group G of order less than 64, if a subgroup H of G satisfies (S) then G = HZ(G).

Received: May 19, 1995; Revised: September 1, 1995.

Answer is given in the affirmative except for |G| = 48. However, in the results (3.2) through (3.5), some general, sufficient conditions on the orders of G and H are given under which G = HZ(G), whenever H satisfies (S).

1 – Preliminaries

Let R be any ring with identity $1 \neq 0$ and S be any subring of R containing 1. Let $\varphi \colon R \otimes_S R \to R$ be the (R, R)-homomorphism such that $\varphi(\sum_i a_i \otimes b_i) =$ $\sum a_i b_i$. As defined by Hirata and Sugano [3], R is called a separable extension of S, if there exists $z = \sum_i a_i \otimes b_i \in R \otimes_S R$ such that $\varphi(z) = 1$ and rz = zrfor every $r \in R$; such an element z is called a separating idempotent of R over S. The center of R will be denoted by Z(R). Let G be any group and H be a subgroup of G. Any $a, b \in G$ are said to be in the same H-orbit if $b = x^{-1} a x$ for some $x \in H$. A set $\{g_{\alpha} : \alpha \in \Lambda\}$ of right cos representatives of H in G is called a right transversal of H in G ([4, p. 5]). Z(G) and $\Delta(G)$ denote the center and the F.C subgroup of G, respectively [4]. Let K be a non empty subset of G, then the subgroup of G generated by K and the centralizer of K are denoted by $\langle K \rangle$ and Centl(K), respectively. For $a, b \in G$, [a, b], N(a) and o(a) denote the commutator $a^{-1}b^{-1}ab$, the centralizer of a and the order of a, respectively. Consider a non zero $x = \sum a_g g \in RG$, then the support of x, denoted by supt(x), is the set $\{g \in G : a_q \neq 0\}$. For any set X, |X| denotes the cardinality of X. For some general concepts on rings and modules, one may refer to Stenström [7], and for group-rings to Passman [4].

2 – Group rings

Throughout H is a subgroup of a group G, $T = \{g_{\alpha} : \alpha \in \Lambda\}$ is a right transversal of H in G, with $g_1 = 1 \in T$, and R is any ring with identity $1 \neq 0$. Any element of $RG \otimes_{RH} RG$ is uniquely expressible as $\sum_{\alpha} a_{\alpha} \otimes g_{\alpha}$, $a_{\alpha} \in RG$, and $a_{\alpha} \neq 0$ for finitely many $\alpha \in \Lambda$. An $x \in RG \otimes_{RH} RG$ is called a commutant element if a x = x a for every $a \in RG$. We write P for $RG \otimes_{RH} RG$. The proof of the following is on familiar lines, as for the special case of H = 1 (see proof of [8, Lemma 1]).

Lemma 2.1. An $x = \sum_{\alpha} a_{\alpha} \otimes g_{\alpha} \neq 0$ in P, is a commutant element if and only if, $[G:H] < \infty$, $a_{\beta} = g_{\beta}^{-1} a_1$, for every $\beta \in \Lambda$ and $a_1 = \sum_g r_g g \in Z(R) \Delta(G)$ such that for $g \in \operatorname{supt}(a_1)$, $r_g = r_{g'}$ whenever g' is in the H-orbit of g.

For any finite non empty subset X of G, y_x denotes the sum in RG, of elements of X. Clearly, $y_{\{1\}} = 1$. Consider a non zero commutant element $x \in P$, then $x = \sum_{\beta} g_{\beta}^{-1} a_1 \otimes g_{\beta}$. The above lemma gives

$$a_1 = r_1 + \sum_{i=2}^k r_{A_i} \, y_{A_i} \; ,$$

where A_i are finitely many finite *H*-orbits in *G* none equal to $\{1\}$, and $r_1, r_{A_i} \in Z(R)$.

Lemma 2.2. Let C be a conjugate class in G, $b, b' \in C$, and A be any H-orbit in C. Then

$$B = \left\{ \alpha \in \Lambda \colon g_{\alpha}^{-1} \, u \, g_{\alpha} = b \quad \text{for some } u \in A \right\}$$

and

$$B' = \left\{ \alpha \in \Lambda \colon g_{\alpha}^{-1} \, u \, g_{\alpha} = b' \text{ for some } u \in A \right\}$$

have the same cardinality.

Proof: Now, $b' = x^{-1} b x$ for some $x \in G$. Let $\alpha \in B$, then for some $u \in A$, $g_{\alpha}^{-1} u g_{\alpha} = b$. Now, $g_{\alpha} x = h_{t(\alpha)} g_{t(\alpha)}$ for some $h_{t(\alpha)} \in H$ and $t(\alpha) \in \Lambda$,

$$u' = h_{t(\alpha)}^{-1} u h_{t(\alpha)} \in A$$

and

$$b' = g_{t(\alpha)}^{-1} \, u' \, g_{t(\alpha)} \, .$$

This gives $t(\alpha) \in B'$. The mapping $t \hookrightarrow t(\alpha)$ is a one-to-one mapping of B into B'. So that, $|B| \leq |B'|$. Similarly, $|B'| \leq |B|$. Hence, |B| = |B'|.

Henceforth, let $|\Lambda| < \infty$. Let *C* be a finite conjugate class in *G*. Consider an *H*-orbit *A* in *C*. The above lemma gives a positive integer λ_A which for any $b \in C$, equals

$$\left|\left\{\alpha \in \Lambda \colon g_{\alpha}^{-1} u g_{\alpha} = b \text{ for some } u \in A\right\}\right|$$
.

Let us call λ_A , the weight of C relative to A. If $C = \{b_1, b_2, ..., b_t\}$, and $C = A_1 \cup A_2 \cup ... \cup A_k$ is the decomposition of C into H-orbits, then for any $r_i \in R$,

$$\sum_{\alpha} \sum_{i} g_{\alpha}^{-1} r_i y_{A_i} g_{\alpha} = \sum_{j=1}^{\iota} \left(\sum_{i} \lambda_{A_i} r_i \right) b_j = \left(\sum_{i} \lambda_{A_i} r_i \right) y_C .$$

The following theorem generalizes [8, Theorem 2] and some other results in [9].

Theorem 2.3. Let H be any subgroup of a group G, and R be any ring. The following hold.

- i) RG is a separable extension of RH if and only if $[G : H] < \infty$ and $[G : H] 1_R$ is invertible in R.
- ii) If RG is separable over RH, then RG has a unique separating idempotent over RH if and only if each finite conjugate class in G is an H-orbit.

Proof: i) Let RG be a separable extension of RH. So, there exists $z \in RG \otimes_{RH} RG$ such that under the RG-bimodule homomorphism $\varphi: RG \otimes_{RH} RG \to RG$, such that $\varphi(a \otimes b) = ab$, we have $\varphi(z) = 1$ and az = za for any $a, b \in RG$. By (2.1), $[G:H] = n < \infty$ and $z = \sum_{\alpha} g_{\alpha}^{-1} a_1 \otimes g_{\alpha}$ with $a_1 = r_1 + \sum_i r_i y_{A_i}$, where A_i are some finite *H*-orbits other than $\{1\}$; $r_1, r_i \in Z(R)$. Then

$$1 = \varphi(z) = n r_1 + \sum_{i,\alpha} g_\alpha^{-1} r_i y_{A_i} g_\alpha$$

yields $n r_1 = 1$. Thus, $n 1_R$ is invertible in R. Conversely, if $s = n 1_R$ is invertible in R, then

$$z_0 = \frac{1}{s} \sum_{\alpha} g_{\alpha}^{-1} \otimes g_{\alpha}$$

is a separating idempotent of RG over RH.

ii) Let RG be separable over RH. Let RG have only one separating idempotent over RH. This one is $z' = \frac{1}{s} \sum_{\alpha} g_{\alpha}^{-1} \otimes g_{\alpha}$. Suppose there exists a finite conjugate class C in G, such that $C = A_1 \cup A_2 \cup \ldots \cup A_k$, where A_i are disjoint H-orbits, and $k \geq 2$. If one of λ_{A_1} and λ_{A_2} is non zero in R, then

$$z = \sum_{\alpha} g_{\alpha}^{-1} (\lambda_{A_2} y_{A_1} - \lambda_{A_1} y_{A_2}) \otimes g_{\alpha} \neq 0 ,$$

and

$$\varphi(z) = \left(\lambda_{A_1} \, \lambda_{A_2} - \lambda_{A_2} \, \lambda_{A_1}\right) y_C = 0 \; .$$

This gives a separating idempotent $z_0 + z$ different from z_0 . If $\lambda_{A_1} = 0 = \lambda_{A_2}$ in R, then

$$z_0 + \sum_{lpha} g^1_{lpha}(y_{A_1} + y_{A_2}) \otimes g_{lpha}$$

is a separating idempotent other than z_0 . This is a contradiction. Hence every finite conjugate class in G is an *H*-orbit. Conversely, let every finite conjugate

class in G be an *H*-orbit, then any non zero commutant element in $RG \otimes_{RH} RG$ is of the form

$$z = \sum_{\alpha} g_{\alpha}^{-1} a_1 \otimes g_{\alpha}$$

where $a_1 = \sum_i r_i y_{C_i}$, for some finitely many distinct finite conjugate classes C_i in G and $r_i \neq 0$ in Z(R), $\varphi(z) = n \sum_i r_i y_{C_i}$, n = [G : H], gives $\varphi(z) \neq 0$. Hence, R has only one separating idempotent over RH.

3 – Finite groups

Throughout G is a finite group, and H is a subgroup of G. We consider the condition

(S) Any conjugate class in G is an H-orbit.

If R is any ring such that |G| is invertible in R, by (2.3) RG has only one separating idempotent over RH if and only if H satisfies (S). This observation motivates us to study the above condition. If G = HZ(G), obviously, H satisfies (S). There exist groups G having subgroups H satisfying (S), but $G \neq HZ(G)$. Some such groups of order 64 were found by using GAP [6]. One such a group is described at the end of this paper. We endeavor to prove that for any group G of order less than 64, if a subgroup H satisfies (S), then G = HZ(G). We shall give a number of sufficient conditions on |H| and |G| under which G = HZ(G), whenever H satisfies (S). We start with the following obvious results.

Lemma 3.1. Let H be a subgroup of a finite group G. Then:

- i) H satisfies (S) if and only if G = HN(a) for every $a \in G$.
- ii) If H satisfies (S), then $Centl(H) \leq Z(G)$, and $Z(G) \cap H = Z(H)$.
- iii) If H satisfies (S), then G/H is an abelian group, G' = [H, G] = H'; further if H is abelian, then G is abelian.
- iv) If H satisfies (S), then any normal subgroup of H is a normal subgroup of G.

Proposition 3.2. If |G| = p q s, where p and q are two distinct primes, and H is a non abelian subgroup of G of order p q, satisfying (S), then G = HZ(G).

Proof: Z(H) = 1. Let $a, b \in H$, such that o(a) = p, o(b) = q. To be definite, let p < q. As G = HN(a), by (3.1), |N(a)| = p s. Similarly, |N(b)| = q s. As $\langle b \rangle$ is

a normal subgroup of H, by (3.1) iv), $\langle b \rangle$ is a normal subgroup of G. So, N(b) is a normal subgroup of G. Then $p q \mid |N(a) N(b)|$ yields $s \mid |N(a) \cap N(b)|$. Obviously, $N(a) \cap N(b) = \text{Centl}(H)$. So, $N(a) \cap N(b) \leq Z(G)$, by (3.1) ii). However, $N(a) \cap N(b) \cap H = 1$. This yields, $Z(G) = N(a) \cap N(b)$, and G = HZ(G).

Theorem 3.3. Let $|G| = p^2 q s$, where p and q are primes, such that p < q, and H he a subgroup of G of order $p^2 q$, satisfying (S), then G = HZ(G).

Proof: Let $K = \langle c \rangle$, be a Sylow q-subgroup of H. Consider q > 3. Then, K is a normal subgroup of H, hence by (3.1) iv) it is normal in G. Now |Z(H)| is 1 or p. Let P be a Sylow p-subgroup of H.

Case (I): Z(H) = 1. Then P is cyclic. Let $P = \langle d \rangle$. As G = HN(d), $|N(d)| = p^2 s$. Also, |N(c)| = q s. $H = \langle c, d \rangle$, yields $N(c) \cap N(d) = \text{Centl}(H) \leq Z(G)$, $H \cap (N(c) \cap N(d)) = 1$. Also $H \leq N(c) N(d)$, yields G = N(c) N(d). So that $p^2 q s = |N(d) N(c)|$, $|N(d) \cap N(c)| = s$. Hence, G = HZ(G).

Case (II): |Z(H)| = p. Then, |N(c)| = p q s. Let P be cyclic. Then $|N(c) \cap N(d)| = p s$, and once again G = HZ(G). Suppose P is not cyclic, then $H = Z(H) \times L$, where |L| = p q. Then for any $x \in G$, G = HN(x) = LN(x). So by (3.2), G = LZ(G) = HZ(G).

We now consider q = 3. Then p = 2, |H| = 12. If a Sylow 2-subgroup of H is cyclic, on similar lines as when q > 3, we get G = HZ(G). Let Sylow 2-subgroup of H be not cyclic. Suppose Sylow 3-subgroup of H is not normal. We get another Sylow 3-subgroup $K' = \langle c' \rangle$ of H. Then |N(c)| = |N(c')| = 3s, $N(c) \cap N(c') \cap H = 1$. Then, $|N(c) N(c')| \le 12 s$, yields $|N(c) \cap N(c')| \ge \frac{3}{4} s$ and hence, $|H(N(c) \cap N(c'))| \ge \frac{3}{4} |G|$. Consequently, $G = H(N(c) \cap N(c'))$. However, $H = \langle c, c' \rangle$. Thus, $N(c) \cap N(c') \le Z(G)$. If Sylow 3-subgroup of H is normal, then $H = L \times L_1$, |L| = 6, $|L_1| = 2$. Once again by (3.2), G = HZ(G).

Theorem 3.4. Let $|G| = p^2 q s$, where p, q and s are prime numbers and p > q, then for any nonabelian subgroup H of G of order $p^2 q$, satisfying (S), G = HZ(G).

Proof: Let P be a Sylow p-subgroup of H, and $K = \langle c \rangle$ be a Sylow q-subgroup of H. Now P is a normal subgroup of G.

Case (I): P, a cyclic group. So for some $a \in P$, $P = \langle a \rangle$; then Z(H) = 1. By using (3.1), we get $|N(a)| = p^2 s$, |N(c)| = q s, and $|N(a) \cap N(c)| \ge s$. However, $H \cap N(a) \cap N(c) = 1$ and $N(a) \cap N(c) \le Z(G)$. This yields $G = H \times Z(G)$.

SEPARABLE GROUP-RING EXTENSIONS

Case (II): P is not cyclic. If $Z(H) \neq 1$, then $H = Z(H) \times L_1$ with $|L_1| = pq$. By (3.2), $G = L_1Z(G) = HZ(G)$. Let Z(H) = 1. If for some $a \in H$ with o(a) = p, $H = \langle a, c \rangle$, as in Case (I), we get G = HZ(G). Suppose $H \neq \langle a, c \rangle$, for any $a \in H$ with o(a) = p, then $H = \langle a, b, c \rangle$ for some $a, b \in H$ satisfying o(a) = p = o(b), $c^{-1} a c = a^{\lambda}$, $c^{-1} b c = b^{\lambda}$ for some λ , satisfying $2 \leq \lambda \leq p - 1$, $c^1 x c = x^{\lambda}$ for any $x \in P$. If N(a) = N(b), then $N(a) \cap N(c) \leq Z(G)$ and $|N(a) \cap N(c)| \geq s$. So, G = HZ(G).

Let $N(x) \neq N(y)$ for any $x, y \in H$ for which $P = \langle x, y \rangle$. As [G: N(a)] = q, G = N(a) N(b), and $|N(a) \cap N(b)| = p^2(\frac{s}{q})$. So, s = q, $|G| = p^2 q^2$, $|N(c)| = q^2$, $|N(a)| = p^2 q$, $P = N(a) \cap N(b)$, and $|N(a) \cap N(c)| = q = |N(b) \cap N(c)|$. Suppose N(c) is cyclic, then $N(a) \cap N(c)$ being the unique subgroup of N(c) of order q, give $N(a) \cap N(c) = \langle c \rangle = N(b) \cap N(c)$. This gives H is abelian. This is a contradiction. Hence N(c) is not cyclic. If $N(a) \cap N(c) = N(b) \cap N(c)$, then for some $d \in N(c)$, such that $d \notin \langle c \rangle$, $d \in N(a) \cap N(b)$. This gives $N(a) = P\langle d \rangle = N(b)$. This is a contradiction. So, $N(a) \cap N(c) \neq N(b) \cap N(c)$. We get $g \in (N(a) \cap N(c)) \setminus (N(b) \cap N(c))$. Then $N(c) = \langle c, g \rangle$, $g^{-1} b g = b^j$ for some j, with $2 \leq j \leq p - 1$. Then $N(ab) \cap N(c) = 1$. On the other hand, as for a, $|N(ab) \cap N(c)| = q$. This is a contradiction. Hence the result follows.

Proposition 3.5. If $|G| = p^3 s$, for some prime number p, and H is a nonabelian subgroup of G of order p^3 , satisfying (S), then G = HZ(G).

Proof: Now, $H = \langle a, b \rangle$, for some a, b not in Z(H), and |Z(H)| = p. By using (3.1) we get $|N(a)| = p^2 s = |N(b)|$, $|H \cap N(a) \cap N(b)| = p$ and $N(a) \cap N(b) \leq Z(G)$. As $|N(a) \cap N(b)| \geq p s$, it is immediate that G = HZ(G).

Let *n* be any positive integer less than 64, other than 32, 48 and 60. Let *G* be a group of order *n*, then any proper subgroup of *G* is either abelian or of order of the form given in (3.2) to (3.5), so G = HZ(G). Let |G| = 60, in view of (3.2) to (3.5), we consider a nonabelian subgroup *H* of *G* of order 30, satisfying (S). *H* has a normal cyclic subgroup $L = \langle a \rangle$ of order 15. Let $b \in H$ be of order 2. Then |N(a)| = 30, 4 | |N(b)|. So that 2 | |Z(G)|. If $Z(G) \leq H$, then G = HZ(G). If $Z(G) \leq H$, then H = LZ(G), and *L* satisfies (S). By (3.2), G = LZ(G). This is a contradiction. Hence, $Z(G) \leq H$, and G = HZ(G). We get:

Lemma 3.6. Let |G| = 60, then for any subgroup H of G satisfying (S), G = HZ(G).

Lemma 3.7. Let |G| = 32, then for any nonabelian subgroup H of G, satisfying (S), G = HZ(G).

Proof: In view of (3.5) we only consider the case H = 16. Suppose $Z(G) \le H$. Then by (3.1), Z(H) = Z(G). By Scott, [6.5.1, p. 146], H has an abelian subgroup L of order 8. Suppose H has another abelian subgroup L_1 of order 8. Then $|L \cap L_1| = 4$, $Z(H) = L \cap L_1$ and $L/Z(H) = \langle \overline{x} \rangle$ for some $x \in L \setminus Z(H)$. Then for any a, b in $L \setminus Z(H)$, N(a) = N(b), and by (3.1) |N(a)| = 16. Thus, T = $\operatorname{Centl}(L) = N(a)$ for any $a \in L \setminus Z(H)$. Similarly, $T_1 = \operatorname{Centl}(L_1)$ is of order 16. Further T and T_1 are abelian, $T \cap T_1 \leq Z(G)$ and $|T \cap T_1| \geq 8$. This is a contradiction. Hence H has a unique abelian subgroup L of order 8. This in turn yields, |Z(H)| = 2. Suppose $\overline{H} = H/Z(H)$ has an element \overline{a} of order 4. Then $|N(a)| = 16, \langle Z(H), a \rangle \leq Z(N(a)),$ gives N(a) is abelian. Choose $a, b \in H$ such that $ab \neq ba$. Then $|N(b)| \geq 8$. As $\langle Z(H), b \rangle \leq Z(N(b))$, we get a subgroup T of N(b) of order 8 such that $\langle Z(H), b \rangle \leq T$. As N(a) is an abelian normal subgroup of order 16, G = N(a)T, $|N(a) \cap T| = 4$ and $N(a) \cap T \leq Z(G)$. This is a contradiction, as |Z(G)| = 2. Hence, \overline{H} is elementary abelian. Let $Z(H) = \{e, d\}$. We can find $\overline{a}, \overline{b}, \overline{c} \in \overline{H}$ such that $\overline{H} = \langle \overline{a}, \overline{b}, \overline{c} \rangle, L = \langle a, b, d \rangle$. Then $a b \neq b a, a c \neq c a$, otherwise we get an abelian subgroup of H of order 8, other than L. Now $N(a) \cap L = \{e, d\}, |N(a)| \ge 8$, gives G = LN(a). As $\overline{a} \, \overline{b} = \overline{b} \, \overline{a}$, we get b a = a b d. Similarly, c a = a c d. Then, c b a = c a b d = a c d b d = a c b. Thus, $c b \in N(a) \cap L$. This is a contradiction. Hence, $Z(G) \leq H$ and G = HZ(G).

Thus, we get the following

Theorem 3.8. Let G be any group of order less than 64, and different from 48. If a subgroup H of G satisfies (S), then G = HZ(G).

For |G| = 48, we require to discuss only the case when |H| = 24. However, there are large number of possibilities for this case. This case is left untackled for the time being.

There exist large number of pairs (G, H), where H satisfies (S), but $G \neq HZ(G)$. Such pairs of 2-groups have been found by using GAP-computer package [6]. Here we describe a pair (G, H) with |G| = 64, |H| = 32, Z(G) = Z(H); so that $G \neq HZ(G)$. We could discover three different groups G, of order 64, numbered as 257, 258, and 259, in the 2-group library of the package. In each of them we could find six subgroups H of order 32, satisfying (S) and containing Z(G). One such is the following. This is numbered 257.

Example: $C = \langle a, b, c, d \rangle$ with relations $a^2 = b^2 = c^2 = d^2 = 1$, ac = ca, ad = da, bc = cb, bd = db, $[d, c] = [b, a]^2 = [[b, a], a]$, [d, c]c = c[d, c], [d, c]d = d[d, c], $[d, c]^2 = 1$. Here, $Z(G) = \{I, [d, c]\}, |G| = 64, H = \langle b, d, [b, a], [d, c], ac \rangle, |H| = 32$.

ACKNOWLEDGEMENT – This research was partially supported by the Kuwait University Research Grant No. SMO75. We thank the referee for his suggestions.

REFERENCES

- [1] DE MEYER, F.R. and INGRAHAM, E. Separable algebras over commutative rings, Lecture Notes in Mathematics, Vol. 181, Springer-Verlag, 1971.
- [2] DE MEYER, F.R. and JANUSZ, G.J. Group rings which are Azumaya Algebras, Trans. Amer. Math. Soc., 279 (1983), 389–395.
- [3] HIRATA, K. and SAGANO, K. On semi-simple extensions and separable extensions over noncommutative rings, J. Math. Soc. Japan, 18 (1966), 360–373.
- [4] PASSMAN, D.S. The Algebraic Structure of Group Rings, John Wiley and Sons, 1977.
- [5] SCOTT, W.R. Group Theory, Prentice-Hall Inc., 1964.
- [6] SCHONERT, M. et al GAP, Groups, Algorithm, Programming, Lehrstuhl D für Mathematik, RWTH Achen, 1992.
- [7] STENSTRÖM, B. Rings of Quotients, Die Grundlehren der mathematischen Wissenschaften, 217, Springer-Verlag, 1975.
- [8] SZETO, G. On separable extensions of group rings and quaternion rings, Internat. J. Math. & Math. Sci., 1 (1978), 433–438.
- [9] SZETO, G. and WONG, Y.E. A general Maschke Theorem, Nanta Math., 12 (1979), 1–4.

Surjeet Singh and L.A.-M. Hanna, Department of Mathematics, Kuwait University, P.O. Box 5969, Safat 13060 – KUWAIT