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Abstract: Following the definition of graph representation modulo an integer given

by Erdös and Evans in [1], we call degree of a representation to the number of prime

factors in the prime factorization of its modulo. Here we study the smallest possible

degree for a representation of a graph.

The starting point for this research is the concept of representation introduced

in [1], and the proposed study of relations between properties of graphs and

properties of their representations.

Let G = (V,E) be a graph with n vertices v1, ..., vn. The graph G is said to be

representable modulo a positive integer b if there exist distinct integers a1, ..., an

such that 0 ≤ ai < b, and g.c.d.{ai−aj , b} = 1 if and only if vi and vj are adjacent.

We say that {a1, ..., an} is a representation of G modulo b. We call degree of

the representation to the number of prime factors, counting multiplicities, in the

prime factorization of b. The concept of degree was not mentioned in [1] explicitly.

However we can see in the proof of the theorem of [1] that there always exists

a representation of degree equal to the number of edges of the complement of

a graph that results from G by adjoining an isolated vertex. We shall see that

there exist representations of smaller degree. We call representation degree of G,

dr(G), to the smallest possible degree for a representation of G.

We say that a function φ : E → X is transitive if, for every (vi, vj), (vj , vk) ∈ E

such that φ(vi, vj) = φ(vj , vk) = x, we have (vi, vk) ∈ E and φ(vi, vk) = x. For

example, if φ : E → X is one-to-one, then φ is transitive. Given a set Y , #Y
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denotes its cardinal number. We call degree of a transitive function φ : E → X

to #φ(E) and we call transitive degree of G, dt(G), to the smallest #φ(E), when

φ runs over the transitive functions defined in E. It is not difficult to prove some

properties of dt(G). For example:

Proposition 1. dt(G) ≤ #E.

Proposition 2. dt(G) = maxH dt(H), where H runs over the maximal

connected subgraphs of G.

Proposition 3. Suppose that G is connected. Then

a) dt(G) = 0 if and only if #V = 1.

b) dt(G) = 1 if and only if #V ≥ 2 and G is complete.

c) dt(G) = #E if and only if there exists a vertex incident with all the edges

of G.

Let G′ = (V ′, E′) be the complement of G. The following theorems are our

main results. We shall prove them later.

Theorem 4. Let φ be a transitive function defined in E ′ of degree d ≥ 2.

Then there exists a representation of G of degree d.

Corollary 5. If dt(G
′) ≥ 2, then dr(G) ≤ dt(G

′) ≤ #E′.

Corollary 5 is not always true when dt(G
′) ≤ 1. The following proposition

shows this and is easy to prove.

Proposition 6.

a) dr(G) = 0 if and only if #V = 1.

b) dr(G) = 1 if and only if #V ≥ 2 and G is complete.

c) dr(G) ≤ 1 if and only if dt(G
′) = 0.

d) If dt(G
′) = 1, then dr(G) = 2.

Theorem 7. Suppose that G′ does not have any subgraph isomorphic to

K3. If G has a representation of degree d, then there exists a transitive function

defined in E′ of degree ≤ d.
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Counter-example. If G′ has subgraphs isomorphic to K3, then Theorem 7 is

not always true, as the following example shows. Suppose that G is a graph with

5 vertices and only one edge. Then R = {0, 3, 5, 15, 30} is a representation of G

modulo b = 3× 5× 7 = 105. It is not difficult to see that any transitive function

defined in E′ has degree greater than 3.

Corollary 8. If dt(G
′) ≥ 2 and G′ does not have any subgraph isomorphic

to K3, then dr(G) = dt(G
′).

Let M(G′) be the maximum number of edges incident with one vertex in G′.

Theorem 9. Suppose that G′ has no cycles. Then

a) dt(G
′) =M(G′).

b) If at least one of the maximal connected subgraphs of G′ has at least 3

vertices, then

(1) dr(G) = dt(G
′) =M(G′) .

Corollary 10. If G′ is a tree and n 6= 2, then (1) holds.

Now we are going to prove the theorems above. We split the proof of Theo-

rem 4 into several lemmas.

Lemma 11. Suppose that φ : E ′→X is a transitive function with#φ(E ′)=1.

Let δ be a positive integer. Then there exists a positive prime p > δ and there

exist distinct nonnegative integers a1, ..., an such that (vi, vj) ∈ E
′ if and only if

p divides ai − aj , i, j ∈ {1, ..., n}, i 6= j.

Proof: Let H1, ..., Ht be the maximal connected subgraphs of G
′. Without

loss of generality, suppose that Hs = {vk1+···+ks−1+1, ..., vk1+···+ks
}, ks = #Hs,

s ∈ {1, ..., t}. Let p be a prime > max{t, δ}. If i = k1+ · · ·+ks−1+ j, 1 ≤ j ≤ ks,

let ai = s + j p. Since #φ(E ′) = 1, the graphs Hi are complete. It is easy to

conclude that the lemma is satisfied.

Lemma 12. Let α and β be integers with g.c.d.{α, β} = 1. Let p be a

prime. Then there exists at most one ε ∈ {0, ..., p − 1} such that ε β + α ∈ (p),

where (p) denotes the principal ideal, of the ring of the integers, generated by p.

Proof: Firstly, suppose that p divides β. Then p does not divide α and,

therefore, ε β+α /∈ (p), for every integer ε. Now suppose that p does not divide β
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and that there exist ε1, ε2 ∈ {1, ..., p−1} such that ε1 6= ε2 and ε1β+α, ε2β+α ∈

(p). Then (ε1 − ε2)β ∈ (p). As p is prime, p divides ε1 − ε2 or p divides β, what

is impossible.

Lemma 13. Let α1, ..., αs, β1, ..., βs be integers such that g.c.d.{αj , βj} = 1,

j ∈ {1, ..., s}. Let b = p1 · · · pr, where p1, ..., pr are positive primes. If min{pi :

1 ≤ i ≤ r} > s r, then there exists an integer γ such that

(2) g.c.d.{γβj + αj , b} = 1 , j ∈ {1, ..., s} .

Proof: Letm = min{pi}. From the previous lemma, it can easily be deduced

that there exists γ ∈ {0, ...,m − 1} such that γβj + αj /∈ (pi), j ∈ {1, ..., s},

i ∈ {1, ..., r}. That is, γ satisfies (2).

Lemma 14. Let φ : E ′ → X be a transitive function. Suppose that

d = #φ(E′) ≥ 2 and φ(E ′) = {x1, ..., xd}. Let δ be a positive integer. Then there

exist distinct positive primes p1, ..., pd and there exist distinct integers a1, ..., an

such that:

i) 0 ≤ ai < p1 · · · pd, i ∈ {1, ..., n}.

ii) g.c.d.{ai − aj , p1 · · · pd} = 1 if and only if (vi, vj) /∈ E′, i, j ∈ {1, ..., n},

i 6= j.

iii) g.c.d.{ai−aj , p1 · · · pd} = pu if and only if (vi, vj) ∈ E
′, and φ(vi, vj) = xu,

i, j ∈ {1, ..., n}, i 6= j, u ∈ {1, ..., d}.

iv) min{p1, ..., pd} > δ.

Proof: By induction on n. As d ≥ 2, we have n ≥ 3. Let G0 = (V0, E0) be

the subgraph that we obtain from G′ deleting vn and all the edges incident with

vn. Without loss of generality, we assume that E0 6= E′ and φ(E0) = {x1, ..., xe}.

We choose p1, ..., pe and a1, ..., an−1 as follows. Note that e ≤ 1 when n = 3.

If e ≥ 2, then, by the induction assumption, there exist distinct primes

p1, ..., pe and there exist distinct integers a1, ..., an−1 such that:

i0) 0 ≤ ai < p1 · · · pe, i ∈ {1, ..., n− 1}.

ii0) g.c.d.{ai−aj , p1 · · · pe} = 1 if and only if (vi, vj) /∈ E0, i, j ∈ {1, ..., n−1},

i 6= j.

iii0) g.c.d.{ai−aj , p1· · · pe}=pu if and only if (vi, vj)∈E0, and φ(vi, vj)=xu,

i, j ∈ {1, ..., n− 1}, i 6= j, u ∈ {1, ..., e}.

iv0) min{p1, ..., pe} > max{δ, (n− 1)d}.
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If e = 1, then, according to Lemma 11, there exists a prime p1 and there exist

distinct nonnegative integers a1, ..., an−1 satisfying ii0), iii0) and iv0).

If e = 0, take ai = i− 1, i ∈ {1, ..., n− 1}.

In any case e ≥ 0, we choose primes pe+1, ..., pd such that:

I) p1, ..., pd are distinct.

II) None of the primes pe+1, ..., pd divide ai − aj , i, j ∈ {1, ..., n− 1}, i 6= j.

III) min{p1, ..., pd} > max{δ, (n− 1)d}.

Without loss of generality, suppose that v1, ..., vt are the vertices of G
′ incident

with vn. Let xki
= φ(vi, vn), i ∈ {1, ..., t}. Without loss of generality, suppose

that k1, ..., kr are pairwise distinct and ki ∈ {k1, ..., kr} whenever i ∈ {r+1, ..., t}.

According to the Chinese Remainder Theorem, there exists an integer z such

that

(3) z − aj ∈ (pkj
) , j ∈ {1, ..., r} .

Let i ∈ {r + 1, ..., t} and suppose that ki = kj , wherej j ∈ {1, ..., r}. As φ is

transitive, (vi, vj) ∈ E
′ and φ(vi, vj) = xki

. Therefore ki ∈ {1, ..., e}. From iii0),

it follows that ai − aj ∈ (pki
). Thus z − ai = (z − aj) + (aj − ai) ∈ (pki

).

Now suppose that z−ai ∈ (pkj
), with i ∈ {1, ..., n−1}, j ∈ {1, ..., r}. From (3),

ai−aj ∈ (pkj
). Bearing in mind II), ii0) and iii0), we conclude that kj ∈ {1, ..., e},

(vi, vj) ∈ E0 and φ(vi, vj) = xkj
. From the transitivity of φ, (vi, vn) ∈ E′ and

φ(vi, vn) = xkj
. Therefore, i ∈ {1, ..., t} and ki = kj .

It is not difficult to prove that

g.c.d.{pk1
· · · pkr

, z − ai} = pki
, i ∈ {1, .., t} ,(4)

g.c.d.{pk1
· · · pkr

, z − ai} = 1 , i ∈ {t+ 1, ..., n− 1} .(5)

Using Lemma 13, it follows from (4), (5) and III) that there exists an integer γ

such that

g.c.d.

{
γ
pk1
· · · pkr

pki

+
z − ai

pki

, b

}
= 1 , i ∈ {1, ..., t} ,(6)

g.c.d.
{
γ pk1

· · · pkr
+ z − ai, b

}
= 1 , i ∈ {t+ 1, .., n− 1} ,(7)

where b = p1 · · · pd. Let an = γ pk1
· · · pkr

+ z + wb, where w is an integer chosen

so that 0 ≤ an < b. Then (6) and (7) take the forms

g.c.d.{an − ai, b} = pki
, i ∈ {1, ..., t} ,

g.c.d.{an − ai, b} = 1 , i ∈ {t+ 1, ..., n− 1} .
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Clearly an is different from ai, i ∈ {1, ..., n − 1}, and conditions i)–iv) are

satisfied.

Now Theorem 4 follows immediately from Lemma 14.

Proof of Theorem 7: Let R = {a1, ..., an} be a representation of G modulo

b = p1 · · · pd, where p1, ..., pd are primes. Suppose that a1, ..., an are ordered so

that g.c.d.{ai − aj , b} = 1 if and only if (vi, vj) ∈ E. For each (vi, vj) ∈ E′, let

φ(vi, vj) be an element of {p1, ..., pd} such that φ(vi, vj) divides ai−aj . It is easy

to see that φ : E ′ → {p1, ..., pd} is transitive.

Proof of Theorem 9: a) For each i ∈ {1, ..., n}, we denote by Ei(G
′) the set

of all the edges incident with vi in G
′. Given a transitive function φ : E ′ → X,

the restriction of φ to Ei(G
′) is one-to-one. Therefore, #φ(E ′) ≥ #Ei(G

′).

Consequently, dt(G
′) ≥ max{#Ei(G

′)}.

Now we prove that dt(G
′) ≤ max{#Ei(G

′)} by induction on #E ′. If E′ is

empty, this is trivial. Suppose that #E ′ ≥ 1. Then there exists i ∈ {1, ..., n} such

that #Ei(G
′) = 1. Without loss of generality, assume that En(G

′) = {(vn−1, vn)}.

Let G̃ = (V, Ẽ), where Ẽ = E′\{(vn−1, vn)}. By the induction assumption,

dt(G̃) ≤ max{#Ei(G̃)}. Let ψ : Ẽ → X be a transitive function of degree dt(G̃).

If there exists i ∈ {1, ..., n − 2} such that #En−1(G̃) < #Ei(G̃) (= #Ei(G
′)),

let x be an element of ψ(Ei(G̃))\ψ(En−1(G̃)). If #Ei(G̃) ≤ #En−1(G̃), i ∈

{1, ..., n−2}, let x be an element that does not belong to X. Let φ : E ′ → X∪{x}

be the extension function of ψ satisfying φ(vn−1, vn) = x. It is easy to see that φ

is transitive and

dt(G
′) ≤ #φ(E′) ≤ max{#Ei(G

′)} .

b) Since G′ is acyclic, the hypothesis of b) is equivalent to dt(G
′) ≥ 2. Thus

b) follows from a) and Corollary 8.
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