INTEGRAL REPRESENTATIONS OF GRAPHS *

Fernando C. Silva

Presented by J.A. Dias da Silva

Abstract

Following the definition of graph representation modulo an integer given by Erdös and Evans in [1], we call degree of a representation to the number of prime factors in the prime factorization of its modulo. Here we study the smallest possible degree for a representation of a graph.

The starting point for this research is the concept of representation introduced in [1], and the proposed study of relations between properties of graphs and properties of their representations.

Let $G=(V, E)$ be a graph with n vertices v_{1}, \ldots, v_{n}. The graph G is said to be representable modulo a positive integer b if there exist distinct integers a_{1}, \ldots, a_{n} such that $0 \leq a_{i}<b$, and g.c.d. $\left\{a_{i}-a_{j}, b\right\}=1$ if and only if v_{i} and v_{j} are adjacent. We say that $\left\{a_{1}, \ldots, a_{n}\right\}$ is a representation of G modulo b. We call degree of the representation to the number of prime factors, counting multiplicities, in the prime factorization of b. The concept of degree was not mentioned in [1] explicitly. However we can see in the proof of the theorem of [1] that there always exists a representation of degree equal to the number of edges of the complement of a graph that results from G by adjoining an isolated vertex. We shall see that there exist representations of smaller degree. We call representation degree of G, $d_{r}(G)$, to the smallest possible degree for a representation of G.

We say that a function $\phi: E \rightarrow X$ is transitive if, for every $\left(v_{i}, v_{j}\right),\left(v_{j}, v_{k}\right) \in E$ such that $\phi\left(v_{i}, v_{j}\right)=\phi\left(v_{j}, v_{k}\right)=x$, we have $\left(v_{i}, v_{k}\right) \in E$ and $\phi\left(v_{i}, v_{k}\right)=x$. For example, if $\phi: E \rightarrow X$ is one-to-one, then ϕ is transitive. Given a set $Y, \# Y$

[^0]denotes its cardinal number. We call degree of a transitive function $\phi: E \rightarrow X$ to $\# \phi(E)$ and we call transitive degree of $G, d_{t}(G)$, to the smallest $\# \phi(E)$, when ϕ runs over the transitive functions defined in E. It is not difficult to prove some properties of $d_{t}(G)$. For example:

Proposition 1. $d_{t}(G) \leq \# E$.
Proposition 2. $d_{t}(G)=\max _{H} d_{t}(H)$, where H runs over the maximal connected subgraphs of G.

Proposition 3. Suppose that G is connected. Then
a) $d_{t}(G)=0$ if and only if $\# V=1$.
b) $d_{t}(G)=1$ if and only if $\# V \geq 2$ and G is complete.
c) $d_{t}(G)=\# E$ if and only if there exists a vertex incident with all the edges of G.

Let $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be the complement of G. The following theorems are our main results. We shall prove them later.

Theorem 4. Let ϕ be a transitive function defined in E^{\prime} of degree $d \geq 2$. Then there exists a representation of G of degree d.

Corollary 5. If $d_{t}\left(G^{\prime}\right) \geq 2$, then $d_{r}(G) \leq d_{t}\left(G^{\prime}\right) \leq \# E^{\prime}$.

Corollary 5 is not always true when $d_{t}\left(G^{\prime}\right) \leq 1$. The following proposition shows this and is easy to prove.

Proposition 6.

a) $d_{r}(G)=0$ if and only if $\# V=1$.
b) $d_{r}(G)=1$ if and only if $\# V \geq 2$ and G is complete.
c) $d_{r}(G) \leq 1$ if and only if $d_{t}\left(G^{\prime}\right)=0$.
d) If $d_{t}\left(G^{\prime}\right)=1$, then $d_{r}(G)=2$.

Theorem 7. Suppose that G^{\prime} does not have any subgraph isomorphic to K_{3}. If G has a representation of degree d, then there exists a transitive function defined in E^{\prime} of degree $\leq d$.

Counter-example. If G^{\prime} has subgraphs isomorphic to K_{3}, then Theorem 7 is not always true, as the following example shows. Suppose that G is a graph with 5 vertices and only one edge. Then $R=\{0,3,5,15,30\}$ is a representation of G modulo $b=3 \times 5 \times 7=105$. It is not difficult to see that any transitive function defined in E^{\prime} has degree greater than 3 .

Corollary 8. If $d_{t}\left(G^{\prime}\right) \geq 2$ and G^{\prime} does not have any subgraph isomorphic to K_{3}, then $d_{r}(G)=d_{t}\left(G^{\prime}\right)$.

Let $M\left(G^{\prime}\right)$ be the maximum number of edges incident with one vertex in G^{\prime}.
Theorem 9. Suppose that G^{\prime} has no cycles. Then
a) $d_{t}\left(G^{\prime}\right)=M\left(G^{\prime}\right)$.
b) If at least one of the maximal connected subgraphs of G^{\prime} has at least 3 vertices, then

$$
\begin{equation*}
d_{r}(G)=d_{t}\left(G^{\prime}\right)=M\left(G^{\prime}\right) . \tag{1}
\end{equation*}
$$

Corollary 10. If G^{\prime} is a tree and $n \neq 2$, then (1) holds.
Now we are going to prove the theorems above. We split the proof of Theorem 4 into several lemmas.

Lemma 11. Suppose that $\phi: E^{\prime} \rightarrow X$ is a transitive function with $\# \phi\left(E^{\prime}\right)=1$. Let δ be a positive integer. Then there exists a positive prime $p>\delta$ and there exist distinct nonnegative integers a_{1}, \ldots, a_{n} such that $\left(v_{i}, v_{j}\right) \in E^{\prime}$ if and only if p divides $a_{i}-a_{j}, i, j \in\{1, \ldots, n\}, i \neq j$.

Proof: Let H_{1}, \ldots, H_{t} be the maximal connected subgraphs of G^{\prime}. Without loss of generality, suppose that $H_{s}=\left\{v_{k_{1}+\cdots+k_{s-1}+1}, \ldots, v_{k_{1}+\cdots+k_{s}}\right\}, k_{s}=\# H_{s}$, $s \in\{1, \ldots, t\}$. Let p be a prime $>\max \{t, \delta\}$. If $i=k_{1}+\cdots+k_{s-1}+j, 1 \leq j \leq k_{s}$, let $a_{i}=s+j p$. Since $\# \phi\left(E^{\prime}\right)=1$, the graphs H_{i} are complete. It is easy to conclude that the lemma is satisfied.

Lemma 12. Let α and β be integers with g.c.d. $\{\alpha, \beta\}=1$. Let p be a prime. Then there exists at most one $\epsilon \in\{0, \ldots, p-1\}$ such that $\epsilon \beta+\alpha \in(p)$, where (p) denotes the principal ideal, of the ring of the integers, generated by p.

Proof: Firstly, suppose that p divides β. Then p does not divide α and, therefore, $\epsilon \beta+\alpha \notin(p)$, for every integer ϵ. Now suppose that p does not divide β
and that there exist $\epsilon_{1}, \epsilon_{2} \in\{1, \ldots, p-1\}$ such that $\epsilon_{1} \neq \epsilon_{2}$ and $\epsilon_{1} \beta+\alpha, \epsilon_{2} \beta+\alpha \in$ (p). Then $\left(\epsilon_{1}-\epsilon_{2}\right) \beta \in(p)$. As p is prime, p divides $\epsilon_{1}-\epsilon_{2}$ or p divides β, what is impossible.

Lemma 13. Let $\alpha_{1}, \ldots, \alpha_{s}, \beta_{1}, \ldots, \beta_{s}$ be integers such that g.c.d. $\left\{\alpha_{j}, \beta_{j}\right\}=1$, $j \in\{1, \ldots, s\}$. Let $b=p_{1} \cdots p_{r}$, where p_{1}, \ldots, p_{r} are positive primes. If $\min \left\{p_{i}:\right.$ $1 \leq i \leq r\}>s r$, then there exists an integer γ such that

$$
\begin{equation*}
\text { g.c.d. }\left\{\gamma \beta_{j}+\alpha_{j}, b\right\}=1, \quad j \in\{1, \ldots, s\} . \tag{2}
\end{equation*}
$$

Proof: Let $m=\min \left\{p_{i}\right\}$. From the previous lemma, it can easily be deduced that there exists $\gamma \in\{0, \ldots, m-1\}$ such that $\gamma \beta_{j}+\alpha_{j} \notin\left(p_{i}\right), j \in\{1, \ldots, s\}$, $i \in\{1, \ldots, r\}$. That is, γ satisfies (2).

Lemma 14. Let $\phi: E^{\prime} \rightarrow X$ be a transitive function. Suppose that $d=\# \phi\left(E^{\prime}\right) \geq 2$ and $\phi\left(E^{\prime}\right)=\left\{x_{1}, \ldots, x_{d}\right\}$. Let δ be a positive integer. Then there exist distinct positive primes p_{1}, \ldots, p_{d} and there exist distinct integers a_{1}, \ldots, a_{n} such that:
i) $0 \leq a_{i}<p_{1} \cdots p_{d}, i \in\{1, \ldots, n\}$.
ii) g.c.d. $\left\{a_{i}-a_{j}, p_{1} \cdots p_{d}\right\}=1$ if and only if $\left(v_{i}, v_{j}\right) \notin E^{\prime}, i, j \in\{1, \ldots, n\}$, $i \neq j$.
iii) g.c.d. $\left\{a_{i}-a_{j}, p_{1} \cdots p_{d}\right\}=p_{u}$ if and only if $\left(v_{i}, v_{j}\right) \in E^{\prime}$, and $\phi\left(v_{i}, v_{j}\right)=x_{u}$, $i, j \in\{1, \ldots, n\}, i \neq j, u \in\{1, \ldots, d\}$.
iv) $\min \left\{p_{1}, \ldots, p_{d}\right\}>\delta$.

Proof: By induction on n. As $d \geq 2$, we have $n \geq 3$. Let $G_{0}=\left(V_{0}, E_{0}\right)$ be the subgraph that we obtain from G^{\prime} deleting v_{n} and all the edges incident with v_{n}. Without loss of generality, we assume that $E_{0} \neq E^{\prime}$ and $\phi\left(E_{0}\right)=\left\{x_{1}, \ldots, x_{e}\right\}$. We choose p_{1}, \ldots, p_{e} and a_{1}, \ldots, a_{n-1} as follows. Note that $e \leq 1$ when $n=3$.

If $e \geq 2$, then, by the induction assumption, there exist distinct primes p_{1}, \ldots, p_{e} and there exist distinct integers a_{1}, \ldots, a_{n-1} such that:
$\left.\mathbf{i}_{0}\right) 0 \leq a_{i}<p_{1} \cdots p_{e}, i \in\{1, \ldots, n-1\}$.
$\mathbf{i i}_{0}$) g.c.d. $\left\{a_{i}-a_{j}, p_{1} \cdots p_{e}\right\}=1$ if and only if $\left(v_{i}, v_{j}\right) \notin E_{0}, i, j \in\{1, \ldots, n-1\}$, $i \neq j$.
$\left.\mathrm{iii}_{0}\right)$ g.c.d. $\left\{a_{i}-a_{j}, p_{1} \cdots p_{e}\right\}=p_{u}$ if and only if $\left(v_{i}, v_{j}\right) \in E_{0}$, and $\phi\left(v_{i}, v_{j}\right)=x_{u}$, $i, j \in\{1, \ldots, n-1\}, i \neq j, u \in\{1, \ldots, e\}$.
$\left.\mathbf{i v}_{0}\right) \min \left\{p_{1}, \ldots, p_{e}\right\}>\max \{\delta,(n-1) d\}$.

If $e=1$, then, according to Lemma 11, there exists a prime p_{1} and there exist distinct nonnegative integers a_{1}, \ldots, a_{n-1} satisfying ii_{0}), iii_{0}) and iv_{0}).

If $e=0$, take $a_{i}=i-1, i \in\{1, \ldots, n-1\}$.
In any case $e \geq 0$, we choose primes p_{e+1}, \ldots, p_{d} such that:
I) p_{1}, \ldots, p_{d} are distinct.
II) None of the primes p_{e+1}, \ldots, p_{d} divide $a_{i}-a_{j}, i, j \in\{1, \ldots, n-1\}, i \neq j$.
III) $\min \left\{p_{1}, \ldots, p_{d}\right\}>\max \{\delta,(n-1) d\}$.

Without loss of generality, suppose that v_{1}, \ldots, v_{t} are the vertices of G^{\prime} incident with v_{n}. Let $x_{k_{i}}=\phi\left(v_{i}, v_{n}\right), i \in\{1, \ldots, t\}$. Without loss of generality, suppose that k_{1}, \ldots, k_{r} are pairwise distinct and $k_{i} \in\left\{k_{1}, \ldots, k_{r}\right\}$ whenever $i \in\{r+1, \ldots, t\}$.

According to the Chinese Remainder Theorem, there exists an integer z such that

$$
\begin{equation*}
z-a_{j} \in\left(p_{k_{j}}\right), \quad j \in\{1, \ldots, r\} . \tag{3}
\end{equation*}
$$

Let $i \in\{r+1, \ldots, t\}$ and suppose that $k_{i}=k_{j}$, wherej $j \in\{1, \ldots, r\}$. As ϕ is transitive, $\left(v_{i}, v_{j}\right) \in E^{\prime}$ and $\phi\left(v_{i}, v_{j}\right)=x_{k_{i}}$. Therefore $k_{i} \in\{1, \ldots, e\}$. From iiio), it follows that $a_{i}-a_{j} \in\left(p_{k_{i}}\right)$. Thus $z-a_{i}=\left(z-a_{j}\right)+\left(a_{j}-a_{i}\right) \in\left(p_{k_{i}}\right)$.

Now suppose that $z-a_{i} \in\left(p_{k_{j}}\right)$, with $i \in\{1, \ldots, n-1\}, j \in\{1, \ldots, r\}$. From (3), $a_{i}-a_{j} \in\left(p_{k_{j}}\right)$. Bearing in mind II), ii_{0}) and iii_{0}), we conclude that $k_{j} \in\{1, \ldots, e\}$, $\left(v_{i}, v_{j}\right) \in E_{0}$ and $\phi\left(v_{i}, v_{j}\right)=x_{k_{j}}$. From the transitivity of $\phi,\left(v_{i}, v_{n}\right) \in E^{\prime}$ and $\phi\left(v_{i}, v_{n}\right)=x_{k_{j}}$. Therefore, $i \in\{1, \ldots, t\}$ and $k_{i}=k_{j}$.

It is not difficult to prove that

$$
\begin{align*}
& \text { g.c.d. }\left\{p_{k_{1}} \cdots p_{k_{r}}, z-a_{i}\right\}=p_{k_{i}}, \quad i \in\{1, . ., t\}, \tag{4}\\
& \text { g.c.d. }\left\{p_{k_{1}} \cdots p_{k_{r}}, z-a_{i}\right\}=1, \quad i \in\{t+1, \ldots, n-1\} . \tag{5}
\end{align*}
$$

Using Lemma 13, it follows from (4), (5) and III) that there exists an integer γ such that

$$
\begin{align*}
& \text { g.c.d. }\left\{\gamma \frac{p_{k_{1}} \cdots p_{k_{r}}}{p_{k_{i}}}+\frac{z-a_{i}}{p_{k_{i}}}, b\right\}=1, \quad i \in\{1, \ldots, t\}, \tag{6}\\
& \text { g.c.d. }\left\{\gamma p_{k_{1}} \cdots p_{k_{r}}+z-a_{i}, b\right\}=1, \quad i \in\{t+1, . ., n-1\}, \tag{7}
\end{align*}
$$

where $b=p_{1} \cdots p_{d}$. Let $a_{n}=\gamma p_{k_{1}} \cdots p_{k_{r}}+z+w b$, where w is an integer chosen so that $0 \leq a_{n}<b$. Then (6) and (7) take the forms

$$
\begin{aligned}
& \text { g.c.d. }\left\{a_{n}-a_{i}, b\right\}=p_{k_{i}}, \quad i \in\{1, \ldots, t\}, \\
& \text { g.c.d. }\left\{a_{n}-a_{i}, b\right\}=1, \quad i \in\{t+1, \ldots, n-1\} .
\end{aligned}
$$

Clearly a_{n} is different from $a_{i}, i \in\{1, \ldots, n-1\}$, and conditions i)-iv) are satisfied.

Now Theorem 4 follows immediately from Lemma 14.
Proof of Theorem 7: Let $R=\left\{a_{1}, \ldots, a_{n}\right\}$ be a representation of G modulo $b=p_{1} \cdots p_{d}$, where p_{1}, \ldots, p_{d} are primes. Suppose that a_{1}, \ldots, a_{n} are ordered so that g.c.d. $\left\{a_{i}-a_{j}, b\right\}=1$ if and only if $\left(v_{i}, v_{j}\right) \in E$. For each $\left(v_{i}, v_{j}\right) \in E^{\prime}$, let $\phi\left(v_{i}, v_{j}\right)$ be an element of $\left\{p_{1}, \ldots, p_{d}\right\}$ such that $\phi\left(v_{i}, v_{j}\right)$ divides $a_{i}-a_{j}$. It is easy to see that $\phi: E^{\prime} \rightarrow\left\{p_{1}, \ldots, p_{d}\right\}$ is transitive.

Proof of Theorem 9: a) For each $i \in\{1, \ldots, n\}$, we denote by $E_{i}\left(G^{\prime}\right)$ the set of all the edges incident with v_{i} in G^{\prime}. Given a transitive function $\phi: E^{\prime} \rightarrow X$, the restriction of ϕ to $E_{i}\left(G^{\prime}\right)$ is one-to-one. Therefore, $\# \phi\left(E^{\prime}\right) \geq \# E_{i}\left(G^{\prime}\right)$. Consequently, $d_{t}\left(G^{\prime}\right) \geq \max \left\{\# E_{i}\left(G^{\prime}\right)\right\}$.

Now we prove that $d_{t}\left(G^{\prime}\right) \leq \max \left\{\# E_{i}\left(G^{\prime}\right)\right\}$ by induction on $\# E^{\prime}$. If E^{\prime} is empty, this is trivial. Suppose that $\# E^{\prime} \geq 1$. Then there exists $i \in\{1, \ldots, n\}$ such that $\# E_{i}\left(G^{\prime}\right)=1$. Without loss of generality, assume that $E_{n}\left(G^{\prime}\right)=\left\{\left(v_{n-1}, v_{n}\right)\right\}$. Let $\widetilde{G}=(V, \widetilde{E})$, where $\widetilde{E}=E^{\prime} \backslash\left\{\left(v_{n-1}, v_{n}\right)\right\}$. By the induction assumption, $d_{t}(\widetilde{G}) \leq \max \left\{\# E_{i}(\widetilde{G})\right\}$. Let $\psi: \widetilde{E} \rightarrow X$ be a transitive function of degree $d_{t}(\widetilde{G})$. If there exists $i \in\{1, \ldots, n-2\}$ such that $\# E_{n-1}(\widetilde{G})<\# E_{i}(\widetilde{G})\left(=\# E_{i}\left(G^{\prime}\right)\right)$, let x be an element of $\psi\left(E_{i}(\widetilde{G})\right) \backslash \psi\left(E_{n-1}(\widetilde{G})\right)$. If $\# E_{i}(\widetilde{G}) \leq \# E_{n-1}(\widetilde{G}), i \in$ $\{1, \ldots, n-2\}$, let x be an element that does not belong to X. Let $\phi: E^{\prime} \rightarrow X \cup\{x\}$ be the extension function of ψ satisfying $\phi\left(v_{n-1}, v_{n}\right)=x$. It is easy to see that ϕ is transitive and

$$
d_{t}\left(G^{\prime}\right) \leq \# \phi\left(E^{\prime}\right) \leq \max \left\{\# E_{i}\left(G^{\prime}\right)\right\} .
$$

b) Since G^{\prime} is acyclic, the hypothesis of b) is equivalent to $d_{t}\left(G^{\prime}\right) \geq 2$. Thus b) follows from a) and Corollary 8.

REFERENCES

[1] Erdös, P. and Evans, A.B. - Representations of graphs and ortogonal latin square graphs, J. Graph Theory, 13 (1989), 593-595.

[^0]: Received: March 31, 1995.

 * This work was done within the activities of the Centro de Álgebra da Universidade de Lisboa.

