SUBDIRECT PRODUCTS OF A BAND AND A SEMIGROUP*

Miroslav Ćirić and Stojan Bogdanović

Abstract

Subdirect products of a band and a semigroup have been studied in various special cases by a number of authors. In the present paper, using the constructions and the methods from our earlier papers, we give characterizations of all subdirect products of a band and a semigroup.

Introduction and preliminaries

Subdirect products of a band and a semigroup have been studied in various special cases by a number of authors. A characterization of all subdirect products of a rectangular band and a semigroup was given by J.L. Chrislock and T. Tamura [3]. Subdirect products connected with sturdy bands of semigroups were investigated by the authors in [4], and in the semilattice case by M. Petrich [9, 10]. Spined products of a band and a semigroup, predominantly with respect to the greatest semilattice homomorphic image of this band, were also considered many times. More information about these can be found in [6]. A characterization of all subdirect products of a band and a semilattice of semigroups contained in their spined product were given by the authors in [6]. A band composition used in this paper, which is an extension of Petrich's construction from [9], has been also explored by the authors in $[4-7]$.

In the present paper we consider such compositions in which all members of the related system of homomorphisms are one-to-one, and using this, by Theorem 1 we describe all subdirect products of a band and a semigroup. In Theorem 2 we give an alternative construction of such products, similar to the ones of J.L.

[^0]Chrislock and T. Tamura [3] and H. Mitsch [8]. Theorem 3 shows that all subdirect products of a given semigroup and a band can be obtained from the subdirect product of this semigroup and of the greatest semilattice homomorphic image of this band, using spined products. In Theorem 4 we give a characterization of subdirect products of a band and a semilattice of semigroups. Finally, Section 3 is devoted to the study of subdirect products of a band and a group. The results obtained there are generalizations of some results of M. Petrich [9, 10], H. Mitsch [6] and of the authors [4].

Let B be a band. By \leq we will denote the natural partial order on B, i.e. a relation on B defined by: $j \leq i \Leftrightarrow i j=j i=j(i, j \in B)$, and \preceq will denote a quasi-order on B defined by: $j \preceq i \Leftrightarrow j=j i j(i, j \in B)$. Clearly, \leq and \preceq coincide if and only if B is a semilattice. Further, for $i \in B,[i]$ will denote the class of i with respect to the smallest semilattice congruence on B. It is easy to verify that $j \preceq i \Leftrightarrow[j] \leq[i]$, for all $i, j \in B$.

Let B be a band. To each $i \in B$ we associate a semigroup S_{i} and an oversemigroup D_{i} of S_{i} such that $D_{i} \cap D_{j}=\emptyset$, if $i \neq j$. For $i, j \in B, i \succeq j$, let $\phi_{i, j}$ be a mapping of S_{i} into D_{j} and suppose that the family of $\phi_{i, j}$ satisfies the following conditions:
(1) $\phi_{i, i}$ is the identity mapping on S_{i}, for each $i \in B$;
(2) $\left(S_{i} \phi_{i, i j}\right)\left(S_{j} \phi_{j, i j}\right) \subseteq S_{i j}$, for all $i, j \in B$;
(3) $\left[\left(a \phi_{i, i j}\right)\left(b \phi_{j, i j}\right)\right] \phi_{i j, k}=\left(a \phi_{i, k}\left(b \phi_{j, k}\right)\right)$, for $a \in S_{i}, b \in S_{j}, i j \succeq k, i, j, k \in B$.

Define a multiplication $*$ on $S=\bigcup_{i \in B} S_{i}$ by: $a * b=\left(a \phi_{i, i j}\right)\left(b \phi_{j, i j}\right)$, for $a \in S_{i}, b \in S_{j}$. Then S is a band B of semigroups $S_{i}, i \in B$, in notation $S=\left(B ; S_{i}, \phi_{i, j}, D_{i}\right)[6]$. If we assume $i=j$ in (3), then we obtain that $\phi_{i, k}$ is a homomorphism, for all $i, k \in B, i \succeq k$. If all $\phi_{i, j}$ are one-to-one, then we write $S=\left\langle B ; S_{i}, \phi_{i, j}, D_{i}\right\rangle$.

Further, if $D_{i}=S_{i}$, for each $i \in B$, then we write $S=\left(B ; S_{i}, \phi_{i, j}\right)$. Here the condition (2) can be omitted. If $S=\left(B ; S_{i}, \phi_{i, j}\right)$ and if $\left\{\phi_{i, j} \mid i, j \in B, i \succeq j\right\}$ is a transitive system of homomorphisms, i.e. if $\phi_{i, j} \phi_{j, k}=\phi_{i, k}$, for $i \succeq j \succeq k$, then we will write $S=\left[B ; S_{i}, \phi_{i, j}\right]$, and we will say that S is a strong band B of semigroups S_{i}. If $S=\left[B ; S_{i}, \phi_{i, j}\right]$ and all $\phi_{i, j}$ are one-to-one, then we will write $S=\left\langle B ; S_{i}, \phi_{i, j}\right\rangle$ and we will say that S is a sturdy band B of semigroups S_{i}. In the case when B is a semilattice, we obtain a strong (sturdy) semilattice of semigroups.

For undefined notions and notations we refer to [9] and [10].
It is easy to prove the following

Lemma 1. Let $S=\left(B ; S_{i}, \phi_{i, j}, D_{i}\right)$ and let T be a subsemigroup of S. Then $B^{\prime}=\left\{i \in B \mid S_{i} \cap T \neq \emptyset\right\}$ is a subsemigroup of B and if $T_{i}=T \cap S_{i}, i \in B^{\prime}$, and for $i, j \in B^{\prime}, i \succeq j, \psi_{i, j}$ is the restriction of $\phi_{i, j}$ onto T_{i}, then $T=\left(B^{\prime} ; T_{i}, \psi_{i, j}, D_{i}\right)$.

2 - The main results

In this section we will give various characterizations of subdirect products of a band and a semigroup, in the general case. The following is the main theorem of this paper:

Theorem 1. Let $S=\left(B ; S_{i}, \phi_{i, j}, D_{i}\right)$ and let ξ be a relation on S defined by:
(4) $a \xi b$ if and only if $a \in S_{i}, b \in S_{j}, i, j \in B$, and there exists $k \in B$ such that $k \preceq i, j$, and $a \phi_{i, l}=b \phi_{j, l}$, for every $l \in B, l \preceq k$.
Then ξ is a congruence on S. Furthermore, if $S=\left\langle B ; S_{i}, \phi_{i, j}, D_{i}\right\rangle$, then S is a subdirect product of B and S / ξ.

Conversely, if a semigroup S is a subdirect product of a band B and a semigroup T, then $S=\left\langle B ; S_{i}, \phi_{i, j}, D_{i}\right\rangle$, where for each $i \in B, S_{i}$ is isomorphic to some subsemigroup of T.

Proof: Clearly, ξ is reflexive and symmetric. Assume $a, b, c \in S$ such that $a \xi b$ and $b \xi c$. Let $a \in S_{i}, b \in S_{j}, c \in S_{k}, i, j, k \in B$. Then there exists $m_{1}, m_{2} \in B$ such that $m_{1} \preceq i, j$ and $m_{2} \preceq j, k$, and $a \phi_{i, l_{1}}=b \phi_{j, l_{1}}, b \phi_{j, l_{2}}=c \phi_{k, l_{2}}$, for all $l_{1}, l_{2} \in B, l_{1} \preceq m_{1}$ and $l_{2} \preceq m_{2}$. Clearly, there exists $m \in B$ such that $m \preceq m_{1}, m_{2}$, and for every $l \in B, l \preceq m$, we obtain that $l \preceq m_{1}, m_{2}$, whence $a \phi_{i, l}=b \phi_{j, l}=c \phi_{k, l}$. Therefore, $a \xi c$, so ξ is transitive.

Let $a, b, c \in S, a \xi b$. Assume that $a \in S_{i}, b \in S_{j}, c \in S_{k}, i, j, k \in B$. Then there exists $m_{0} \in B, m_{0} \preceq i, j$, such that $a \phi_{i, l}=b \phi_{j, l}$, for every $l \in B, l \preceq m_{0}$. Assume that $m \in B$ is such that $m \preceq m_{0}, i k, j k$, and that $l \in B, l \preceq m$. Then $l \preceq m_{0}$, whence

$$
(a * c) \phi_{i k, l}=\left(a \phi_{i, l}\right)\left(c \phi_{k, l}\right)=\left(b \phi_{j, l}\right)\left(c \phi_{k, l}\right)=(b * c) \phi_{j k, l} .
$$

Thus, $a * c \xi b * c$. Similarly we prove that $c * a \xi c * b$. Hence, ξ is a congruence on S.

Let $S=\left\langle B ; S_{i}, \phi_{i, j}, D_{i}\right\rangle$. Assume that $(a, b) \in \xi \cap \eta$, where η is a band congruence on S such that $S / \eta \cong B$. Then $a, b \in S_{i}$, for some $i \in B$, and there exists $k \in B, k \preceq i$, such that $a \phi_{i, k}=b \phi_{i, k}$, whence $a=b$, since $\phi_{i, k}$ is one-to-
one. Therefore, $\xi \cap \eta=\varepsilon$, where ε is the equality relation. Thus, S is a subdirect product of B and S / ξ.

Conversely, let $S \subseteq T \times B$ be a subdirect product of a semigroup T and a band B. For $i \in B$, let $S_{i}=(T \times\{i\}) \cap S$. Clearly, $S_{i} \neq \emptyset$ and it is isomorphic to a subsemigroup of T, for each $i \in B$, and S is a band B of semigroups $S_{i}, i \in B$. Let $D_{i}=T \times\{i\}, i \in B$, and for $i, j \in B, i \succeq j$, let $\phi_{i, j}: S_{i} \rightarrow D_{j}$ be a mapping defined by:

$$
(a, i) \phi_{i, j}=(a, j) \quad\left((a, i) \in S_{i}\right) .
$$

Now it is easy to verify that $S=\left\langle B ; S_{i}, \phi_{i, j}, D_{i}\right\rangle . ■$
Remark. Note that if $S=\left[B ; S_{i}, \phi_{i, j}\right]$ and ξ is a congruence on S defined as in (4), then S / ξ is the well-known direct limit of the family $S_{i}, i \in B$, carried by B.

Considering the mappings of a band B into the set $\mathcal{G}(T)$ of all subsemigroups of a semigroup T, satisfying some suitable conditions, we give another characterization of subdirect products of B and T, similar to the ones of J.L. Chrislock and T. Tamura [3] and H. Mitsch [8].

Theorem 2. Let B be a band, let T be a semigroup and let $\mu: B \rightarrow \mathcal{G}(T)$ be a mapping satisfying the following conditions:
i) $\bigcup_{i \in B} i \mu=T$;
ii) $(i \mu) \cdot(j \mu) \subseteq(i j) \mu$, for all $i, j \in B$.

Then $S=\{(i, a) \in B \times T \mid a \in i \mu\}$ is a subdirect product of B and T, in notation $S=(B ; \mu, T)$.

Conversely, any subdirect product of B and T can be obtained in this way.
Proof: The proof is similar to the proofs of Theorem 1 [3] and Theorem 7 [8].

Let B be a band, let T be a semigroup, let $\mu: B \rightarrow \mathcal{G}(T)$ be a mapping satisfying i) of the previous theorem and let μ be antitone, i.e. let for all $i, j \in B$, $i \succeq j$ implies $i \mu \subseteq j \mu$. Then clearly μ satisfies ii). A semigroup S constructed by such a mapping as in the previous theorem will be denoted by $S=[B ; \mu ; T]$.

By Theorem 2 we obtain the following two corollaries. The first of them is in fact Proposition 1 [4], and the first part of the second corollary is the result of M. Petrich [10, p. 87-88], [9, p. 98].

Corollary 1. If S is a sturdy band B of semigroups, then $S=[B ; \mu ; S / \xi]$, where ξ is a relation defined as in (4).

Conversely, if $S=[B ; \mu ; T]$, then S is a sturdy band B of semigroups $S_{i}=i \mu$, $i \in B$.

Corollary 2. If S is a sturdy semilattice Y of semigroups, then $S=$ $[Y ; \mu ; S / \xi]$, where ξ is a relation defined as in (4).

Conversely, if $S=[Y ; \mu ; T]$, where Y is a semilattice, then S is a sturdy band B of semigroups $S_{i}=i \mu, i \in B$.

If P and Q are two semigroups with a common homomorphic image Y, then the spined product of P and Q with respect to Y is $S=\{(a, b) \in P \times Q \mid$ $a \varphi=b \psi\}$, where $\varphi: P \rightarrow Y$ and $\psi: Q \rightarrow Y$ are homomorphisms onto Y. If $P_{\alpha}=\alpha \varphi^{-1}, Q_{\alpha}=\alpha \psi^{-1}, \alpha \in Y$, then $S=\bigcup_{\alpha \in Y}\left(P_{\alpha} \times Q_{\alpha}\right)$. Clearly, spined products are easier for construction than other subdirect products, so it is of interest the following result that reduces the problem of construction of subdirect products of a given semigroup and a band to the problem of construction of subdirect products of this semigroup and of the greatest semilattice homomorphic image of this band.

Theorem 3. Let B be a band, let Y be its greatest semilattice homomorphic image and let T be a semigroup. Then a semigroup S is a subdirect product of B and T if and only if it is a spined product, with respect to Y, of B and of a subdirect product of Y and T.

Proof: Let B be a semilattice Y of rectangular bands $B_{\alpha}, \alpha \in Y$.
Let $S \subseteq B \times T$ be a subdirect product of B and T. Define a mapping φ of S into $Y \times T$ by:

$$
(i, a) \varphi=([i], a) \quad((i, a) \in S)
$$

By a routine verification we obtain that φ is a homomorphism. Let us prove that $P=S \varphi$ is a subdirect product of Y and T. Indeed, for $\alpha \in Y, \alpha=[i]$ for some $i \in B$, and $(i, a) \in S$ for some $a \in T$; hence $(\alpha, a)=([i], a)=(i, a) \varphi \in P$. Similarly we prove that for $a \in T$ there exists $\alpha \in Y$ such that $(\alpha, a) \in P$. Therefore, P is a subdirect product of Y and T.

For $\alpha \in Y$, let $P_{\alpha}=(\{\alpha\} \times T) \cap P$. Clearly, P is a semilattice Y of semigroups $P_{\alpha}, \alpha \in Y$. Define a mapping ψ of S into $B \times P$ by:

$$
(i, a) \psi=(i,([i], a)) \quad((i, a) \in S)
$$

It is not hard to verify that ψ is an embedding of S into $B \times T$. Assume $(i, a) \in S$. Then $i \in B_{\alpha}$, for some $\alpha \in Y$, whence

$$
(i, a) \psi=(i,([i], a))=(i,(\alpha, a)) \in B_{\alpha} \times P_{\alpha}
$$

Thus, $S \psi \subseteq \bigcup_{\alpha \in Y}\left(B_{\alpha} \times P_{\alpha}\right)$. On the other hand, if $\alpha \in Y$ and $(i,(\alpha, a)) \in$ $B_{\alpha} \times P_{\alpha}$, then $i \in B_{\alpha}$, so

$$
(i,(\alpha, a))=(i, a) \psi \in S \psi
$$

Therefore, $S \psi=\bigcup_{\alpha \in Y}\left(B_{\alpha} \times P_{\alpha}\right)$, so S is a spined product of B and P with respect to Y.

Conversely, let $S \subseteq B \times P$ be a spined product of B and P, with respect to Y, where P is a subdirect product of Y and T, i.e. let $S=\bigcup_{\alpha \in Y}\left(B_{\alpha} \times P_{\alpha}\right)$, where $P_{\alpha}=(\{\alpha\} \times T) \cap P, \alpha \in Y$. Define a mapping ϕ of S into $B \times T$ by:

$$
(i,(\alpha, a)) \phi=(i, a) \quad((i,(\alpha, a)) \in S) .
$$

Then ϕ is an embedding of S into $B \times T$. It remains to prove that $Q=S \phi$ is a subdirect product of B and T. Indeed, for $i \in B, i \in B_{\alpha}$, for some $\alpha \in Y$, and there exists $a \in T$ such that $(\alpha, a) \in P$, since P is a subdirect product of Y and T, whence $(i,(\alpha, a)) \in S$ and $(i, a)=(i,(\alpha, a)) \phi \in Q$. Similarly we prove that for any $a \in T$ there exists $i \in B$ such that $(i, a) \in Q$. Therefore, Q is a subdirect product of B and T.

An element of a semigroup is π-regular if some of its power is regular, and a semigroup is π-regular if each of its element is π-regular.

Corollary 3. The following conditions on a semigroup S are equivalent:
i) S is π-regular and a subdirect product of a band and a semilattice of groups;
ii) S is regular and a subdirect product of a band and a semilattice of groups;
iii) S is a spined product of a band and a semilattice of groups.

Proof: The authors in [1] proved that if a semigroup is a subdirect product of semilattices of groups, then it is a semilattice of groups if and only if it is π-regular. By this and by Theorem 3 we obtain i) \Leftrightarrow iii). The equivalence ii) $\Leftrightarrow \mathrm{iii})$ was proved by M. Petrich [11].

By the well-known Tamura's result [12], any semigroup can be represented as a semilattice of semilattice indecomposable semigroups. Also, M. Petrich in

Theorem III 7.2 [9] proved that every semilattice of semigroups can be composed as $\left(Y ; S_{\alpha}, \phi_{\alpha, \beta}, D_{\alpha}\right)$. Therefore, every semigroup S can be represented as $S=$ $\left(Y ; S_{\alpha}, \phi_{\alpha, \beta}, D_{\alpha}\right)$, where Y is a semilattice, so it is of interest to consider subdirect products of a band and a semilattice of semigroups. This we will do in the next theorem.

Let B be a band and let Y be a semilattice. Assume that P is a subdirect product of B and Y an let π and ϖ be projection homomorphisms of P onto B and Y, respectively. It is easy to verify that for $i, j \in P, i \preceq j$ in P if and only if $i \pi \preceq j \pi$ in B and $i \varpi \leq j \varpi$ in Y. Define a quasi-order \unlhd on P by:

$$
i \unlhd j \Longleftrightarrow i \pi \preceq j \pi \text { and } i \varpi=j \varpi \quad(i, j \in P)
$$

If $S=\left(P ; S_{i}, \phi_{i, j}, D_{i}\right)$ and if $\phi_{i, j}$ is one-to-one for all $i, j \in P$ such that $i \unrhd j$, then we will write $S=\left(B, Y, P ; S_{i}, \phi_{i, j}, D_{i}\right)$.

Theorem 4. Let B be a band and let Y be a semilattice.
Let P be a subdirect product of B and Y, let $S=\left(B, Y, P ; S_{i}, \phi_{i, j}, D_{i}\right)$ and define relations η and ξ on S by:
(5) $a \eta b$ if and only if $a \in S_{i}, b \in S_{j}, i, j \in P$, and $i \pi=j \pi$;
(6) $a \xi b$ if and only if $a \in S_{i}, b \in S_{j}, i, j \in P, i \varpi=j \varpi$, and there exists $k \in P, k \unlhd i, j$, such that $a \phi_{i, l}=b \phi_{j, l}$, for each $l \in P, l \preceq k$.
Then η and ξ are congruences on $S, S / \eta$ is isomorphic to $B, S / \xi$ is a semilattice Y of semigroups, and S is a subdirect product of S / η and S / ξ.

Conversely, every subdirect product of B and a semigroup that is a semilattice Y of semigroups can be obtained in this way.

Proof: Clearly, η is a congruence on $S, S / \eta$ is isomorphic to B and ξ is reflexive and symmetric.

Assume that $a, b, c \in S$ are such that $a \xi b$ and $b \xi c$. Let $a \in S_{i}, b \in S_{j}, c \in S_{k}$, $i, j, k \in P, i \varpi=j \varpi=k \varpi$. By the hypothesis, there exist $m_{1}, m_{2} \in P$ such that $m_{1} \unlhd i, j$ and $m_{2} \unlhd j, k$, and $a \phi_{i, l_{1}}=b \phi_{j, l_{1}}, b \phi_{j, l_{2}}=c \phi_{k, l_{2}}$, for all $l_{1}, l_{2} \in P$ such that $l_{1} \preceq m_{1}, l_{2} \preceq m_{2}$. Now for $m=m_{1} m_{2}, m \unlhd m_{1}, m_{2}$, so for any $l \in P$, $l \preceq m$, we obtain that $a \phi_{i, l}=c \phi_{k, l}$. Therefore, $a \xi c$, so ξ is transitive.

Assume that $a, b, c \in S$ are such that $a \xi b$. Let $a \in S_{i}, b \in S_{j}, c \in S_{k}$, $i, j, k \in P$. By the hypothesis, $i \varpi=j \varpi$, whence $(i k) \varpi=(j k) \varpi$, since ϖ is a homomorphism. Also, there exists $m_{0} \in P$ such that $m_{0} \unlhd i, j$ and $a \phi_{i, l}=b \phi_{j, l}$, for each $l \in P, l \preceq m_{0}$. Let $m=m_{0} k$. Then $m \unlhd i k, j k$ and for any $l \in P$, $l \preceq m$ we have

$$
(a * c) \phi_{i k, l}=\left(a \phi_{i, l}\right)\left(c \phi_{k, l}\right)=\left(b \phi_{j, l}\right)\left(c \phi_{k, l}\right)=(b * c) \phi_{j k, l},
$$

since $l \preceq m_{0}$. Therefore, $a * c \xi b * c$, and similarly $c * a \xi c * b$, so ξ is a congruence on S.

Assume that $(a, b) \in \eta \cap \xi$. Then $a \in S_{i}, b \in S_{j}, i, j \in P$, and $i \varpi=j \varpi$, whence $i=j$. Also, there exists $k \in P, k \unlhd i$, such that $a \phi_{i, k}=b \phi_{i, k}$, whence $a=b$, since $\phi_{i, k}$ is one-to-one. Therefore, $\eta \cap \xi=\varepsilon$, so S is a subdirect product of S / η and S / ξ. Clearly, S / ξ is a semilattice Y of semigroups $T_{\alpha}=S_{\alpha} \xi^{\natural}, \alpha \in Y$, where $S_{\alpha}=\bigcup_{i \in P_{\alpha}} S_{i}$ and $P_{\alpha}=\{i \in P \mid i \pi=\alpha\}, \alpha \in Y$.

Conversely, let $S \subseteq B \times T$ be a subdirect product of B and a semigroup T that is a semilattice Y of semigroups $T_{\alpha}, \alpha \in Y$. Let $P=\{(i, \alpha) \in B \times Y \mid$ $\left.\left(\{i\} \times T_{\alpha}\right) \cap S \neq \emptyset\right\}$. It is easy to check that P is a subdirect product of B and Y. Let π and ϖ denote the projection homomorphisms of P onto B and Y, respectively, and for $i \in P$, let $S_{i}=\left(\{i \pi\} \times T_{i \varpi}\right) \cap S$. Clearly, S is a band P of semigroups $S_{i}, i \in P$. By Theorem III $7.2[9], T=\left(Y ; T_{\alpha}, \phi_{\alpha, \beta}, D_{\alpha}\right)$. Now, for $i \in P$, let $D_{i}=\{i \pi\} \times D_{i \varpi}$ and for $i, j \in P, i \succeq j$, define a mapping $\phi_{i, j}$ of S_{i} into S_{j} by:

$$
(i \pi, a) \phi_{i, j}=\left(j \pi, a \phi_{i \varpi, j \varpi}\right) \quad\left(a \in T_{i \varpi}\right)
$$

Now it is easy to show that $S=\left(B, Y, P ; S_{i}, \phi_{i, j}, D_{i}\right)$.

3 - Subdirect products of a band and a group

Subdirect products of a band and a group were considered in various special cases by M. Petrich [9-11], H. Mitsch [8] and the authors [4]. In this section we will characterize such products in the general case.

Let $E(S)$ denote the set of all idempotents of a semigroup S. An element a of a semigroup S is E-inversive if there exists $x \in S$ such that $a x \in E(S)$, or equivalently, if there exists $x \in S$ such that $x=x a x$ [2]. A semigroup S is E-inversive if each of its elements is E-inversive. For more informations about such semigroups we refer to [2] and [8].

Lemma 2. Let S be a subdirect product of a band B and an E-inversive semigroup T. Then S is also E-inversive.

Proof: Let $S \subseteq B \times T,(i, a) \in S$. For $a \in T$ there exists $x \in T$ such that $a x \in E(T)$ and there exists $j \in B$ such that $(j, x) \in S$. Therefore, $(i, a)(j, x)=$ $(i j, a x) \in E(S)$, so S is E-inversive.

Note that if $S=\left(B ; S_{i}, \phi_{i, j}, D_{i}\right)$, then $D=\bigcup_{i \in B} D_{i}$ need not be a semigroup. One very interesting case when the multiplication on S can be extended to a
multiplication on D will be considered in the following
Theorem 5. Let $S=\left(B ; S_{i}, \phi_{i, j}, D_{i}\right)$, where $D_{i}, i \in B$, are cancellative semigroups and $D_{k}=\left\{a \phi_{i, k} \mid a \in S_{i}, i \succeq k\right\}$, for each $k \in B$. Then
i) For all $i, j \in B, i \succeq j$, $\phi_{i, j}$ can be extended up to a homomorphism $\varphi_{i, j}$ of D_{i} into D_{j} such that there exists a composition $D=\left[B ; D_{i}, \varphi_{i, j}\right]$;
ii) If $S=\left\langle B ; S_{i}, \phi_{i, j}, D_{i}\right\rangle$, then $D=\left\langle B ; D_{i}, \varphi_{i, j}\right\rangle$;
iii) If S is E-inversive, then D is also E-inversive.

Proof: i) Assume that $k, l \in B$ are such that $k \succeq l$. For $a \in D_{k}$, by the hypothesis, $a=x \phi_{i, k}$, for $x \in S_{i}, i \in B, i \succeq k$, and we define a mapping $\varphi_{i, j}$ of D_{k} into D_{l} by

$$
a \varphi_{k, l}=x \phi_{i, l} .
$$

To prove that φ is well-defined, it is necessary and sufficient to prove that for $x \in S_{i}, y \in S_{j}, i, j \succeq k \succeq l, x \phi_{i, k}=y \phi_{j, k}$ implies $x \phi_{i, l}=y \phi_{j, l}$. Indeed, by $x \phi_{i, k}=y \phi_{j, k}$, for arbitrary $u, v \in S_{k}$,

$$
\begin{aligned}
\left(u \phi_{k, l}\right)\left(x \phi_{i, l}\right)\left(v \phi_{k, l}\right) & =(u * x * v) \phi_{k, l}=\left[u\left(x \phi_{i, k}\right) v\right] \phi_{k, l}=\left[u\left(y \phi_{j, k}\right) v\right] \phi_{k, l} \\
& =(u * y * v) \phi_{k, l}=\left(u \phi_{k, l}\right)\left(y \phi_{j, l}\right)\left(v \phi_{k, l}\right),
\end{aligned}
$$

so by the cancellativity in $D_{l}, x \phi_{i, l}=y \phi_{k, l}$. Hence, $\varphi_{k, l}$ is well-defined and clearly, it is an extension of $\phi_{k, l}$.

Assume that $a \in D_{k}, b \in D_{l}, a=x \phi_{i, k}, b=y \phi_{j, l}, x \in S_{i}, y \in S_{j}, i, j, k, l \in B$, $i \succeq k, j \succeq l$, and assume that $m \in B, m \preceq k, l$. Then by (3) and by the definition of mappings $\varphi_{i, j}$ we obtain

$$
\begin{aligned}
& {\left[\left(a \varphi_{k, k l}\right)\left(b \varphi_{l, k l}\right)\right] \varphi_{k l, m}=\left[\left(x \phi_{i, k l}\right)\left(y \phi_{j, k l}\right)\right] \varphi_{k l, m}=} \\
& \quad=\left[\left(\left(x \phi_{i, i j}\right)\left(y \phi_{j, i j}\right)\right) \phi_{i j, k l}\right] \varphi_{k l, m}=\left[(x * y) \phi_{i j, k l}\right] \varphi_{k l, m}=(x * y) \phi_{i j, m} \\
& \quad=\left[\left(x \phi_{i, i j}\right)\left(y \phi_{j, i j}\right)\right] \phi_{i j, m}=\left(x \phi_{i, m}\right)\left(y \phi_{j, m}\right)=\left(a \varphi_{k, m}\right)\left(b \varphi_{l, m}\right) .
\end{aligned}
$$

Therefore, there exists a composition $D=\left(B ; D_{i}, \varphi_{i, j}\right)$. Since $D_{i}, i \in B$, are cancellative, then $D=\left[B ; D_{i}, \varphi_{i, j}\right]$.
ii) Let all $\phi_{i, j}$ be one-to-one. Assume that $a \varphi_{k, l}=b \varphi_{k, l}$, for $a, b \in D_{k}$, $k, l \in B, k \succeq l$. Then $a=x \phi_{i, k}, b=y \phi_{j, k}, x \in S_{i}, y \in S_{j}, i, j \in B, i, j \succeq k$. Let $u, v \in S_{k}$ be arbitrary. By $a \varphi_{k, l}=b \varphi_{k, l}$, it follows that $x \phi_{i, l}=y \phi_{j, l}$, whence
$(u * x * v) \phi_{k, l}=\left(u \phi_{k, l}\right)\left(x \phi_{i, l}\right)\left(v \phi_{k, l}\right)=\left(u \phi_{k, l}\right)\left(y \phi_{j, l}\right)\left(v \phi_{k, l}\right)=(u * y * v) \phi_{k, l}$.

Since $\phi_{k, l}$ is one-to-one, then $u * x * v=u * y * v$, whence

$$
u\left(x \phi_{i, k}\right) v=u * x * v=u * y * v=u\left(y \phi_{j, k}\right) v
$$

Now, by the cancellativity in $D_{k}, x \phi_{i, k}=y \phi_{j, k}$, i.e. $a=b$. Therefore, $\varphi_{k, l}$ is one-to-one.
iii) Assume that $a \in D$. Then $a \in D_{k}, k \in B$, and $a=x \phi_{i, k}, x \in S_{i}, i \in B$, $i \succeq k$. Now, $x * y \in E(S)$, for some $y \in S_{j}, j \in B$, so

$$
\begin{aligned}
a * y & =\left(a \varphi_{k, k j}\right)\left(u \varphi_{j, k j}\right)=\left(x \phi_{i, k j}\right)\left(y \phi_{j, k j}\right) \\
& =\left[\left(x \phi_{i, i j}\right)\left(y \phi_{j u, i j}\right)\right] \phi_{i j, k j}=(x * y) \phi_{i j, k j} \in E(D) .
\end{aligned}
$$

Thus, D is also E-inversive.
A semigroup containing exactly one idempotent will be called a unipotent semigroup, and a semigroup without idempotents will be called an idempotentfree semigroup. Now we go to the main theorem of this section.

Theorem 6. The following conditions on a semigroup S are equivalent:
i) S is a subdirect product of a band and a group;
ii) S is E-inversive, $S=\left\langle B ; S_{i}, \phi_{i, j}, D_{i}\right\rangle$, and for every $i \in B, D_{i}$ is cancellative;
iii) S is E-inversive, $S=\left\langle B ; S_{i}, \phi_{i, j}, D_{i}\right\rangle$, and for every $i \in B, D_{i}$ is either a unipotent monoid or an idempotent-free semigroup;
iv) S is E-inversive and it can be embedded into a sturdy band of cancellative semigroups;
v) S is E-inversive and it can be embedded into a sturdy band of unipotent monoids and idempotent-free semigroups;
vi) S is E-inversive and it can be embedded into a spined product of a band and a sturdy semilattice of cancellative semigroups;
vii) S is E-inversive and it can be embedded into a spined product of a band and a sturdy semilattice of unipotent monoids and idempotent-free semigroups.

Proof: $\mathbf{i}) \Rightarrow \mathbf{i i})$ Let $S \subseteq B \times G$ be a subdirect product of a band B and a group G. For $i \in B$, let $D_{i}=\{i\} \times G, S_{i}=S \cap D_{i}$. Clearly, $S_{i} \neq \emptyset$ and D_{i} is a cancellative semigroup, for each $i \in B$. If for $i, j \in B, i \succeq j$, we define
a mapping $\phi_{i, j}: S_{i} \rightarrow D_{j}$ by $(i, a) \phi_{i, j}=(j, a)$, then it is easy to verify that $S=\left\langle B ; S_{i}, \phi_{i j}, D_{i}\right\rangle$ and by Lemma $2, S$ is E-inversive.
$\mathbf{i i}) \Rightarrow \mathbf{v}$) Let ii) hold. Without loss of generality we can assume that $D_{k}=$ $\left\{a \phi_{i, k} \mid i \in B, i \succeq k, a \in S_{i}\right\}$, for each $k \in B$. By Theorem 5, S can be embedded into $D=\left\langle B ; D_{i}, \varphi_{i, j}\right\rangle$ and D is E-inversive.

Let $i \in B$ be such that $E\left(D_{i}\right) \neq \emptyset$. Assume that $a \in D_{i}, e \in E\left(D_{i}\right)$. Since D is E-inversive, then $x=x * e * a * x$, for some $x \in D$. If $x \in D_{j}, j \in B$, then clearly $i \succeq j$ and $(e * a * x) \varphi_{i j, j}, e \varphi_{i, j} \in E\left(D_{j}\right)$, since $e * a * x \in E\left(D_{i j}\right), e \in E\left(D_{i}\right)$. By the cancellativity in $D_{j},\left|E\left(D_{j}\right)\right|=1$, whence $e \varphi_{i, j}=(e * a * x) \varphi_{i j, j}=$ $\left(e \varphi_{i, j}\right)\left(a \varphi_{i, j}\right) x$. Now, by the cancellativity in $D_{j}, e \varphi_{i, j}=\left(a \varphi_{i, j}\right) x$, whence

$$
\left[(e * a) \varphi_{i, j}\right] x=(e * a * x) \varphi_{i j, j}=e \varphi_{i, j}=\left(a \varphi_{i, j}\right) x
$$

and again by the cancellativity in $D_{j},(e * a) \varphi_{i, j}=a \varphi_{i, j}$. Therefore, $e * a=a$, since $\varphi_{i, j}$ is one-to-one. Similarly we prove that $a * e=a$. Hence, D_{j} is a monoid. Since D_{j} is cancellative, then it is unipotent.
$\mathbf{v}) \Rightarrow \mathbf{i i i})$ This follows immediately.
$\mathbf{i i i} \Rightarrow \mathbf{i})$ Let iii) hold. By Theorem $1, S$ is a subdirect product of B and a semigroup S / ξ, where ξ is a congruence defined as in (4). Clearly, $e \xi f$, for all $e, f \in E(S)$. Let $u=e \xi^{\natural}, e \in E(S)$. Assume $v \in S / \xi$. Then $v=a \xi^{\natural}$, for some $a \in S$. Since S is E-inversive, then $x=x * a * x$, for some $x \in S$. If $a \in S_{i}, x \in S_{j}$, $i, j \in B$, then $i \succeq j, x * a=e \in E\left(S_{j i}\right)$ and $a * e \in S_{i j i}$. Assume $k \in B, k \preceq i, i j i$. Then

$$
(a * e) \phi_{i j i, k}=\left(a \phi_{i, k}\right)\left(e \phi_{j i, k}\right)=\left(a \phi_{i, k}\right),
$$

since $e \phi_{j i, k}$ is the identity of D_{k}. Thus, $a * e \xi a$, whence $v=a \xi^{\natural}=(a * e) \xi^{\natural}=$ $\left(a \xi^{\natural}\right)\left(e \xi^{\natural}\right)=v u$, and similarly $v=u v$. On the other hand, $u=e \xi^{\natural}=(x * a) \xi^{\natural}=$ $\left(x \xi^{\natural}\right)\left(a \xi^{\natural}\right)=\left(x \xi^{\natural}\right) v$, and similarly $u=v\left(x \xi^{\natural}\right)$. Hence, S / ξ is a group.
ii) $\Leftrightarrow \mathbf{i v})$ This follows by Theorem 5 and Lemma 1.
$\mathbf{i v}) \Leftrightarrow \mathbf{v i})$ and $\mathbf{v}) \Leftrightarrow \mathbf{v i i})$ This follows by Theorem $3[6]$.
Similarly we can prove the following
Corollary 4. The following conditions on a semigroup S are equivalent:
i) $S=[B, \mu, G]$, where B is a band and G is a group;
ii) S is E-inversive and a sturdy band of cancellative semigroups;
iii) S is E-inversive and a sturdy band of unipotent monoids and idempotentfree semigroups;
iv) S is E-inversive and a spined product of a band and a sturdy semilattice of cancellative semigroups;
v) S is E-inversive and a spined product of a band and a sturdy semilattice of unipotent monoids and idempotent-free semigroups.

Corollary 5. [4] A semigroup S is a sturdy band of groups if and only if it is regular and a subdirect product of a band and a group.

Corollary 5. [9, 10] A semigroup S is a sturdy semilattice of groups if and only if it is regular and a subdirect product of a semilattice and a group.

REFERENCES

[1] Bogdanović, S. and Ćirić, M. - Retractive nil-extensions of bands of groups, Facta Univ. (Nis̆), Ser. Math. Inform., 8 (1993), 11-20.
[2] Catino, F. and Miccoli, M.M. - On semidirect products of semigroups, Note di Matematica, 9(2) (1989), 189-194.
[3] Chrislock, J.L. and Tamura, T. - Notes on subdirect products of semigroups and rectangular bands, Proc. Amer. Math. Soc., 20 (1969), 511-514.
[4] Ćirić, M. and Bogdanović, S. - Sturdy bands of semigroups, Collect. Math. Barcelona, 41(3) (1990), 189-195.
[5] Ćirić, M. and Bogdanović, S. - Normal band compositions of semigroups, Proc. Japan Acad. Ser. A, 69(8) (1993), 256-261.
[6] Ćirić, M. and Bogdanović, S. - Spined products of some semigroups, Proc. Japan Acad. Ser. A, 69(9) (1993), 357-362.
[7] Ćirić, M. and Bogdanović, S. - Normal band compositions of semigroups, II (to appear).
[8] Mitsch, H. - Subdirect products of E-inversive semigroups, J. Austral. Math. Soc. Ser. A, 48 (1990), 66-78.
[9] Petrich, M. - Introduction to semigroups, Merill, Ohio, 1973.
[10] Petrich, M. - Inverse semigroups, Wiley, New York, 1984.
[11] Petrich, M. - Regular semigroups which are subdirect products of a band and a semilattice of groups, Glasgow Math. J., 14 (1973), 27-49.
[12] Tamura, T. - Note on the greatest semilattice decomposition of semigroups, Semigroup Forum, 4 (1972), 255-261.

Miroslav Ćirić,
University of Niš, Faculty of Philosophy, Department of Mathematics, 18000 Nis̆, Ćirila i Metodija 2 - YUGOSLAVIA
and
Stojan Bogdanović,
University of Nis̆, Faculty of Economics, 18000 Niš, Trg JNA 11 - YUGOSLAVIA

[^0]: Received: March 24, 1995; Revised: July 15, 1995.
 1991 Mathematics Subject Classification: Primary 20M10.

 * Supported by Grant 0401B of RFNS through Math. Inst. SANU.

