PORTUGALIAE MATHEMATICA Vol. 53 Fasc. 1 – 1996

SUBDIRECT PRODUCTS OF A BAND AND A SEMIGROUP*

MIROSLAV ĆIRIĆ and STOJAN BOGDANOVIĆ

Abstract: Subdirect products of a band and a semigroup have been studied in various special cases by a number of authors. In the present paper, using the constructions and the methods from our earlier papers, we give characterizations of all subdirect products of a band and a semigroup.

Introduction and preliminaries

Subdirect products of a band and a semigroup have been studied in various special cases by a number of authors. A characterization of all subdirect products of a rectangular band and a semigroup was given by J.L. Chrislock and T. Tamura [3]. Subdirect products connected with sturdy bands of semigroups were investigated by the authors in [4], and in the semilattice case by M. Petrich [9, 10]. Spined products of a band and a semigroup, predominantly with respect to the greatest semilattice homomorphic image of this band, were also considered many times. More information about these can be found in [6]. A characterization of all subdirect products of a band and a semilattice of semigroups contained in their spined product were given by the authors in [6]. A band composition used in this paper, which is an extension of Petrich's construction from [9], has been also explored by the authors in [4–7].

In the present paper we consider such compositions in which all members of the related system of homomorphisms are one-to-one, and using this, by Theorem 1 we describe all subdirect products of a band and a semigroup. In Theorem 2 we give an alternative construction of such products, similar to the ones of J.L.

Received: March 24, 1995; Revised: July 15, 1995.

¹⁹⁹¹ Mathematics Subject Classification: Primary 20M10.

^{*} Supported by Grant 0401B of RFNS through Math. Inst. SANU.

Chrislock and T. Tamura [3] and H. Mitsch [8]. Theorem 3 shows that all subdirect products of a given semigroup and a band can be obtained from the subdirect product of this semigroup and of the greatest semilattice homomorphic image of this band, using spined products. In Theorem 4 we give a characterization of subdirect products of a band and a semilattice of semigroups. Finally, Section 3 is devoted to the study of subdirect products of a band and a group. The results obtained there are generalizations of some results of M. Petrich [9, 10], H. Mitsch [6] and of the authors [4].

Let B be a band. By \leq we will denote the natural partial order on B, i.e. a relation on B defined by: $j \leq i \Leftrightarrow ij = ji = j$ $(i, j \in B)$, and \preceq will denote a quasi-order on B defined by: $j \leq i \Leftrightarrow j = jij$ $(i, j \in B)$. Clearly, \leq and \preceq coincide if and only if B is a semilattice. Further, for $i \in B$, [i] will denote the class of i with respect to the smallest semilattice congruence on B. It is easy to verify that $j \leq i \Leftrightarrow [j] \leq [i]$, for all $i, j \in B$.

Let B be a band. To each $i \in B$ we associate a semigroup S_i and an oversemigroup D_i of S_i such that $D_i \cap D_j = \emptyset$, if $i \neq j$. For $i, j \in B$, $i \succeq j$, let $\phi_{i,j}$ be a mapping of S_i into D_j and suppose that the family of $\phi_{i,j}$ satisfies the following conditions:

- (1) $\phi_{i,i}$ is the identity mapping on S_i , for each $i \in B$;
- (2) $(S_i \phi_{i,ij}) (S_j \phi_{j,ij}) \subseteq S_{ij}$, for all $i, j \in B$;

(3) $[(a \phi_{i,ij}) (b \phi_{j,ij})] \phi_{ij,k} = (a \phi_{i,k} (b \phi_{j,k})), \text{ for } a \in S_i, b \in S_j, ij \succeq k, i, j, k \in B.$

Define a multiplication * on $S = \bigcup_{i \in B} S_i$ by: $a * b = (a \phi_{i,ij}) (b \phi_{j,ij})$, for $a \in S_i, b \in S_j$. Then S is a band B of semigroups $S_i, i \in B$, in notation $S = (B; S_i, \phi_{i,j}, D_i)$ [6]. If we assume i = j in (3), then we obtain that $\phi_{i,k}$ is a homomorphism, for all $i, k \in B$, $i \succeq k$. If all $\phi_{i,j}$ are one-to-one, then we write $S = \langle B; S_i, \phi_{i,j}, D_i \rangle$.

Further, if $D_i = S_i$, for each $i \in B$, then we write $S = (B; S_i, \phi_{i,j})$. Here the condition (2) can be omitted. If $S = (B; S_i, \phi_{i,j})$ and if $\{\phi_{i,j} \mid i, j \in B, i \geq j\}$ is a transitive system of homomorphisms, i.e. if $\phi_{i,j}\phi_{j,k} = \phi_{i,k}$, for $i \geq j \geq k$, then we will write $S = [B; S_i, \phi_{i,j}]$, and we will say that S is a strong band B of semigroups S_i . If $S = [B; S_i, \phi_{i,j}]$ and all $\phi_{i,j}$ are one-to-one, then we will write $S = \langle B; S_i, \phi_{i,j} \rangle$ and we will say that S is a strong band B of semigroups S_i . In the case when B is a semilattice, we obtain a strong (sturdy) semilattice of semigroups.

For undefined notions and notations we refer to [9] and [10].

It is easy to prove the following

SUBDIRECT PRODUCTS OF A BAND AND A SEMIGROUP 119

Lemma 1. Let $S = (B; S_i, \phi_{i,j}, D_i)$ and let T be a subsemigroup of S. Then $B' = \{i \in B \mid S_i \cap T \neq \emptyset\}$ is a subsemigroup of B and if $T_i = T \cap S_i, i \in B'$, and for $i, j \in B', i \succeq j, \psi_{i,j}$ is the restriction of $\phi_{i,j}$ onto T_i , then $T = (B'; T_i, \psi_{i,j}, D_i)$.

$\mathbf{2}$ – The main results

In this section we will give various characterizations of subdirect products of a band and a semigroup, in the general case. The following is the main theorem of this paper:

Theorem 1. Let $S = (B; S_i, \phi_{i,j}, D_i)$ and let ξ be a relation on S defined by:

(4) $a \xi b$ if and only if $a \in S_i$, $b \in S_j$, $i, j \in B$, and there exists $k \in B$ such that $k \leq i, j$, and $a \phi_{i,l} = b \phi_{j,l}$, for every $l \in B$, $l \leq k$.

Then ξ is a congruence on S. Furthermore, if $S = \langle B; S_i, \phi_{i,j}, D_i \rangle$, then S is a subdirect product of B and S/ξ .

Conversely, if a semigroup S is a subdirect product of a band B and a semigroup T, then $S = \langle B; S_i, \phi_{i,j}, D_i \rangle$, where for each $i \in B$, S_i is isomorphic to some subsemigroup of T.

Proof: Clearly, ξ is reflexive and symmetric. Assume $a, b, c \in S$ such that $a \xi b$ and $b \xi c$. Let $a \in S_i$, $b \in S_j$, $c \in S_k$, $i, j, k \in B$. Then there exists $m_1, m_2 \in B$ such that $m_1 \preceq i, j$ and $m_2 \preceq j, k$, and $a \phi_{i,l_1} = b \phi_{j,l_1}, b \phi_{j,l_2} = c \phi_{k,l_2}$, for all $l_1, l_2 \in B$, $l_1 \preceq m_1$ and $l_2 \preceq m_2$. Clearly, there exists $m \in B$ such that $m \preceq m_1, m_2$, and for every $l \in B$, $l \preceq m$, we obtain that $l \preceq m_1, m_2$, whence $a \phi_{i,l} = b \phi_{j,l} = c \phi_{k,l_2}$. Therefore, $a \xi c$, so ξ is transitive.

Let $a, b, c \in S$, $a \notin b$. Assume that $a \in S_i$, $b \in S_j$, $c \in S_k$, $i, j, k \in B$. Then there exists $m_0 \in B$, $m_0 \preceq i, j$, such that $a \phi_{i,l} = b \phi_{j,l}$, for every $l \in B$, $l \preceq m_0$. Assume that $m \in B$ is such that $m \preceq m_0, ik, jk$, and that $l \in B, l \preceq m$. Then $l \preceq m_0$, whence

$$(a * c) \phi_{ik,l} = (a \phi_{i,l}) (c \phi_{k,l}) = (b \phi_{j,l}) (c \phi_{k,l}) = (b * c) \phi_{jk,l} .$$

Thus, $a * c \xi b * c$. Similarly we prove that $c * a \xi c * b$. Hence, ξ is a congruence on S.

Let $S = \langle B; S_i, \phi_{i,j}, D_i \rangle$. Assume that $(a, b) \in \xi \cap \eta$, where η is a band congruence on S such that $S/\eta \cong B$. Then $a, b \in S_i$, for some $i \in B$, and there exists $k \in B$, $k \leq i$, such that $a \phi_{i,k} = b \phi_{i,k}$, whence a = b, since $\phi_{i,k}$ is one-to-

one. Therefore, $\xi \cap \eta = \varepsilon$, where ε is the equality relation. Thus, S is a subdirect product of B and S/ξ .

Conversely, let $S \subseteq T \times B$ be a subdirect product of a semigroup T and a band B. For $i \in B$, let $S_i = (T \times \{i\}) \cap S$. Clearly, $S_i \neq \emptyset$ and it is isomorphic to a subsemigroup of T, for each $i \in B$, and S is a band B of semigroups $S_i, i \in B$. Let $D_i = T \times \{i\}, i \in B$, and for $i, j \in B, i \succeq j$, let $\phi_{i,j} \colon S_i \to D_j$ be a mapping defined by:

$$(a, i) \phi_{i,j} = (a, j) \quad ((a, i) \in S_i)$$

Now it is easy to verify that $S = \langle B; S_i, \phi_{i,j}, D_i \rangle$.

Remark. Note that if $S = [B; S_i, \phi_{i,j}]$ and ξ is a congruence on S defined as in (4), then S/ξ is the well-known *direct limit* of the family S_i , $i \in B$, carried by B.

Considering the mappings of a band B into the set $\mathcal{G}(T)$ of all subsemigroups of a semigroup T, satisfying some suitable conditions, we give another characterization of subdirect products of B and T, similar to the ones of J.L. Chrislock and T. Tamura [3] and H. Mitsch [8].

Theorem 2. Let B be a band, let T be a semigroup and let $\mu: B \to \mathcal{G}(T)$ be a mapping satisfying the following conditions:

i)
$$\bigcup_{i \in B} i\mu = T;$$

ii)
$$(i\mu) \cdot (j\mu) \subseteq (ij) \mu$$
, for all $i, j \in B$.

Then $S = \{(i, a) \in B \times T \mid a \in i\mu\}$ is a subdirect product of B and T, in notation $S = (B; \mu, T)$.

Conversely, any subdirect product of B and T can be obtained in this way.

Proof: The proof is similar to the proofs of Theorem 1 [3] and Theorem 7 [8]. \blacksquare

Let B be a band, let T be a semigroup, let $\mu : B \to \mathcal{G}(T)$ be a mapping satisfying i) of the previous theorem and let μ be antitone, i.e. let for all $i, j \in B$, $i \succeq j$ implies $i\mu \subseteq j\mu$. Then clearly μ satisfies ii). A semigroup S constructed by such a mapping as in the previous theorem will be denoted by $S = [B; \mu; T]$.

By Theorem 2 we obtain the following two corollaries. The first of them is in fact Proposition 1 [4], and the first part of the second corollary is the result of M. Petrich [10, p. 87–88], [9, p. 98].

Corollary 1. If S is a sturdy band B of semigroups, then $S = [B; \mu; S/\xi]$, where ξ is a relation defined as in (4).

Conversely, if $S = [B; \mu; T]$, then S is a sturdy band B of semigroups $S_i = i\mu$, $i \in B$.

Corollary 2. If S is a sturdy semilattice Y of semigroups, then $S = [Y; \mu; S/\xi]$, where ξ is a relation defined as in (4).

Conversely, if $S = [Y; \mu; T]$, where Y is a semilattice, then S is a sturdy band B of semigroups $S_i = i\mu$, $i \in B$.

If P and Q are two semigroups with a common homomorphic image Y, then the spined product of P and Q with respect to Y is $S = \{(a, b) \in P \times Q | a \varphi = b \psi\}$, where $\varphi \colon P \to Y$ and $\psi \colon Q \to Y$ are homomorphisms onto Y. If $P_{\alpha} = \alpha \varphi^{-1}, \ Q_{\alpha} = \alpha \psi^{-1}, \ \alpha \in Y$, then $S = \bigcup_{\alpha \in Y} (P_{\alpha} \times Q_{\alpha})$. Clearly, spined products are easier for construction than other subdirect products, so it is of interest the following result that reduces the problem of construction of subdirect products of a given semigroup and a band to the problem of construction of subdirect products of this semigroup and of the greatest semilattice homomorphic image of this band.

Theorem 3. Let B be a band, let Y be its greatest semilattice homomorphic image and let T be a semigroup. Then a semigroup S is a subdirect product of B and T if and only if it is a spined product, with respect to Y, of B and of a subdirect product of Y and T.

Proof: Let *B* be a semilattice *Y* of rectangular bands B_{α} , $\alpha \in Y$.

Let $S \subseteq B \times T$ be a subdirect product of B and T. Define a mapping φ of S into $Y \times T$ by:

$$(i,a) \varphi = ([i],a) \quad ((i,a) \in S)$$
.

By a routine verification we obtain that φ is a homomorphism. Let us prove that $P = S \varphi$ is a subdirect product of Y and T. Indeed, for $\alpha \in Y$, $\alpha = [i]$ for some $i \in B$, and $(i, a) \in S$ for some $a \in T$; hence $(\alpha, a) = ([i], a) = (i, a) \varphi \in P$. Similarly we prove that for $a \in T$ there exists $\alpha \in Y$ such that $(\alpha, a) \in P$. Therefore, P is a subdirect product of Y and T.

For $\alpha \in Y$, let $P_{\alpha} = (\{\alpha\} \times T) \cap P$. Clearly, P is a semilattice Y of semigroups $P_{\alpha}, \alpha \in Y$. Define a mapping ψ of S into $B \times P$ by:

$$(i, a) \psi = (i, ([i], a)) \quad ((i, a) \in S) .$$

It is not hard to verify that ψ is an embedding of S into $B \times T$. Assume $(i, a) \in S$. Then $i \in B_{\alpha}$, for some $\alpha \in Y$, whence

$$(i,a)\psi = (i,([i],a)) = (i,(\alpha,a)) \in B_{\alpha} \times P_{\alpha}$$
.

Thus, $S \psi \subseteq \bigcup_{\alpha \in Y} (B_{\alpha} \times P_{\alpha})$. On the other hand, if $\alpha \in Y$ and $(i, (\alpha, a)) \in B_{\alpha} \times P_{\alpha}$, then $i \in B_{\alpha}$, so

$$(i, (\alpha, a)) = (i, a) \psi \in S \psi$$
.

Therefore, $S\psi = \bigcup_{\alpha \in Y} (B_{\alpha} \times P_{\alpha})$, so S is a spined product of B and P with respect to Y.

Conversely, let $S \subseteq B \times P$ be a spined product of B and P, with respect to Y, where P is a subdirect product of Y and T, i.e. let $S = \bigcup_{\alpha \in Y} (B_{\alpha} \times P_{\alpha})$, where $P_{\alpha} = (\{\alpha\} \times T) \cap P, \ \alpha \in Y$. Define a mapping ϕ of S into $B \times T$ by:

$$(i, (\alpha, a)) \phi = (i, a) \quad ((i, (\alpha, a)) \in S)$$

Then ϕ is an embedding of S into $B \times T$. It remains to prove that $Q = S \phi$ is a subdirect product of B and T. Indeed, for $i \in B$, $i \in B_{\alpha}$, for some $\alpha \in Y$, and there exists $a \in T$ such that $(\alpha, a) \in P$, since P is a subdirect product of Y and T, whence $(i, (\alpha, a)) \in S$ and $(i, a) = (i, (\alpha, a)) \phi \in Q$. Similarly we prove that for any $a \in T$ there exists $i \in B$ such that $(i, a) \in Q$. Therefore, Q is a subdirect product of B and T.

An element of a semigroup is π -regular if some of its power is regular, and a semigroup is π -regular if each of its element is π -regular.

Corollary 3. The following conditions on a semigroup S are equivalent:

- i) S is π -regular and a subdirect product of a band and a semilattice of groups;
- ii) S is regular and a subdirect product of a band and a semilattice of groups;
- iii) S is a spined product of a band and a semilattice of groups.

Proof: The authors in [1] proved that if a semigroup is a subdirect product of semilattices of groups, then it is a semilattice of groups if and only if it is π -regular. By this and by Theorem 3 we obtain i) \Leftrightarrow iii). The equivalence ii) \Leftrightarrow iii) was proved by M. Petrich [11].

By the well-known Tamura's result [12], any semigroup can be represented as a semilattice of semilattice indecomposable semigroups. Also, M. Petrich in

Theorem III 7.2 [9] proved that every semilattice of semigroups can be composed as $(Y; S_{\alpha}, \phi_{\alpha,\beta}, D_{\alpha})$. Therefore, every semigroup S can be represented as $S = (Y; S_{\alpha}, \phi_{\alpha,\beta}, D_{\alpha})$, where Y is a semilattice, so it is of interest to consider subdirect products of a band and a semilattice of semigroups. This we will do in the next theorem.

Let *B* be a band and let *Y* be a semilattice. Assume that *P* is a subdirect product of *B* and *Y* an let π and ϖ be projection homomorphisms of *P* onto *B* and *Y*, respectively. It is easy to verify that for $i, j \in P, i \leq j$ in *P* if and only if $i\pi \leq j\pi$ in *B* and $i\varpi \leq j\varpi$ in *Y*. Define a quasi-order \leq on *P* by:

$$i \trianglelefteq j \iff i\pi \preceq j\pi \text{ and } i\varpi = j\varpi \quad (i,j \in P)$$

If $S = (P; S_i, \phi_{i,j}, D_i)$ and if $\phi_{i,j}$ is one-to-one for all $i, j \in P$ such that $i \geq j$, then we will write $S = (B, Y, P; S_i, \phi_{i,j}, D_i)$.

Theorem 4. Let B be a band and let Y be a semilattice.

Let P be a subdirect product of B and Y, let $S = (B, Y, P; S_i, \phi_{i,j}, D_i)$ and define relations η and ξ on S by:

- (5) $a \eta b$ if and only if $a \in S_i$, $b \in S_j$, $i, j \in P$, and $i\pi = j\pi$;
- (6) $a \xi b$ if and only if $a \in S_i$, $b \in S_j$, $i, j \in P$, $i\varpi = j\varpi$, and there exists $k \in P$, $k \leq i, j$, such that $a \phi_{i,l} = b \phi_{j,l}$, for each $l \in P$, $l \leq k$.

Then η and ξ are congruences on S, S/η is isomorphic to B, S/ξ is a semilattice Y of semigroups, and S is a subdirect product of S/η and S/ξ .

Conversely, every subdirect product of B and a semigroup that is a semilattice Y of semigroups can be obtained in this way.

Proof: Clearly, η is a congruence on S, S/η is isomorphic to B and ξ is reflexive and symmetric.

Assume that $a, b, c \in S$ are such that $a \xi b$ and $b \xi c$. Let $a \in S_i, b \in S_j, c \in S_k$, $i, j, k \in P, i \varpi = j \varpi = k \varpi$. By the hypothesis, there exist $m_1, m_2 \in P$ such that $m_1 \trianglelefteq i, j$ and $m_2 \trianglelefteq j, k$, and $a \phi_{i,l_1} = b \phi_{j,l_1}, b \phi_{j,l_2} = c \phi_{k,l_2}$, for all $l_1, l_2 \in P$ such that $l_1 \preceq m_1, l_2 \preceq m_2$. Now for $m = m_1 m_2, m \trianglelefteq m_1, m_2$, so for any $l \in P$, $l \preceq m$, we obtain that $a \phi_{i,l} = c \phi_{k,l}$. Therefore, $a \xi c$, so ξ is transitive.

Assume that $a, b, c \in S$ are such that $a \notin b$. Let $a \in S_i, b \in S_j, c \in S_k$, $i, j, k \in P$. By the hypothesis, $i\varpi = j\varpi$, whence $(ik)\varpi = (jk)\varpi$, since ϖ is a homomorphism. Also, there exists $m_0 \in P$ such that $m_0 \trianglelefteq i, j$ and $a \phi_{i,l} = b \phi_{j,l}$, for each $l \in P$, $l \preceq m_0$. Let $m = m_0 k$. Then $m \trianglelefteq ik, jk$ and for any $l \in P$, $l \preceq m$ we have

$$(a * c) \phi_{ik,l} = (a \phi_{i,l}) (c \phi_{k,l}) = (b \phi_{j,l}) (c \phi_{k,l}) = (b * c) \phi_{jk,l} ,$$

since $l \leq m_0$. Therefore, $a * c \xi b * c$, and similarly $c * a \xi c * b$, so ξ is a congruence on S.

Assume that $(a, b) \in \eta \cap \xi$. Then $a \in S_i$, $b \in S_j$, $i, j \in P$, and $i\varpi = j\varpi$, whence i = j. Also, there exists $k \in P$, $k \leq i$, such that $a \phi_{i,k} = b \phi_{i,k}$, whence a = b, since $\phi_{i,k}$ is one-to-one. Therefore, $\eta \cap \xi = \varepsilon$, so S is a subdirect product of S/η and S/ξ . Clearly, S/ξ is a semilattice Y of semigroups $T_{\alpha} = S_{\alpha} \xi^{\natural}$, $\alpha \in Y$, where $S_{\alpha} = \bigcup_{i \in P_{\alpha}} S_i$ and $P_{\alpha} = \{i \in P \mid i\pi = \alpha\}, \alpha \in Y$.

Conversely, let $S \subseteq B \times T$ be a subdirect product of B and a semigroup Tthat is a semilattice Y of semigroups T_{α} , $\alpha \in Y$. Let $P = \{(i, \alpha) \in B \times Y | (\{i\} \times T_{\alpha}) \cap S \neq \emptyset\}$. It is easy to check that P is a subdirect product of Band Y. Let π and ϖ denote the projection homomorphisms of P onto B and Y, respectively, and for $i \in P$, let $S_i = (\{i\pi\} \times T_{i\varpi}) \cap S$. Clearly, S is a band P of semigroups S_i , $i \in P$. By Theorem III 7.2 [9], $T = (Y; T_{\alpha}, \phi_{\alpha,\beta}, D_{\alpha})$. Now, for $i \in P$, let $D_i = \{i\pi\} \times D_{i\varpi}$ and for $i, j \in P$, $i \succeq j$, define a mapping $\phi_{i,j}$ of S_i into S_j by:

$$(i\pi, a) \phi_{i,j} = (j\pi, a \phi_{i\varpi, j\varpi}) \quad (a \in T_{i\varpi}) .$$

Now it is easy to show that $S = (B, Y, P; S_i, \phi_{i,j}, D_i)$.

3 – Subdirect products of a band and a group

Subdirect products of a band and a group were considered in various special cases by M. Petrich [9-11], H. Mitsch [8] and the authors [4]. In this section we will characterize such products in the general case.

Let E(S) denote the set of all idempotents of a semigroup S. An element a of a semigroup S is E-inversive if there exists $x \in S$ such that $a x \in E(S)$, or equivalently, if there exists $x \in S$ such that x = x a x [2]. A semigroup S is E-inversive if each of its elements is E-inversive. For more informations about such semigroups we refer to [2] and [8].

Lemma 2. Let S be a subdirect product of a band B and an E-inversive semigroup T. Then S is also E-inversive.

Proof: Let $S \subseteq B \times T$, $(i, a) \in S$. For $a \in T$ there exists $x \in T$ such that $ax \in E(T)$ and there exists $j \in B$ such that $(j, x) \in S$. Therefore, $(i, a)(j, x) = (ij, ax) \in E(S)$, so S is E-inversive.

Note that if $S = (B; S_i, \phi_{i,j}, D_i)$, then $D = \bigcup_{i \in B} D_i$ need not be a semigroup. One very interesting case when the multiplication on S can be extended to a

125

multiplication on D will be considered in the following

Theorem 5. Let $S = (B; S_i, \phi_{i,j}, D_i)$, where $D_i, i \in B$, are cancellative semigroups and $D_k = \{a \phi_{i,k} \mid a \in S_i, i \succeq k\}$, for each $k \in B$. Then

- i) For all $i, j \in B$, $i \succeq j$, $\phi_{i,j}$ can be extended up to a homomorphism $\varphi_{i,j}$ of D_i into D_j such that there exists a composition $D = [B; D_i, \varphi_{i,j}];$
- ii) If $S = \langle B; S_i, \phi_{i,j}, D_i \rangle$, then $D = \langle B; D_i, \varphi_{i,j} \rangle$;
- iii) If S is E-inversive, then D is also E-inversive.

Proof: i) Assume that $k, l \in B$ are such that $k \succeq l$. For $a \in D_k$, by the hypothesis, $a = x \phi_{i,k}$, for $x \in S_i$, $i \in B$, $i \succeq k$, and we define a mapping $\varphi_{i,j}$ of D_k into D_l by

$$a\,\varphi_{k,l} = x\,\phi_{i,l}$$

To prove that φ is well-defined, it is necessary and sufficient to prove that for $x \in S_i, y \in S_j, i, j \succeq k \succeq l, x \phi_{i,k} = y \phi_{j,k}$ implies $x \phi_{i,l} = y \phi_{j,l}$. Indeed, by $x \phi_{i,k} = y \phi_{j,k}$, for arbitrary $u, v \in S_k$,

$$(u \phi_{k,l}) (x \phi_{i,l}) (v \phi_{k,l}) = (u * x * v) \phi_{k,l} = \left[u(x \phi_{i,k}) v \right] \phi_{k,l} = \left[u(y \phi_{j,k}) v \right] \phi_{k,l}$$
$$= (u * y * v) \phi_{k,l} = (u \phi_{k,l}) (y \phi_{j,l}) (v \phi_{k,l}) ,$$

so by the cancellativity in D_l , $x \phi_{i,l} = y \phi_{k,l}$. Hence, $\varphi_{k,l}$ is well-defined and clearly, it is an extension of $\phi_{k,l}$.

Assume that $a \in D_k$, $b \in D_l$, $a = x \phi_{i,k}$, $b = y \phi_{j,l}$, $x \in S_i$, $y \in S_j$, $i, j, k, l \in B$, $i \succeq k, j \succeq l$, and assume that $m \in B$, $m \preceq k, l$. Then by (3) and by the definition of mappings $\varphi_{i,j}$ we obtain

$$\begin{bmatrix} (a \varphi_{k,kl}) (b \varphi_{l,kl}) \end{bmatrix} \varphi_{kl,m} = \begin{bmatrix} (x \phi_{i,kl}) (y \phi_{j,kl}) \end{bmatrix} \varphi_{kl,m} = \\ = \begin{bmatrix} ((x \phi_{i,ij}) (y \phi_{j,ij})) \phi_{ij,kl} \end{bmatrix} \varphi_{kl,m} = \begin{bmatrix} (x * y) \phi_{ij,kl} \end{bmatrix} \varphi_{kl,m} = (x * y) \phi_{ij,m} \\ = \begin{bmatrix} (x \phi_{i,ij}) (y \phi_{j,ij}) \end{bmatrix} \phi_{ij,m} = (x \phi_{i,m}) (y \phi_{j,m}) = (a \varphi_{k,m}) (b \varphi_{l,m}) .$$

Therefore, there exists a composition $D = (B; D_i, \varphi_{i,j})$. Since $D_i, i \in B$, are cancellative, then $D = [B; D_i, \varphi_{i,j}]$.

ii) Let all $\phi_{i,j}$ be one-to-one. Assume that $a \varphi_{k,l} = b \varphi_{k,l}$, for $a, b \in D_k$, $k, l \in B, k \succeq l$. Then $a = x \phi_{i,k}, b = y \phi_{j,k}, x \in S_i, y \in S_j, i, j \in B, i, j \succeq k$. Let $u, v \in S_k$ be arbitrary. By $a \varphi_{k,l} = b \varphi_{k,l}$, it follows that $x \phi_{i,l} = y \phi_{j,l}$, whence

$$(u * x * v) \phi_{k,l} = (u \phi_{k,l}) (x \phi_{i,l}) (v \phi_{k,l}) = (u \phi_{k,l}) (y \phi_{j,l}) (v \phi_{k,l}) = (u * y * v) \phi_{k,l} .$$

Since $\phi_{k,l}$ is one-to-one, then u * x * v = u * y * v, whence

$$u(x \phi_{i,k}) v = u * x * v = u * y * v = u(y \phi_{i,k}) v$$

Now, by the cancellativity in D_k , $x \phi_{i,k} = y \phi_{j,k}$, i.e. a = b. Therefore, $\varphi_{k,l}$ is one-to-one.

iii) Assume that $a \in D$. Then $a \in D_k$, $k \in B$, and $a = x \phi_{i,k}$, $x \in S_i$, $i \in B$, $i \succeq k$. Now, $x * y \in E(S)$, for some $y \in S_j$, $j \in B$, so

$$a * y = (a \varphi_{k,kj}) (u \varphi_{j,kj}) = (x \phi_{i,kj}) (y \phi_{j,kj})$$
$$= \left[(x \phi_{i,ij}) (y \phi_{ju,ij}) \right] \phi_{ij,kj} = (x * y) \phi_{ij,kj} \in E(D) .$$

Thus, D is also E-inversive.

A semigroup containing exactly one idempotent will be called a *unipotent* semigroup, and a semigroup without idempotents will be called an *idempotent*-free semigroup. Now we go to the main theorem of this section.

Theorem 6. The following conditions on a semigroup S are equivalent:

- i) S is a subdirect product of a band and a group;
- ii) S is E-inversive, $S = \langle B; S_i, \phi_{i,j}, D_i \rangle$, and for every $i \in B$, D_i is cancellative;
- iii) S is E-inversive, $S = \langle B; S_i, \phi_{i,j}, D_i \rangle$, and for every $i \in B$, D_i is either a unipotent monoid or an idempotent-free semigroup;
- iv) S is E-inversive and it can be embedded into a sturdy band of cancellative semigroups;
- \mathbf{v}) S is E-inversive and it can be embedded into a sturdy band of unipotent monoids and idempotent-free semigroups;
- vi) S is E-inversive and it can be embedded into a spined product of a band and a sturdy semilattice of cancellative semigroups;
- vii) S is E-inversive and it can be embedded into a spined product of a band and a sturdy semilattice of unipotent monoids and idempotent-free semigroups.

Proof: i) \Rightarrow ii) Let $S \subseteq B \times G$ be a subdirect product of a band B and a group G. For $i \in B$, let $D_i = \{i\} \times G$, $S_i = S \cap D_i$. Clearly, $S_i \neq \emptyset$ and D_i is a cancellative semigroup, for each $i \in B$. If for $i, j \in B$, $i \succeq j$, we define

a mapping $\phi_{i,j}: S_i \to D_j$ by $(i, a) \phi_{i,j} = (j, a)$, then it is easy to verify that $S = \langle B; S_i, \phi_{ij}, D_i \rangle$ and by Lemma 2, S is E-inversive.

ii) \Rightarrow **v**) Let ii) hold. Without loss of generality we can assume that $D_k = \{a \phi_{i,k} \mid i \in B, i \succeq k, a \in S_i\}$, for each $k \in B$. By Theorem 5, S can be embedded into $D = \langle B; D_i, \varphi_{i,j} \rangle$ and D is E-inversive.

Let $i \in B$ be such that $E(D_i) \neq \emptyset$. Assume that $a \in D_i$, $e \in E(D_i)$. Since Dis E-inversive, then x = x * e * a * x, for some $x \in D$. If $x \in D_j$, $j \in B$, then clearly $i \succeq j$ and $(e * a * x) \varphi_{ij,j}, e\varphi_{i,j} \in E(D_j)$, since $e * a * x \in E(D_{ij}), e \in E(D_i)$. By the cancellativity in D_j , $|E(D_j)| = 1$, whence $e\varphi_{i,j} = (e * a * x) \varphi_{ij,j} = (e \varphi_{i,j}) (a \varphi_{i,j}) x$. Now, by the cancellativity in D_j , $e \varphi_{i,j} = (a \varphi_{i,j}) x$, whence

$$\left[(e * a) \varphi_{i,j} \right] x = (e * a * x) \varphi_{ij,j} = e \varphi_{i,j} = (a \varphi_{i,j}) x ,$$

and again by the cancellativity in D_j , $(e * a) \varphi_{i,j} = a \varphi_{i,j}$. Therefore, e * a = a, since $\varphi_{i,j}$ is one-to-one. Similarly we prove that a * e = a. Hence, D_j is a monoid. Since D_j is cancellative, then it is unipotent.

 \mathbf{v}) \Rightarrow **iii**) This follows immediately.

 $\mathbf{iii} \Rightarrow \mathbf{i}$ Let \mathbf{iii} hold. By Theorem 1, S is a subdirect product of B and a semigroup S/ξ , where ξ is a congruence defined as in (4). Clearly, $e \xi f$, for all $e, f \in E(S)$. Let $u = e \xi^{\natural}$, $e \in E(S)$. Assume $v \in S/\xi$. Then $v = a \xi^{\natural}$, for some $a \in S$. Since S is E-inversive, then x = x * a * x, for some $x \in S$. If $a \in S_i, x \in S_j$, $i, j \in B$, then $i \succeq j, x * a = e \in E(S_{ji})$ and $a * e \in S_{iji}$. Assume $k \in B, k \preceq i, iji$. Then

$$(a * e) \phi_{iji,k} = (a \phi_{i,k}) (e \phi_{ji,k}) = (a \phi_{i,k}) ,$$

since $e \phi_{ji,k}$ is the identity of D_k . Thus, $a * e \xi a$, whence $v = a \xi^{\natural} = (a * e) \xi^{\natural} = (a \xi^{\natural}) (e \xi^{\natural}) = v u$, and similarly v = u v. On the other hand, $u = e \xi^{\natural} = (x * a) \xi^{\natural} = (x \xi^{\natural}) (a \xi^{\natural}) = (x \xi^{\natural}) v$, and similarly $u = v(x \xi^{\natural})$. Hence, S/ξ is a group.

 \mathbf{ii}) \Leftrightarrow \mathbf{iv}) This follows by Theorem 5 and Lemma 1.

iv) \Leftrightarrow vi) and v) \Leftrightarrow vii) This follows by Theorem 3 [6].

Similarly we can prove the following

Corollary 4. The following conditions on a semigroup S are equivalent:

- i) $S = [B, \mu, G]$, where B is a band and G is a group;
- ii) S is E-inversive and a sturdy band of cancellative semigroups;
- iii) S is E-inversive and a sturdy band of unipotent monoids and idempotentfree semigroups;

- iv) S is E-inversive and a spined product of a band and a sturdy semilattice of cancellative semigroups;
- \mathbf{v}) S is E-inversive and a spined product of a band and a sturdy semilattice of unipotent monoids and idempotent-free semigroups.

Corollary 5. [4] A semigroup S is a sturdy band of groups if and only if it is regular and a subdirect product of a band and a group.

Corollary 5. [9, 10] A semigroup S is a sturdy semilattice of groups if and only if it is regular and a subdirect product of a semilattice and a group.

REFERENCES

- BOGDANOVIĆ, S. and ĆIRIĆ, M. Retractive nil-extensions of bands of groups, Facta Univ. (Niš), Ser. Math. Inform., 8 (1993), 11–20.
- [2] CATINO, F. and MICCOLI, M.M. On semidirect products of semigroups, Note di Matematica, 9(2) (1989), 189–194.
- [3] CHRISLOCK, J.L. and TAMURA, T. Notes on subdirect products of semigroups and rectangular bands, *Proc. Amer. Math. Soc.*, 20 (1969), 511–514.
- [4] ĆIRIĆ, M. and BOGDANOVIĆ, S. Sturdy bands of semigroups, Collect. Math. Barcelona, 41(3) (1990), 189–195.
- [5] CIRIĆ, M. and BOGDANOVIĆ, S. Normal band compositions of semigroups, Proc. Japan Acad. Ser. A, 69(8) (1993), 256–261.
- [6] CIRIĆ, M. and BOGDANOVIĆ, S. Spined products of some semigroups, Proc. Japan Acad. Ser. A, 69(9) (1993), 357–362.
- [7] ĆIRIĆ, M. and BOGDANOVIĆ, S. Normal band compositions of semigroups, II (to appear).
- [8] MITSCH, H. Subdirect products of E-inversive semigroups, J. Austral. Math. Soc. Ser. A, 48 (1990), 66–78.
- [9] PETRICH, M. Introduction to semigroups, Merill, Ohio, 1973.
- [10] PETRICH, M. Inverse semigroups, Wiley, New York, 1984.
- [11] PETRICH, M. Regular semigroups which are subdirect products of a band and a semilattice of groups, *Glasgow Math. J.*, 14 (1973), 27–49.
- [12] TAMURA, T. Note on the greatest semilattice decomposition of semigroups, Semigroup Forum, 4 (1972), 255–261.

Miroslav Ćirić,

University of Niš, Faculty of Philosophy, Department of Mathematics, 18000 Niš, Ćirila i Metodija 2 – YUGOSLAVIA

and

Stojan Bogdanović, University of Niš, Faculty of Economics, 18000 Niš, Trg JNA 11 – YUGOSLAVIA