ON A RESULT OF WILLIAMSON

Ming-Peng Gong*

Abstract

In this paper we generalize a result of Williamson on the structure of the kernel of a symmetrizer and also obtain some other related results.

1 - Introduction

Let S_{m} be the full symmetric group of degree m and $c(\sigma)$ an arbitrary nonzero function from S_{m} into the complex field \mathbb{C}. Given an $m \times m$ matrix $X=\left[x_{i j}\right]$ we define its generalized matrix function $d_{c}(X)$ by

$$
d_{c}(X)=\sum_{\sigma \in S_{m}} c(\sigma) \prod_{i=1}^{m} x_{i \sigma(i)}
$$

When $c=\lambda$ is a character of a subgroup G of S_{m}, we will write d_{c} as d_{λ}^{G}. We denote by $\Gamma_{m, n}$ the set of maps from $\{1, \ldots, m\}$ into $\{1, \ldots, n\}$. If $\alpha \in \Gamma_{m, n}$, we identify it with the m-tuple $(\alpha(1), \ldots, \alpha(m))$. For an $n \times n$ matrix $A=\left[a_{i j}\right]$ and $\alpha, \beta \in \Gamma_{m, n}, A[\alpha \mid \beta]$ will denote the $m \times m$ matrix whose (i, j) element is $a_{\alpha(i), \beta(j)}$. For $\alpha \in \Gamma_{m, n}, \sigma \in S_{m}$, we write $\alpha \sigma=(\alpha(\sigma(1)), \ldots, \alpha(\sigma(m)))$. We also write $e=(1, \ldots, m)$.

Let V be an n-dimensional unitary vector space over \mathbb{C}, and $\otimes^{m} V$ be its m-th tensor power. If $\sigma \in S_{m}$, there exists a unique linear operator $P(\sigma)$ on $\otimes^{m} V$ such that

$$
P(\sigma) x_{1} \otimes \ldots \otimes x_{m}=x_{\sigma^{-1}(1)} \otimes \ldots \otimes x_{\sigma^{-1}(m)}
$$

[^0]The linear mapping

$$
T_{c}=\sum_{\sigma \in S_{m}} c(\sigma) P(\sigma)
$$

will be called a symmetrizer. The star product $x_{1} * \ldots * x_{m}$ is, by definition, $T_{c}\left(x_{1} \otimes \ldots \otimes x_{m}\right)$.

As we know, the characterization of the kernel of the symmetrizer T_{c} is equivalent to that of the following set (see [2] and [4])

$$
\begin{equation*}
\mathcal{N}(c)=\left\{A \in M_{m}(\mathbb{C}) \mid d_{c}(A X)=0, \forall X\right\} \tag{1.1}
\end{equation*}
$$

In [7], Williamson proves a fundamental combinatorial property of cyclic permutations of finite sequences of integers and considers an application of this result to the characterization of the kernel of T_{c} when c is a homomorphism from G into \mathbb{C}.

If Δ is an orbit of the subgroup G, let G^{Δ} be the subgroup of G restricted to Δ. Following Williamson, we denote by \mathcal{G} the class of all subgroups G of S_{m} such that if Δ is any orbit of G the G^{Δ} is cyclic. For $\alpha \in \Gamma_{m, n}$ we shall denote by G_{α} that subgroup of G defined by

$$
G_{\alpha}=\{\sigma \in G \mid \alpha(\sigma(i))=\alpha(i), i=1, \ldots, m\}
$$

For any homogeneous tensor $w=y_{1} \otimes \ldots \otimes y_{m}, \alpha$ is called an indicator of w if $\alpha(i)=\alpha(j)$ if and only if y_{i} and y_{j} are linearly dependent. Now we are able to state the following two results of Williamson [7]:

Theorem 1.1. Let $G \in \mathcal{G}$. For any $\gamma \in \Gamma_{m, n}$ such that γ has at least two elements, there exists $\omega \in \Gamma_{m, n}$ such that:
i) range $\omega \subseteq$ range γ;
ii) $\gamma(i) \neq \omega(i), i=1, \ldots, m$;
iii) For each $\sigma \notin G_{\gamma}$ there is an integer $j, 1 \leq j \leq m$, such that $\gamma(\sigma(j))=\omega(j)$.

Theorem 1.2. Let $G \in \mathcal{G}$ and $w=y_{1} \otimes \ldots \otimes y_{m}$. If λ is any homomorphism of G into \mathbb{C} and γ an indicator of w, then $y_{1} \otimes \ldots \otimes y_{m}$ is in the kernel of T_{λ} iff $\sum_{\sigma \in G_{\gamma}} \lambda(\sigma)=0$.

In this paper, we generalize Theorem 1.2 to arbitrary functions c. We also obtain some other related results.

2 - Results

Let $E=\left\{e_{1}, \ldots, e_{n}\right\}$ be an orthonormal basis of V. For $\alpha \in \Gamma_{m, n}$, let $x_{\alpha}^{\otimes}=$ $x_{\alpha(1)} \otimes \ldots \otimes x_{\alpha(m)}$ and $T_{c}\left(x_{\alpha}^{\otimes}\right)=x_{\alpha}^{*}$. Define as in [3].

$$
b(\pi)=\sum_{\sigma \in S_{m}} c(\sigma \pi) \overline{c(\sigma)}, \quad c \in S_{m} .
$$

Particularly, when $c=\lambda$ is a character of the subgroup G, we have

$$
\begin{equation*}
b(\pi)=\sum_{\sigma \in G} \lambda(\sigma \pi) \overline{\lambda(\sigma)}=\frac{|G|}{\lambda(i d)} \lambda(\pi) . \tag{2.1}
\end{equation*}
$$

If $v^{*}=v_{1} * \ldots * v_{m}$ with $v_{i}=\sum_{l=1}^{n} a_{i l} e_{l} \in V$, then

$$
v^{*}=\sum_{\alpha \in \Gamma_{m, n}} a_{\alpha} T_{c}\left(e_{\alpha(1)} \otimes \ldots \otimes e_{\alpha(m)}\right)=\sum_{\alpha \in \Gamma_{m, n}} a_{\alpha} e_{\alpha}^{*}
$$

with $a_{\alpha}=a_{1 \alpha(1)} \cdots a_{m \alpha(m)}$, and $\left\|e_{\alpha}^{*}\right\|^{2}=\sum_{\sigma \in G_{\alpha}} b(\sigma)$.
We have already known that (see [1], [6]):

$$
\begin{equation*}
e_{\alpha}^{*}=0 \quad \text { iff } \quad \sum_{\pi \in G_{\alpha}} c(\sigma \pi)=0, \quad \forall \sigma \in S_{m} . \tag{2.2}
\end{equation*}
$$

When $c=\lambda$ is a character of the subgroup $G \subseteq S_{m}$, a stronger result can be obtained. In fact we have

Proposition 2.1. Let λ be a character of the subgroup G. Then $e_{\alpha}^{*}=0$ iff $\sum_{\sigma \in G_{\alpha}} \lambda(\pi \sigma \tau)=0$ for $\forall \pi, \tau \in G$.

Proof: At first, we have

$$
\left(e_{\alpha \tau}^{*}, e_{\beta \pi}^{*}\right)=\frac{\lambda(i d)}{|G|} \sum_{\sigma \in G} \lambda(\sigma) \delta_{\alpha, \beta \pi \sigma \tau^{-1}}
$$

and

$$
\left\|e_{\alpha}^{*}\right\|^{2}=\frac{\lambda(i d)}{|G|} \sum_{\sigma \in G_{\alpha}} \lambda(\sigma) .
$$

The "if" part is easy.
The "only if" part: When $e_{\alpha}^{*}=0$, then for arbitrary $\sigma \in G, e_{\alpha \sigma}^{*}=0$ and for $\forall \pi, \tau \in G$,

$$
\begin{aligned}
\left(e_{\alpha \tau}^{*}, e_{\alpha \pi}^{*}\right) & =\frac{\lambda(i d)}{|G|} \sum_{\sigma \in G} \lambda(\sigma) \delta_{\alpha, \alpha \pi \sigma \tau^{-1}} \\
& =\frac{\lambda(i d)}{|G|} \sum_{\sigma \in G_{\alpha}} \lambda\left(\pi^{-1} \sigma \tau\right)=0 .
\end{aligned}
$$

With this result, we can prove
Proposition 2.2.Let λ be a character of the subgroup G. Then $\sum_{\sigma \in G_{\alpha}} \lambda(\sigma)=0$ iff $\sum_{\sigma \in G} \lambda(\sigma) \phi(\alpha \sigma)=0$ for arbitrary $\phi: \Gamma_{m, n} \rightarrow C$.

Proof: The "if" part: Since $\sum_{\sigma \in G} \lambda(\sigma) \phi(\alpha \sigma)=0$ for arbitrary $\phi: \Gamma_{m, n} \rightarrow C$, let

$$
\phi(\beta)= \begin{cases}1, & \text { if } \beta=\alpha \\ 0, & \text { otherwise } .\end{cases}
$$

Then we have

$$
\sum_{\sigma \in G} \lambda(\sigma) \phi(\alpha \sigma)=\sum_{\sigma \in G_{\alpha}} \lambda(\sigma)=0 .
$$

The "only if" part: Let $\tau_{1}, \ldots, \tau_{r}$ be a system of right coset representatives of G_{α} in G. Using Proposition 2.1,

$$
\begin{aligned}
\sum_{\sigma \in G} \lambda(\sigma) \phi(\alpha \sigma) & =\sum_{j=1}^{r} \sum_{\sigma \in G_{\alpha}} \lambda\left(\sigma \tau_{j}\right) \phi\left(\alpha \sigma \tau_{j}\right) \\
& =\sum_{j=1}^{r}\left(\sum_{\sigma \in G_{\alpha}} \lambda\left(\sigma \tau_{j}\right)\right) \phi\left(\alpha \tau_{j}\right)=0
\end{aligned}
$$

The next result can be similarly proved:
Corollary 2.3. Let λ be a character of the subgroup G. Then $\sum_{\sigma \in G_{\alpha}} \lambda(\sigma)=0$ iff $\sum_{\sigma \in G} \lambda\left(\sigma^{-1}\right) \phi(\alpha \sigma)=0$ for arbitrary $\phi: \Gamma_{m, n} \rightarrow C$.

Now we come to discuss the case when c is an arbitrary function. With (2.2), we can prove

Proposition 2.4. If $e_{\alpha}^{*}=0$, then $A[\alpha \mid e] \in \mathcal{N}(c)$.
Proof: Let $\tau_{1}, \ldots, \tau_{r}$ be a system of left coset representatives of G_{α} in S_{m},
using (2.2), for arbitrary $\beta \in \Gamma_{m, n}$, we have

$$
\begin{aligned}
d_{c} A[\alpha \mid \beta] & =\sum_{\sigma \in S_{m}} c(\sigma) \prod_{i=1}^{m} a_{\alpha(i), \beta(\sigma(i))} \\
& =\sum_{\sigma \in S_{m}} c(\sigma) \prod_{i=1}^{m} a_{\alpha\left(\sigma^{-1}(i)\right), \beta(i)} \\
& =\sum_{j=1}^{r} \sum_{\sigma \in G_{\alpha}} c\left(\tau_{j} \sigma\right) \prod_{i=1}^{m} a_{\alpha\left(\sigma^{-1} \tau_{j}^{-1}(i)\right), \beta(i)} \\
& =\sum_{j=1}^{r}\left(\sum_{\sigma \in G_{\alpha}} c\left(\tau_{j} \sigma\right)\right) \prod_{i=1}^{m} a_{\alpha\left(\tau_{j}^{-1}(i)\right), \beta(i)}=0 .
\end{aligned}
$$

Noting that (see [2] or [5])

$$
d_{c}(A[\alpha \mid e] X)=\sum_{\beta \in \Gamma_{m, n}} d_{c} A[\alpha \mid \beta] \prod_{i=1}^{m} x_{\beta(i) i}
$$

we arrive at $d_{c}(A[\alpha \mid e] X)=0$ for arbitrary X.■
Bearing in mind the definition of the indicator of a homogeneous tensor, recalling the remark preceding (1.1) and using Proposition 2.4, we can easily prove the following

Corollary 2.5. Let γ be an indicator of $w=y_{1} \otimes \ldots \otimes y_{m}$. If $e_{\gamma}^{*}=0$, then $y_{1} \otimes \ldots \otimes y_{m}$ is in the kernel of T_{c}.

Now we are in a position to prove the main result of this paper.
Proposition 2.6. Let G be in \mathcal{G}, c an arbitrary function from G into \mathbb{C} and $b(\pi)=\sum_{\sigma \in G} c(\sigma \pi) \overline{c(\sigma)}$. Let γ be an indicator of $v^{\otimes}=v_{1} \otimes \ldots \otimes v_{m}$. Then $v^{*}=0$ if and only if $\sum_{\sigma \in G_{\gamma}} b(\sigma)=\nu(\gamma)=0$.

Proof: The "if" part follows immediately from Corollary 2.5. For the "only if" part, our proof parallels that of [7], with some slight modifications. As in [7], we assume that $\nu(\gamma) \neq 0$. If $\gamma(1)=\ldots=\gamma(m)$, then $G_{\gamma}=G$ and

$$
\begin{aligned}
\nu(\gamma) & =\sum_{\sigma \in G_{\gamma}} b(\sigma)=\sum_{\sigma \in G} b(\sigma)=\sum_{\sigma \in G} \sum_{\pi \in G} c(\pi \sigma) \overline{c(\pi)} \\
& =\sum_{\pi \in G}\left(\sum_{\sigma \in G} c(\pi \sigma)\right) \overline{c(\pi)}=\left\|\sum_{\pi \in G} c(\pi)\right\|^{2} \neq 0
\end{aligned}
$$

Hence

$$
v^{*}=T_{c}\left(v_{1} \otimes \ldots \otimes v_{m}\right)=K v_{\gamma}^{\otimes} \sum_{\sigma \in G} c(\sigma) \neq 0
$$

where K is a nonzero constant.
Assume γ has at least two elements. Let $\tau_{1}=i d, \ldots, \tau_{r}$ be a system of left coset representatives of G_{γ} in G. Then

$$
\begin{align*}
\sum_{\sigma \in G} b(\sigma) P(\sigma) v^{\otimes} & =\sum_{\sigma \in G} b(\sigma) P(\sigma)\left(v_{1} \otimes \ldots \otimes v_{m}\right) \\
& =K \sum_{\sigma \in G} b(\sigma) P(\sigma) v_{\gamma}^{\otimes} \\
& =K \sum_{i=1}^{r} \sum_{\sigma \in G_{\gamma}} b\left(\tau_{i} \sigma\right) P\left(\tau_{i} \sigma\right) v_{\gamma}^{\otimes} \tag{2.3}\\
& =K \sum_{i=1}^{r} \sum_{\sigma \in G_{\gamma}} b\left(\tau_{i} \sigma\right) P\left(\tau_{i}\right) v_{\gamma}^{\otimes}
\end{align*}
$$

Let $z^{\otimes}=z_{1} \otimes \ldots \otimes z_{m}$. Then from (2.3), we have

$$
\begin{align*}
\left(v^{*}, z^{*}\right) & =\left(\sum_{\sigma \in G} b(\sigma) P(\sigma) v^{\otimes}, z^{\otimes}\right) \\
& =K \sum_{i=1}^{r} \sum_{\sigma \in G_{\gamma}} b\left(\tau_{i} \sigma\right)\left(P\left(\tau_{i}\right) v_{\gamma}^{\otimes}, z^{\otimes}\right) \tag{2.4}
\end{align*}
$$

By Theorem 1.1, there exists an ω such that
i) range $\omega \subseteq$ range γ;
ii) $\gamma(i) \neq \omega(i), i=1, \ldots, m$;
iii) For each σ not in G_{γ} there is an i such that $\gamma(\sigma(i))=\omega(i)$.

Now we may choose $z^{\otimes}=z_{1} \otimes \ldots \otimes z_{m}$ such that:

$$
\begin{equation*}
\left(v_{\gamma(i)}, z_{i}\right)=1 \quad \text { and } \quad\left(v_{\omega(i)}, z_{i}\right)=0 \quad \text { for } i=1, \ldots, m \tag{2.5}
\end{equation*}
$$

This is possible since γ is an indicator for v^{\otimes}, and also because range $\omega \subseteq$ range γ, $\gamma(i) \neq \omega(i)$ implies $v_{\gamma(i)}$ and $v_{\omega(i)}$ are linearly independent.

For any i we have

$$
\left(P\left(\tau_{i}\right) v_{\gamma}^{\otimes}, z^{\otimes}\right)=\prod_{t=1}^{m}\left(v_{\gamma\left(\tau_{i}^{-1}(t)\right)}, z_{t}\right)
$$

When $i \geq 2$, using iii) of Theorem 1.1, there exists j such that $\gamma\left(\tau_{i}^{-1}(j)\right)=$ $\omega(j)$, and the term

$$
\left(v_{\gamma\left(\tau_{i}^{-1}(j)\right)}, z_{j}\right)=\left(v_{\omega(j)}, z_{j}\right)=0
$$

So for any $i \geq 2,\left(P\left(\tau_{i}\right) v_{\gamma}^{\otimes}, z^{\otimes}\right)=0$.
For $i=1$, according to $(2.5),\left(v_{\gamma}^{\otimes}, z^{\otimes}\right)=1$ and from (2.4),

$$
\left(v^{*}, z^{*}\right)=K \sum_{\sigma \in G_{\gamma}} b(\sigma)=K \nu(\gamma) \neq 0
$$

Therefore, $T_{c}\left(v^{\otimes}\right)=v^{*} \neq 0$. This ends the proof.

REFERENCES

[1] Gong, M.-P. - Notes on semigroups defined by $d_{c}(A X)=0$, to appear.
[2] Gong, M.-P. - Semigroups defined by generalized Schur functions, to appear.
[3] Merris, R. and Dias da Silva, J.A. - Generalized Schur functions, J. Algebra, 35 (1975), 442-448.
[4] Oliveira, G.N. and Dias da Silva, J.A. - Conditions for equality of decomposable symmetric tensors, II, Linear Alg. Appl., 28 (1979), 161-176.
[5] Oliveira, G.N. and Dias da Silva, J.A. - Equality of decomposable symmetrized tensors and *-matrix groups, Linear Alg. Appl., 49 (1983), 191-219.
[6] Dias da Silva, J.A. - On the Schur inequality, Linear and Multilin. Algebra, 7 (1979), 343-357.
[7] Williamson, S.G. - A combinatorial property of finite sequences with an application to tensor algebra, J. Comb. Theory, 1 (1966), 401-410.

[^0]: Received: January 21, 1994; Revised: April 21, 1995.

 * This work was done while the author was with the Computing Center, Academia Sinica, Beijing 100080.

