PORTUGALIAE MATHEMATICA Vol. 53 Fasc. 1 – 1996

ON A RESULT OF WILLIAMSON

Ming-Peng Gong*

Abstract: In this paper we generalize a result of Williamson on the structure of the kernel of a symmetrizer and also obtain some other related results.

1 – Introduction

Let S_m be the full symmetric group of degree m and $c(\sigma)$ an arbitrary nonzero function from S_m into the complex field \mathbf{C} . Given an $m \times m$ matrix $X = [x_{ij}]$ we define its generalized matrix function $d_c(X)$ by

$$d_c(X) = \sum_{\sigma \in S_m} c(\sigma) \prod_{i=1}^m x_{i\sigma(i)} .$$

When $c = \lambda$ is a character of a subgroup G of S_m , we will write d_c as d_{λ}^G . We denote by $\Gamma_{m,n}$ the set of maps from $\{1, ..., m\}$ into $\{1, ..., n\}$. If $\alpha \in \Gamma_{m,n}$, we identify it with the *m*-tuple $(\alpha(1), ..., \alpha(m))$. For an $n \times n$ matrix $A = [a_{ij}]$ and $\alpha, \beta \in \Gamma_{m,n}$, $A[\alpha|\beta]$ will denote the $m \times m$ matrix whose (i, j) element is $a_{\alpha(i),\beta(j)}$. For $\alpha \in \Gamma_{m,n}$, $\sigma \in S_m$, we write $\alpha \sigma = (\alpha(\sigma(1)), ..., \alpha(\sigma(m)))$. We also write e = (1, ..., m).

Let V be an n-dimensional unitary vector space over \mathbf{C} , and $\bigotimes^m V$ be its m-th tensor power. If $\sigma \in S_m$, there exists a unique linear operator $P(\sigma)$ on $\bigotimes^m V$ such that

$$P(\sigma) x_1 \otimes \ldots \otimes x_m = x_{\sigma^{-1}(1)} \otimes \ldots \otimes x_{\sigma^{-1}(m)}$$
.

Received: January 21, 1994; Revised: April 21, 1995.

^{*} This work was done while the author was with the Computing Center, Academia Sinica, Beijing 100080.

M.-P. GONG

The linear mapping

$$T_c = \sum_{\sigma \in S_m} c(\sigma) P(\sigma)$$

will be called a symmetrizer. The star product $x_1 * ... * x_m$ is, by definition, $T_c(x_1 \otimes ... \otimes x_m)$.

As we know, the characterization of the kernel of the symmetrizer T_c is equivalent to that of the following set (see [2] and [4])

(1.1)
$$\mathcal{N}(c) = \left\{ A \in M_m(\mathbf{C}) \mid d_c(AX) = 0, \ \forall X \right\} \,.$$

In [7], Williamson proves a fundamental combinatorial property of cyclic permutations of finite sequences of integers and considers an application of this result to the characterization of the kernel of T_c when c is a homomorphism from Ginto \mathbb{C} .

If Δ is an orbit of the subgroup G, let G^{Δ} be the subgroup of G restricted to Δ . Following Williamson, we denote by \mathcal{G} the class of all subgroups G of S_m such that if Δ is any orbit of G the G^{Δ} is cyclic. For $\alpha \in \Gamma_{m,n}$ we shall denote by G_{α} that subgroup of G defined by

$$G_{\alpha} = \left\{ \sigma \in G \mid \alpha(\sigma(i)) = \alpha(i), \ i = 1, ..., m \right\} \,.$$

For any homogeneous tensor $w = y_1 \otimes ... \otimes y_m$, α is called an indicator of w if $\alpha(i) = \alpha(j)$ if and only if y_i and y_j are linearly dependent. Now we are able to state the following two results of Williamson [7]:

Theorem 1.1. Let $G \in \mathcal{G}$. For any $\gamma \in \Gamma_{m,n}$ such that γ has at least two elements, there exists $\omega \in \Gamma_{m,n}$ such that:

- i) range $\omega \subseteq \operatorname{range} \gamma$;
- **ii**) $\gamma(i) \neq \omega(i), i = 1, ..., m;$
- **iii**) For each $\sigma \notin G_{\gamma}$ there is an integer $j, 1 \leq j \leq m$, such that $\gamma(\sigma(j)) = \omega(j)$.

Theorem 1.2. Let $G \in \mathcal{G}$ and $w = y_1 \otimes ... \otimes y_m$. If λ is any homomorphism of G into \mathbb{C} and γ an indicator of w, then $y_1 \otimes ... \otimes y_m$ is in the kernel of T_{λ} iff $\sum_{\sigma \in G_{\gamma}} \lambda(\sigma) = 0.$

In this paper, we generalize Theorem 1.2 to arbitrary functions c. We also obtain some other related results.

36

2 - Results

Let $E = \{e_1, ..., e_n\}$ be an orthonormal basis of V. For $\alpha \in \Gamma_{m,n}$, let $x_{\alpha}^{\otimes} = x_{\alpha(1)} \otimes ... \otimes x_{\alpha(m)}$ and $T_c(x_{\alpha}^{\otimes}) = x_{\alpha}^*$. Define as in [3].

$$b(\pi) = \sum_{\sigma \in S_m} c(\sigma \pi) \overline{c(\sigma)}, \quad c \in S_m$$

Particularly, when $c = \lambda$ is a character of the subgroup G, we have

(2.1)
$$b(\pi) = \sum_{\sigma \in G} \lambda(\sigma \pi) \overline{\lambda(\sigma)} = \frac{|G|}{\lambda(id)} \lambda(\pi)$$

If $v^* = v_1 * \dots * v_m$ with $v_i = \sum_{l=1}^n a_{il} e_l \in V$, then

$$v^* = \sum_{\alpha \in \Gamma_{m,n}} a_{\alpha} T_c \Big(e_{\alpha(1)} \otimes \dots \otimes e_{\alpha(m)} \Big) = \sum_{\alpha \in \Gamma_{m,n}} a_{\alpha} e_{\alpha}^*$$

with $a_{\alpha} = a_{1\alpha(1)} \cdots a_{m\alpha(m)}$, and $||e_{\alpha}^*||^2 = \sum_{\sigma \in G_{\alpha}} b(\sigma)$. We have already known that (see [1], [6]):

(2.2)
$$e_{\alpha}^{*} = 0 \quad \text{iff} \quad \sum_{\pi \in G_{\alpha}} c(\sigma \pi) = 0, \quad \forall \sigma \in S_{m} .$$

When $c = \lambda$ is a character of the subgroup $G \subseteq S_m$, a stronger result can be obtained. In fact we have

Proposition 2.1. Let λ be a character of the subgroup G. Then $e_{\alpha}^* = 0$ iff $\sum_{\sigma \in G_{\alpha}} \lambda(\pi \sigma \tau) = 0$ for $\forall \pi, \tau \in G$.

Proof: At first, we have

$$(e_{\alpha\tau}^*, e_{\beta\pi}^*) = \frac{\lambda(id)}{|G|} \sum_{\sigma \in G} \lambda(\sigma) \,\delta_{\alpha,\beta\pi\sigma\tau^{-1}}$$

and

$$||e_{\alpha}^{*}||^{2} = \frac{\lambda(id)}{|G|} \sum_{\sigma \in G_{\alpha}} \lambda(\sigma) .$$

The "if" part is easy.

The "only if" part: When $e_{\alpha}^* = 0$, then for arbitrary $\sigma \in G$, $e_{\alpha\sigma}^* = 0$ and for $\forall \pi, \tau \in G$,

$$\begin{aligned} (e_{\alpha\tau}^*, e_{\alpha\pi}^*) &= \frac{\lambda(id)}{|G|} \sum_{\sigma \in G} \lambda(\sigma) \, \delta_{\alpha, \alpha \pi \sigma \tau^{-1}} \\ &= \frac{\lambda(id)}{|G|} \sum_{\sigma \in G_{\alpha}} \lambda(\pi^{-1} \, \sigma \, \tau) = 0 \, . \blacksquare \end{aligned}$$

M.-P. GONG

With this result, we can prove

Proposition 2.2.Let λ be a character of the subgroup G. Then $\sum_{\sigma \in G_{\alpha}} \lambda(\sigma) = 0$ iff $\sum_{\sigma \in G} \lambda(\sigma) \phi(\alpha \sigma) = 0$ for arbitrary $\phi: \Gamma_{m,n} \to C$.

Proof: The "if" part: Since $\sum_{\sigma \in G} \lambda(\sigma) \phi(\alpha \sigma) = 0$ for arbitrary $\phi: \Gamma_{m,n} \to C$, let

$$\phi(\beta) = \begin{cases} 1, & \text{if } \beta = \alpha, \\ 0, & \text{otherwise }. \end{cases}$$

Then we have

$$\sum_{\sigma \in G} \lambda(\sigma) \, \phi(\alpha \, \sigma) = \sum_{\sigma \in G_{\alpha}} \lambda(\sigma) = 0 \, .$$

The "only if" part: Let $\tau_1, ..., \tau_r$ be a system of right coset representatives of G_{α} in G. Using Proposition 2.1,

$$\sum_{\sigma \in G} \lambda(\sigma) \phi(\alpha \sigma) = \sum_{j=1}^{r} \sum_{\sigma \in G_{\alpha}} \lambda(\sigma \tau_{j}) \phi(\alpha \sigma \tau_{j})$$
$$= \sum_{j=1}^{r} \left(\sum_{\sigma \in G_{\alpha}} \lambda(\sigma \tau_{j}) \right) \phi(\alpha \tau_{j}) = 0 . \blacksquare$$

The next result can be similarly proved:

Corollary 2.3. Let λ be a character of the subgroup G. Then $\sum_{\sigma \in G_{\alpha}} \lambda(\sigma) = 0$ iff $\sum_{\sigma \in G} \lambda(\sigma^{-1}) \phi(\alpha \sigma) = 0$ for arbitrary $\phi \colon \Gamma_{m,n} \to C$.

Now we come to discuss the case when c is an arbitrary function. With (2.2), we can prove

Proposition 2.4. If $e_{\alpha}^* = 0$, then $A[\alpha|e] \in \mathcal{N}(c)$.

Proof: Let $\tau_1, ..., \tau_r$ be a system of left coset representatives of G_{α} in S_m ,

38

ON A RESULT OF WILLIAMSON

using (2.2), for arbitrary $\beta \in \Gamma_{m,n}$, we have

$$d_{c}A[\alpha|\beta] = \sum_{\sigma \in S_{m}} c(\sigma) \prod_{i=1}^{m} a_{\alpha(i),\beta(\sigma(i))}$$
$$= \sum_{\sigma \in S_{m}} c(\sigma) \prod_{i=1}^{m} a_{\alpha(\sigma^{-1}(i)),\beta(i)}$$
$$= \sum_{j=1}^{r} \sum_{\sigma \in G_{\alpha}} c(\tau_{j}\sigma) \prod_{i=1}^{m} a_{\alpha(\sigma^{-1}\tau_{j}^{-1}(i)),\beta(i)}$$
$$= \sum_{j=1}^{r} \left(\sum_{\sigma \in G_{\alpha}} c(\tau_{j}\sigma)\right) \prod_{i=1}^{m} a_{\alpha(\tau_{j}^{-1}(i)),\beta(i)} = 0$$

Noting that (see [2] or [5])

$$d_c(A[\alpha|e] X) = \sum_{\beta \in \Gamma_{m,n}} d_c A[\alpha|\beta] \prod_{i=1}^m x_{\beta(i)i} ,$$

we arrive at $d_c(A[\alpha|e]X) = 0$ for arbitrary X.

Bearing in mind the definition of the indicator of a homogeneous tensor, recalling the remark preceding (1.1) and using Proposition 2.4, we can easily prove the following

Corollary 2.5. Let γ be an indicator of $w = y_1 \otimes ... \otimes y_m$. If $e_{\gamma}^* = 0$, then $y_1 \otimes ... \otimes y_m$ is in the kernel of T_c .

Now we are in a position to prove the main result of this paper.

Proposition 2.6. Let G be in \mathcal{G} , c an arbitrary function from G into \mathbb{C} and $b(\pi) = \sum_{\sigma \in G} c(\sigma \pi) \overline{c(\sigma)}$. Let γ be an indicator of $v^{\otimes} = v_1 \otimes ... \otimes v_m$. Then $v^* = 0$ if and only if $\sum_{\sigma \in G_{\gamma}} b(\sigma) = \nu(\gamma) = 0$.

Proof: The "if" part follows immediately from Corollary 2.5. For the "only if" part, our proof parallels that of [7], with some slight modifications. As in [7], we assume that $\nu(\gamma) \neq 0$. If $\gamma(1) = \ldots = \gamma(m)$, then $G_{\gamma} = G$ and

$$\nu(\gamma) = \sum_{\sigma \in G_{\gamma}} b(\sigma) = \sum_{\sigma \in G} b(\sigma) = \sum_{\sigma \in G} \sum_{\pi \in G} c(\pi \sigma) \overline{c(\pi)}$$
$$= \sum_{\pi \in G} \left(\sum_{\sigma \in G} c(\pi \sigma) \right) \overline{c(\pi)} = \left\| \sum_{\pi \in G} c(\pi) \right\|^2 \neq 0 .$$

M.-P. GONG

Hence

$$v^* = T_c(v_1 \otimes \ldots \otimes v_m) = K v_{\gamma}^{\otimes} \sum_{\sigma \in G} c(\sigma) \neq 0$$
,

where K is a nonzero constant.

Assume γ has at least two elements. Let $\tau_1 = id, ..., \tau_r$ be a system of left coset representatives of G_{γ} in G. Then

(2.3)

$$\sum_{\sigma \in G} b(\sigma) P(\sigma) v^{\otimes} = \sum_{\sigma \in G} b(\sigma) P(\sigma) (v_1 \otimes ... \otimes v_m)$$

$$= K \sum_{\sigma \in G} b(\sigma) P(\sigma) v^{\otimes}_{\gamma}$$

$$= K \sum_{i=1}^r \sum_{\sigma \in G_{\gamma}} b(\tau_i \sigma) P(\tau_i \sigma) v^{\otimes}_{\gamma}$$

$$= K \sum_{i=1}^r \sum_{\sigma \in G_{\gamma}} b(\tau_i \sigma) P(\tau_i) v^{\otimes}_{\gamma}.$$

Let $z^{\otimes} = z_1 \otimes \ldots \otimes z_m$. Then from (2.3), we have

(2.4)

$$(v^*, z^*) = \left(\sum_{\sigma \in G} b(\sigma) P(\sigma) v^{\otimes}, z^{\otimes}\right)$$

$$= K \sum_{i=1}^r \sum_{\sigma \in G_{\gamma}} b(\tau_i \sigma) \left(P(\tau_i) v_{\gamma}^{\otimes}, z^{\otimes}\right).$$

By Theorem 1.1, there exists an ω such that

- i) range $\omega \subseteq$ range γ ;
- ii) $\gamma(i) \neq \omega(i), i = 1, ..., m;$
- **iii**) For each σ not in G_{γ} there is an *i* such that $\gamma(\sigma(i)) = \omega(i)$.

Now we may choose $z^{\otimes} = z_1 \otimes ... \otimes z_m$ such that:

(2.5)
$$(v_{\gamma(i)}, z_i) = 1$$
 and $(v_{\omega(i)}, z_i) = 0$ for $i = 1, ..., m$.

This is possible since γ is an indicator for v^{\otimes} , and also because range $\omega \subseteq \operatorname{range} \gamma$, $\gamma(i) \neq \omega(i)$ implies $v_{\gamma(i)}$ and $v_{\omega(i)}$ are linearly independent.

For any i we have

$$(P(\tau_i)v_{\gamma}^{\otimes}, z^{\otimes}) = \prod_{t=1}^m (v_{\gamma(\tau_i^{-1}(t))}, z_t) .$$

40

When $i \ge 2$, using iii) of Theorem 1.1, there exists j such that $\gamma(\tau_i^{-1}(j)) =$ $\omega(j)$, and the term

$$(v_{\gamma(\tau_i^{-1}(j))}, z_j) = (v_{\omega(j)}, z_j) = 0$$
.

So for any $i \geq 2$, $(P(\tau_i)v_{\gamma}^{\otimes}, z^{\otimes}) = 0$. For i = 1, according to (2.5), $(v_{\gamma}^{\otimes}, z^{\otimes}) = 1$ and from (2.4),

$$(v^*, z^*) = K \sum_{\sigma \in G_{\gamma}} b(\sigma) = K \nu(\gamma) \neq 0$$
.

Therefore, $T_c(v^{\otimes}) = v^* \neq 0$. This ends the proof.

REFERENCES

- [1] GONG, M.-P. Notes on semigroups defined by $d_c(AX) = 0$, to appear.
- [2] GONG, M.-P. Semigroups defined by generalized Schur functions, to appear.
- [3] MERRIS, R. and DIAS DA SILVA, J.A. Generalized Schur functions, J. Algebra, 35 (1975), 442-448.
- [4] OLIVEIRA, G.N. and DIAS DA SILVA, J.A. Conditions for equality of decomposable symmetric tensors, II, Linear Alg. Appl., 28 (1979), 161–176.
- [5] OLIVEIRA, G.N. and DIAS DA SILVA, J.A. Equality of decomposable symmetrized tensors and *-matrix groups, Linear Alg. Appl., 49 (1983), 191-219.
- [6] DIAS DA SILVA, J.A. On the Schur inequality, Linear and Multilin. Algebra, 7 (1979), 343 - 357.
- [7] WILLIAMSON, S.G. A combinatorial property of finite sequences with an application to tensor algebra, J. Comb. Theory, 1 (1966), 401–410.

Ming-Peng Gong, Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario - CANADA N2L 3G1