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ON A RESULT OF WILLIAMSON

Ming-Peng Gong*

Abstract: In this paper we generalize a result of Williamson on the structure of the

kernel of a symmetrizer and also obtain some other related results.

1 – Introduction

Let Sm be the full symmetric group of degreem and c(σ) an arbitrary nonzero

function from Sm into the complex field C. Given an m ×m matrix X = [xij ]

we define its generalized matrix function dc(X) by

dc(X) =
∑

σ∈Sm

c(σ)
m
∏

i=1

xiσ(i) .

When c = λ is a character of a subgroup G of Sm, we will write dc as dGλ .

We denote by Γm,n the set of maps from {1, ...,m} into {1, ..., n}. If α ∈ Γm,n,

we identify it with the m-tuple (α(1), ..., α(m)). For an n × n matrix A = [aij ]

and α, β ∈ Γm,n, A[α|β] will denote the m × m matrix whose (i, j) element is

aα(i),β(j). For α ∈ Γm,n, σ ∈ Sm, we write ασ = (α(σ(1)), ..., α(σ(m))). We also

write e = (1, ...,m).

Let V be an n-dimensional unitary vector space over C, and
⊗m V be its

m-th tensor power. If σ ∈ Sm, there exists a unique linear operator P (σ) on
⊗m V such that

P (σ)x1 ⊗ ...⊗ xm = xσ−1(1) ⊗ ...⊗ xσ−1(m) .
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The linear mapping

Tc =
∑

σ∈Sm

c(σ)P (σ)

will be called a symmetrizer. The star product x1 ∗ ... ∗ xm is, by definition,

Tc(x1 ⊗ ...⊗ xm).

As we know, the characterization of the kernel of the symmetrizer Tc is equiv-

alent to that of the following set (see [2] and [4])

(1.1) N (c) =
{

A ∈Mm(C) | dc(AX) = 0, ∀X
}

.

In [7], Williamson proves a fundamental combinatorial property of cyclic per-

mutations of finite sequences of integers and considers an application of this result

to the characterization of the kernel of Tc when c is a homomorphism from G

into C.

If ∆ is an orbit of the subgroup G, let G∆ be the subgroup of G restricted

to ∆. Following Williamson, we denote by G the class of all subgroups G of Sm

such that if ∆ is any orbit of G the G∆ is cyclic. For α ∈ Γm,n we shall denote

by Gα that subgroup of G defined by

Gα =
{

σ ∈ G | α(σ(i)) = α(i), i = 1, ...,m
}

.

For any homogeneous tensor w = y1 ⊗ ... ⊗ ym, α is called an indicator of w if

α(i) = α(j) if and only if yi and yj are linearly dependent. Now we are able to

state the following two results of Williamson [7]:

Theorem 1.1. Let G ∈ G. For any γ ∈ Γm,n such that γ has at least two

elements, there exists ω ∈ Γm,n such that:

i) rangeω ⊆ range γ;

ii) γ(i) 6= ω(i), i = 1, ...,m;

iii) For each σ /∈ Gγ there is an integer j, 1 ≤ j ≤ m, such that γ(σ(j)) = ω(j).

Theorem 1.2. Let G ∈ G and w = y1⊗ ...⊗ ym. If λ is any homomorphism

of G into C and γ an indicator of w, then y1 ⊗ ... ⊗ ym is in the kernel of Tλ iff
∑

σ∈Gγ
λ(σ) = 0.

In this paper, we generalize Theorem 1.2 to arbitrary functions c. We also

obtain some other related results.
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2 – Results

Let E = {e1, ..., en} be an orthonormal basis of V . For α ∈ Γm,n, let x
⊗
α =

xα(1) ⊗ ...⊗ xα(m) and Tc(x
⊗
α ) = x∗α. Define as in [3].

b(π) =
∑

σ∈Sm

c(σ π) c(σ) , c ∈ Sm .

Particularly, when c = λ is a character of the subgroup G, we have

(2.1) b(π) =
∑

σ∈G

λ(σ π)λ(σ) =
|G|

λ(id)
λ(π) .

If v∗ = v1 ∗ ... ∗ vm with vi =
∑n

l=1 ail el ∈ V , then

v∗ =
∑

α∈Γm,n

aα Tc

(

eα(1) ⊗ ...⊗ eα(m)
)

=
∑

α∈Γm,n

aα e
∗
α

with aα = a1α(1) · · · amα(m), and ‖e
∗
α‖
2 =

∑

σ∈Gα
b(σ).

We have already known that (see [1], [6]):

(2.2) e∗α = 0 iff
∑

π∈Gα

c(σ π) = 0, ∀σ ∈ Sm .

When c = λ is a character of the subgroup G ⊆ Sm, a stronger result can be

obtained. In fact we have

Proposition 2.1. Let λ be a character of the subgroup G. Then e∗α = 0 iff
∑

σ∈Gα
λ(π σ τ) = 0 for ∀π, τ ∈ G.

Proof: At first, we have

(e∗ατ , e
∗
βπ) =

λ(id)

|G|

∑

σ∈G

λ(σ) δα,βπστ−1

and

‖e∗α‖
2 =

λ(id)

|G|

∑

σ∈Gα

λ(σ) .

The “if” part is easy.

The “only if” part: When e∗α = 0, then for arbitrary σ ∈ G, e∗ασ = 0 and for

∀π, τ ∈ G,

(e∗ατ , e
∗
απ) =

λ(id)

|G|

∑

σ∈G

λ(σ) δα,απστ−1

=
λ(id)

|G|

∑

σ∈Gα

λ(π−1 σ τ) = 0 .
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With this result, we can prove

Proposition 2.2.Let λ be a character of the subgroup G. Then
∑

σ∈Gα
λ(σ)=0

iff
∑

σ∈G λ(σ)φ(ασ) = 0 for arbitrary φ : Γm,n → C.

Proof: The “if” part: Since
∑

σ∈G λ(σ)φ(ασ)=0 for arbitrary φ: Γm,n→C,

let

φ(β) =

{

1, if β = α,

0, otherwise .

Then we have

∑

σ∈G

λ(σ)φ(ασ) =
∑

σ∈Gα

λ(σ) = 0 .

The “only if” part: Let τ1, ..., τr be a system of right coset representatives of

Gα in G. Using Proposition 2.1,

∑

σ∈G

λ(σ)φ(ασ) =
r
∑

j=1

∑

σ∈Gα

λ(σ τj)φ(ασ τj)

=
r
∑

j=1

(

∑

σ∈Gα

λ(σ τj)
)

φ(α τj) = 0 .

The next result can be similarly proved:

Corollary 2.3. Let λ be a character of the subgroup G. Then
∑

σ∈Gα
λ(σ)=0

iff
∑

σ∈G λ(σ
−1)φ(ασ) = 0 for arbitrary φ : Γm,n → C.

Now we come to discuss the case when c is an arbitrary function. With (2.2),

we can prove

Proposition 2.4. If e∗α = 0, then A[α|e] ∈ N (c).

Proof: Let τ1, ..., τr be a system of left coset representatives of Gα in Sm,
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using (2.2), for arbitrary β ∈ Γm,n, we have

dcA[α|β] =
∑

σ∈Sm

c(σ)
m
∏

i=1

aα(i),β(σ(i))

=
∑

σ∈Sm

c(σ)
m
∏

i=1

aα(σ−1(i)),β(i)

=
r
∑

j=1

∑

σ∈Gα

c(τj σ)
m
∏

i=1

aα(σ−1τ−1

j
(i)),β(i)

=
r
∑

j=1

(

∑

σ∈Gα

c(τj σ)
)

m
∏

i=1

aα(τ−1

j
(i)),β(i) = 0 .

Noting that (see [2] or [5])

dc(A[α|e]X) =
∑

β∈Γm,n

dcA[α|β]
m
∏

i=1

xβ(i)i ,

we arrive at dc(A[α|e]X) = 0 for arbitrary X.

Bearing in mind the definition of the indicator of a homogeneous tensor, re-

calling the remark preceding (1.1) and using Proposition 2.4, we can easily prove

the following

Corollary 2.5. Let γ be an indicator of w = y1 ⊗ ... ⊗ ym. If e
∗
γ = 0, then

y1 ⊗ ...⊗ ym is in the kernel of Tc.

Now we are in a position to prove the main result of this paper.

Proposition 2.6. Let G be in G, c an arbitrary function from G into C

and b(π) =
∑

σ∈G c(σ π) c(σ). Let γ be an indicator of v⊗ = v1 ⊗ ...⊗ vm. Then

v∗ = 0 if and only if
∑

σ∈Gγ
b(σ) = ν(γ) = 0.

Proof: The “if” part follows immediately from Corollary 2.5. For the “only

if” part, our proof parallels that of [7], with some slight modifications. As in [7],

we assume that ν(γ) 6= 0. If γ(1) = ... = γ(m), then Gγ = G and

ν(γ) =
∑

σ∈Gγ

b(σ) =
∑

σ∈G

b(σ) =
∑

σ∈G

∑

π∈G

c(π σ) c(π)

=
∑

π∈G

(

∑

σ∈G

c(π σ)
)

c(π) =
∥

∥

∥

∑

π∈G

c(π)
∥

∥

∥

2
6= 0 .
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Hence

v∗ = Tc(v1 ⊗ ...⊗ vm) = Kv⊗γ
∑

σ∈G

c(σ) 6= 0 ,

where K is a nonzero constant.

Assume γ has at least two elements. Let τ1 = id, ..., τr be a system of left

coset representatives of Gγ in G. Then

(2.3)

∑

σ∈G

b(σ)P (σ) v⊗ =
∑

σ∈G

b(σ)P (σ) (v1 ⊗ ...⊗ vm)

= K
∑

σ∈G

b(σ)P (σ) v⊗γ

= K
r
∑

i=1

∑

σ∈Gγ

b(τi σ)P (τi σ) v
⊗
γ

= K
r
∑

i=1

∑

σ∈Gγ

b(τi σ)P (τi) v
⊗
γ .

Let z⊗ = z1 ⊗ ...⊗ zm. Then from (2.3), we have

(2.4)

(v∗, z∗) =
(

∑

σ∈G

b(σ)P (σ) v⊗, z⊗
)

= K
r
∑

i=1

∑

σ∈Gγ

b(τi σ) (P (τi) v
⊗
γ , z

⊗) .

By Theorem 1.1, there exists an ω such that

i) rangeω ⊆ range γ;

ii) γ(i) 6= ω(i), i = 1, ...,m;

iii) For each σ not in Gγ there is an i such that γ(σ(i)) = ω(i).

Now we may choose z⊗ = z1 ⊗ ...⊗ zm such that:

(2.5) (vγ(i), zi) = 1 and (vω(i), zi) = 0 for i = 1, ...,m .

This is possible since γ is an indicator for v⊗, and also because rangeω ⊆ range γ,

γ(i) 6= ω(i) implies vγ(i) and vω(i) are linearly independent.

For any i we have

(P (τi)v
⊗
γ , z

⊗) =
m
∏

t=1

(vγ(τ−1

i
(t)), zt) .
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When i ≥ 2, using iii) of Theorem 1.1, there exists j such that γ(τ−1i (j)) =

ω(j), and the term

(vγ(τ−1

i
(j)), zj) = (vω(j), zj) = 0 .

So for any i ≥ 2, (P (τi)v
⊗
γ , z

⊗) = 0.

For i = 1, according to (2.5), (v⊗γ , z
⊗) = 1 and from (2.4),

(v∗, z∗) = K
∑

σ∈Gγ

b(σ) = K ν(γ) 6= 0 .

Therefore, Tc(v
⊗) = v∗ 6= 0. This ends the proof.
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