PORTUGALIAE MATHEMATICA Vol. 52 Fasc. 4 – 1995

WHEN IS A 0-1 KNAPSACK A MATROID ?

J. Orestes $\operatorname{Cerdeira}^1$ and $\operatorname{Paulo}\,\operatorname{Barcia}^2$

Abstract: We give a polynomial time algorithm for deciding whether the set of solutions of a 0-1 knapsack is a matroid.

1 – Introduction

Wolsey [3] gave a necessary and sufficient condition for the set of the feasible solutions of an arbitrary 0-1 knapsack to be a matroid. However, from that condition a polynomial time algorithm does not directly follow.

Recently Amado and Barcia [1] showed how matroids can be used, within a lagrangean relaxation approach, to obtain strong bounds for 0-1 knapsacks.

They described a polynomial time algorithm to decide whether a knapsack is a member of a special family of matroids. Yet, as pointed out in [1], knapsacks exist which are matroids and do not belong to that family.

Here we turn the result of Wolsey into a polynomial time algorithm to decide whether an arbitrary 0-1 knapsack is a matroid.

We also show that, unless P = NP, there is no polynomial time algorithm for deciding whether the greedy algorithm produces a maximum weight solution for a 0-1 knapsack problem.

Received: February 10, 1995.

Keywords: 0-1 knapsack, matroids, subset sum problem.

¹ Centro de Matemática e Aplicações Fundamentais (Projecto 6F91).

² Centro de Matemática e Aplicações Fundamentais (Projecto 6F91). The work of this author was partially supported by Projecto 8768MIC of JNICT.

J.O. CERDEIRA and P. BARCIA

2 – Preliminaries

Let $a_1, a_2, ..., a_n$ be integer coefficients of the linear inequality

(1)
$$\sum_{j=1}^{n} a_j x_j \le b ,$$

and assume $b \ge a_1 \ge a_2 \ge ... \ge a_n > 0$. If $N = \{1, 2, ..., n\}$, then $\mathcal{F} = \{J \subseteq N: a(J) = \sum_{j \in J} a_j \le b\}$ is the set of the 0-1 solutions of the knapsack defined by inequality (1). Clearly, the pair $M = (N, \mathcal{F})$ is an independence system.

Definition 1. A maximal independent set $C \subseteq N$ is a *ceiling* of M if whenever $j \in C$ and $j-1 \notin C$, implies $(C - \{j\}) \cup \{j-1\} \notin \mathcal{F}$.

Definition 2. A minimal dependent set $S = \{j_1, ..., j_r\} \subseteq N$ $(j_1 < ... < j_r)$ is a strong cover of M if $(S - \{j_1\}) \cup \{k\} \in \mathcal{F}$, where k is the smallest integer greater than j_1 and $k \notin S$.

Wolsey [3] proved the following:

Theorem 3. *M* is a matroid iff *M* has a unique ceiling,

Theorem 4. If the number of strong covers is less than or equal to 2, then M is a matroid.

Here we show that deciding whether M is a matroid amounts to check the independence of at most two sets which we specify. In case M is a matroid, we show that these sets are strong covers, and no other strong cover exists, i.e., that the converse of Theorem 4 also holds.

3 - The main result

Let G be the greedy set of (N, \mathcal{F}) with respect to the weights $a_1, ..., a_n$, i.e., the solution obtained by the greedy algorithm for the problem of maximizing $\{a(J): J \in \mathcal{F}\}.$

Recall that the greedy algorithm for (N, \mathcal{F}) starts with $G = \{1\}$ and, for j = 2, ..., n, adds j to G whenever $a(G) + a_j \leq b$.

G consists of $t \ge 1$ pairwise disjoint blocks G(1), ..., G(t) of consecutive elements of N, where if $j \in G(i)$ and $j' \in G(i+1)$, then $a_j > a_{j'}$. We use $\overline{G}(i)$ to denote the set of all elements of N which lie between G(i) and G(i+1), i = 1, ..., t-1,

476

 $\overline{G}(t) = \{j \in N : j > l, \text{ for all } l \in G(t)\}$. Note that $\overline{G}(i) \neq \emptyset$, for i = 1, ..., t-1 and $\overline{G}(t) = \emptyset$ iff $n \in G$. For i = 1, ..., t define $N(i) = \bigcup_{j \leq i} (G(j) \cup \overline{G}(j))$, and assume $N(0) = \emptyset$.

Clearly G is a ceiling. Moreover, as G consists of the $|G \cap (N(i) - N(i-1))|$ smallest integers of N(i) - N(i-1), i = 1, ..., t, any set A satisfying all the inequalities $|A \cap N(i)| \leq |G \cap N(i)|$ is in \mathcal{F} .

Lemma 5. If $C \neq G$ is a ceiling of M, then $|C \cap N(i)| > |G \cap N(i)|$, for some $1 \leq i \leq t-1$ or i = t if $n \notin G$.

Proof: Suppose C satisfies $|C \cap N(i)| \leq |G \cap N(i)|$, for i = 1, ..., t. Since G and C are different ceilings, $C \not\subseteq G$ and $G \not\subseteq C$. Take the smallest integers $g \in G-C$ and $c \in C-G$. If c < g, then $G \cap \{1, ..., c-1\} = C \cap \{1, ..., c-1\}$. If we let i be such that $c \in N(i) - N(i-1)$, we would have $|G \cap N(i)| < |C \cap N(i)|$, a contradiction.

We therefore have c > g and, consequently, $G \cap \{1, ..., c-1\} \supset C \cap \{1, ..., c-1\}$. If $C' = (C - \{c\}) \cup \{g\}$, then $|C' \cap N(i)| \leq |G \cap N(i)|$, for i = 1, ..., t, and C cannot be a ceiling, since $C' \in \mathcal{F}$.

Define S(i) as the set of the $\sum_{j \leq i} |G(j)| + 1$ greatest integers in N(i), i = 1, ..., t.

Theorem 6. If M is a matroid, then S(i), i = 1, ..., t-1 and S(t) if $n \notin G$ are strong covers of M. No other strong cover exists.

Proof: Take any S(i) on the conditions of the theorem. Since $\bigcup_{j\leq i} G(j)$ is a maximal independent set in N(i) with cardinality |S(i)| - 1, it follows, from the matroidal nature of M, that $S(i) \notin \mathcal{F}$.

To see that $S(i) = \{s, ..., g\}$ (s < ... < g) is a minimal dependent set, remove from S(i) its greatest element g. Note that $g \notin G$. As $S(i) - \{g\}$ consists of the $\sum_{j \leq i} |G(j)|$ greatest integers in $N(i) - \{g\}$, while G has the same number of elements in $N(i) - \{g\}$, we can conclude that removing any element from S(i)produces an independent set.

We have just proved that S(t) is a strong cover, whenever $n \notin G$.

Consider now i < t. The set $(S(i) - \{s\}) \cup \{g+1\}$ consists of the $\sum_{j \leq i} |G(j)|$ greatest integers in N(i) together with g + 1. The greedy set G has the same number of elements in N(i) and it also includes the element g + 1. Therefore, $(S(i) - \{s\}) \cup \{g+1\} \in \mathcal{F}$ which completes the proof that all the S(i) in the above conditions are strong covers.

We now show that no other strong cover exists.

J.O. CERDEIRA and P. BARCIA

Recall that any set A satisfing $|A \cap N(i)| \leq |G \cap N(i)|$, i = 1, ..., t, is independent. If S is dependent $|S \cap N(i')| \geq |S(i')| = |G \cap N(i')| + 1$, for some $i' \in \{1, ..., t\}$. Suppose S is a strong cover different from all the sets S(i) of the theorem. Let s' be the smallest integer in S and k be the smallest integer greater than s' which is not in S. Note that $k \in N(i')$, since otherwise $S \supset S(i')$ would not be minimal. Thus, $(S - \{s'\}) \cup \{k\}$ includes at least |S(i')| elements in N(i'). As $S(i') \notin \mathcal{F}$ consists of the |S(i')| greatest integers in N(i'), $(S - \{s'\}) \cup \{k\}$ cannot be in \mathcal{F} .

The following result concerning the structure of G, whenever M is a matroid, appears in [3] in terms of ceilings.

Theorem 7. If M is a matroid, $t \leq 3$. Moreover if t = 3, then $n \in G$.

Theorems 6 and 7 show that the converse of the implication in Theorem 4 also holds. Thus,

Theorem 8. *M* is a matroid iff the number of strong covers is less than or equal to 2. \blacksquare

The same two theorems give the following possible configurations for the greedy set G and the strong covers, whenever M is a matroid.

- i) G_0 : t = 1 and $n \in G_0$ (i.e. $G_0 = N$). There are no strong covers.
- ii) G_1 : t = 1 and $n \notin G_1$; or t = 2 and $n \in G_1$. The unique strong cover is S(1).
- iii) G_2 : t = 2 and $n \notin G_2$; or t = 3 and $n \in G_2$. The strong covers are S(1) and S(2).

We now state and prove our main result.

Theorem 9. M is a matroid iff $G = G_0$, or $G = G_1$ and $S(1) \notin \mathcal{F}$, or $G = G_2$ and $S(1), S(2) \notin \mathcal{F}$.

Proof: If $G = G_0$, clearly M is the free matroid.

It remains to be shown that $S(1) \notin \mathcal{F}$ when $G = G_1$, and $S(1), S(2) \notin \mathcal{F}$ when $G = G_2$, implies M to be a matroid.

Suppose $G = G_2$ and M is not a matroid. Then there is some ceiling $C \neq G_2$ which, according to Lemma 5, is such that $|C \cap N(i)| > |G_2 \cap N(i)|$, for some i = 1, 2. Since $C \cap N(i) \in \mathcal{F}$ and S(i) consists of the $\sum_{j \leq i} |G_2(j)| + 1 (\leq |C \cap N(i)|)$ greatest integers in N(i), we would have S(i) also in \mathcal{F} .

478

The proof for $G = G_1$ is similar.

4 – Final remark

Theorem 9 states that deciding whether the set of the 0-1 solutions of inequality (1) is a matroid can be carried out in polynomial time. It seems natural to ask if one can decide in polynomial time whether the greedy set G maximizes $\{a(J): J \in \mathcal{F}\}.$

We use the completeness of the subset sum problem (SSP) (the problem of deciding whether there is a subset J of N for which a(J) = b) to show that

Theorem 10. If there is a polynomial time algorithm for deciding whether G maximizes $\{a(J): J \in \mathcal{F}\}$, then P = NP.

Proof: We show how to solve the SSP for inequality (1) using an algorithm which decides whether a(G) is maximum.

If a(G) = b the correct answer to the SSP is obviously yes. If G = N, then the answer is no iff a(G) < b.

If $G \neq N$ and a(G) < b, consider first the case $n \notin G$. Define $a_0 = b - 1$, and the inequality

(2)
$$\sum_{j=0}^{n} a_j x_j \le b .$$

The greedy solution for inequality (2) is $G' = \{0\}$. If a(G') is maximum for (2), clearly the correct answer to the SSP is no. If a(G') is not maximum for (2), then there is some set $J \not\supseteq 0$ in \mathcal{F} such that $a(J) > a_0 = b - 1$, and yes would be the correct answer.

In case $n \in G$, let N := N - G(t) and b := b - a(G(t)), and use the above argument.

The result follows from the completeness of SSP (Garey and Jonhson [2]). ■

REFERENCES

- AMADO, L. and BARCIA, P. Matroidal relaxations for 0-1 knapsack problems, Operations Research Letters, 14 (1993), 147–152.
- [2] GAREY, M.R. and JONHSON, D.S. Computers and intractability: a guide to the theory of NP completeness, W.H. Freeman & company, San Franscico, 1979.

J.O. CERDEIRA and P. BARCIA

 [3] WOLSEY, L.A. – Faces for a linear inequality in 0-1 variables, Mathematical Programming, 8 (1975), 165–178.

> J. Orestes Cerdeira, Departamento de Matemática, Instituto Superior de Agronomia, Tapada da Ajuda, 1399 Lisboa Codex – PORTUGAL E-mail: orestes@isa.utl.pt

> > and

Paulo Barcia, Universidade Nova de Lisboa, Faculdade de Economia, Travessa Estevão Pinto, Campolide, 1000 Lisboa – PORTUGAL E-mail: barcia@fe.unl.pt

480