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WHEN IS A 0-1 KNAPSACK A MATROID ?

J. Orestes Cerdeira1 and Paulo Barcia2

Abstract: We give a polynomial time algorithm for deciding whether the set of

solutions of a 0-1 knapsack is a matroid.

1 – Introduction

Wolsey [3] gave a necessary and sufficient condition for the set of the feasible

solutions of an arbitrary 0-1 knapsack to be a matroid. However, from that

condition a polynomial time algorithm does not directly follow.

Recently Amado and Barcia [1] showed how matroids can be used, within a

lagrangean relaxation approach, to obtain strong bounds for 0-1 knapsacks.

They described a polynomial time algorithm to decide whether a knapsack is

a member of a special family of matroids. Yet, as pointed out in [1], knapsacks

exist which are matroids and do not belong to that family.

Here we turn the result of Wolsey into a polynomial time algorithm to decide

whether an arbitrary 0-1 knapsack is a matroid.

We also show that, unless P = NP , there is no polynomial time algorithm

for deciding whether the greedy algorithm produces a maximum weight solution

for a 0-1 knapsack problem.
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2 – Preliminaries

Let a1, a2, ..., an be integer coefficients of the linear inequality

(1)
n

∑

j=1

aj xj ≤ b ,

and assume b ≥ a1 ≥ a2 ≥ ... ≥ an > 0. If N = {1, 2, ..., n}, then F = {J ⊆ N :

a(J) =
∑

j∈J aj ≤ b} is the set of the 0-1 solutions of the knapsack defined by

inequality (1). Clearly, the pair M = (N,F) is an independence system.

Definition 1. A maximal independent set C ⊆ N is a ceiling of M if

whenever j ∈ C and j−1 6∈ C, implies (C−{j}) ∪ {j−1} 6∈ F .

Definition 2. A minimal dependent set S = {j1, ..., jr} ⊆ N (j1 < ... < jr)

is a strong cover of M if (S−{j1}) ∪ {k} ∈ F , where k is the smallest integer

greater than j1 and k 6∈ S.

Wolsey [3] proved the following:

Theorem 3. M is a matroid iff M has a unique ceiling,

Theorem 4. If the number of strong covers is less than or equal to 2, then

M is a matroid.

Here we show that deciding whether M is a matroid amounts to check the

independence of at most two sets which we specify. In case M is a matroid, we

show that these sets are strong covers, and no other strong cover exists, i.e., that

the converse of Theorem 4 also holds.

3 – The main result

Let G be the greedy set of (N,F) with respect to the weights a1, ..., an, i.e.,

the solution obtained by the greedy algorithm for the problem of maximizing

{a(J) : J ∈ F}.

Recall that the greedy algorithm for (N,F) starts with G = {1} and, for

j = 2, ..., n, adds j to G whenever a(G) + aj ≤ b.

G consists of t ≥ 1 pairwise disjoint blocks G(1), ..., G(t) of consecutive ele-

ments of N , where if j ∈ G(i) and j ′ ∈ G(i+1), then aj > aj′ . We use Ḡ(i) to de-

note the set of all elements of N which lie between G(i) and G(i+1), i = 1, ..., t−1,
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Ḡ(t) = {j∈N : j >l, for all l ∈ G(t)}. Note that Ḡ(i) 6= ∅, for i = 1, ..., t−1 and

Ḡ(t) = ∅ iff n ∈ G. For i = 1, ..., t define N(i) =
⋃

j≤i(G(j) ∪ Ḡ(j)), and assume

N(0) = ∅.

Clearly G is a ceiling. Moreover, as G consists of the |G∩(N(i)−N(i−1))|

smallest integers of N(i) − N(i− 1), i = 1, ..., t, any set A satisfying all the

inequalities |A ∩N(i)| ≤ |G ∩N(i)| is in F .

Lemma 5. If C 6= G is a ceiling of M , then |C ∩ N(i)| > |G ∩ N(i)|, for

some 1 ≤ i ≤ t−1 or i = t if n 6∈ G.

Proof: Supose C satisfies |C ∩ N(i)| ≤ |G ∩ N(i)|, for i = 1, ..., t. Since

G and C are different ceilings, C 6⊆ G and G 6⊆ C. Take the smallest integers

g ∈ G−C and c ∈ C−G. If c < g, then G∩ {1, ..., c−1} = C ∩ {1, ..., c−1}. If we

let i be such that c ∈ N(i) − N(i−1), we would have |G ∩ N(i)| < |C ∩ N(i)|,

a contradiction.

We therefore have c > g and, consequently, G∩{1, ..., c−1} ⊃ C∩{1, ..., c−1}.

If C ′ = (C − {c}) ∪ {g}, then |C ′ ∩ N(i)| ≤ |G ∩ N(i)|, for i = 1, ..., t, and C

cannot be a ceiling, since C ′ ∈ F .

Define S(i) as the set of the
∑

j≤i |G(j)| + 1 greatest integers in N(i),

i = 1, ..., t.

Theorem 6. If M is a matroid, then S(i), i = 1, ..., t−1 and S(t) if n 6∈ G

are strong covers of M . No other strong cover exists.

Proof: Take any S(i) on the conditions of the theorem. Since
⋃

j≤i G(j) is a

maximal independent set in N(i) with cardinality |S(i)| − 1, it follows, from the

matroidal nature of M , that S(i) 6∈ F .

To see that S(i) = {s, ..., g} (s < ... < g) is a minimal dependent set, remove

from S(i) its greatest element g. Note that g 6∈ G. As S(i) − {g} consists of

the
∑

j≤i |G(j)| greatest integers in N(i)− {g}, while G has the same number of

elements in N(i) − {g}, we can conclude that removing any element from S(i)

produces an independent set.

We have just proved that S(t) is a strong cover, whenever n 6∈ G.

Consider now i < t. The set (S(i)−{s}) ∪ {g+1} consists of the
∑

j≤i |G(j)|

greatest integers in N(i) together with g + 1. The greedy set G has the same

number of elements in N(i) and it also includes the element g + 1. Therefore,

(S(i)−{s})∪{g+1} ∈ F which completes the proof that all the S(i) in the above

conditions are strong covers.

We now show that no other strong cover exists.
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Recall that any set A satisfing |A ∩ N(i)| ≤ |G ∩ N(i)|, i = 1, ..., t, is in-

dependent. If S is dependent |S ∩ N(i′)| ≥ |S(i′)| = |G ∩ N(i′)| + 1, for some

i′ ∈ {1, ..., t}. Suppose S is a strong cover different from all the sets S(i) of the

theorem. Let s′ be the smallest integer in S and k be the smallest integer greater

than s′ which is not in S. Note that k ∈ N(i′), since otherwise S ⊃ S(i′) would

not be minimal. Thus, (S−{s′})∪ {k} includes at least |S(i′)| elements in N(i′).

As S(i′) 6∈ F consists of the |S(i′)| greatest integers in N(i′), (S−{s′}) ∪ {k}

cannot be in F .

The following result concerning the structure of G, whenever M is a matroid,

appears in [3] in terms of ceilings.

Theorem 7. If M is a matroid, t ≤ 3. Moreover if t = 3, then n ∈ G.

Theorems 6 and 7 show that the converse of the implication in Theorem 4

also holds. Thus,

Theorem 8. M is a matroid iff the number of strong covers is less than or

equal to 2.

The same two theorems give the following possible configurations for the

greedy set G and the strong covers, whenever M is a matroid.

i) G0: t = 1 and n ∈ G0 (i.e. G0 = N). There are no strong covers.

ii) G1: t = 1 and n 6∈ G1; or t = 2 and n ∈ G1. The unique strong cover is

S(1).

iii) G2: t = 2 and n 6∈ G2; or t = 3 and n ∈ G2. The strong covers are S(1)

and S(2).

We now state and prove our main result.

Theorem 9. M is a matroid iff G = G0, or G = G1 and S(1) 6∈ F , or

G = G2 and S(1), S(2) 6∈ F .

Proof: If G = G0, clearly M is the free matroid.

It remains to be shown that S(1) 6∈ F when G = G1, and S(1), S(2) 6∈ F

when G = G2, implies M to be a matroid.

Supose G = G2 and M is not a matroid. Then there is some ceiling C 6= G2

which, according to Lemma 5, is such that |C ∩ N(i)| > |G2 ∩ N(i)|, for some

i = 1, 2. Since C∩N(i) ∈ F and S(i) consists of the
∑

j≤i |G2(j)|+1 (≤ |C∩N(i)|)

greatest integers in N(i), we would have S(i) also in F .
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The proof for G = G1 is similar.

4 – Final remark

Theorem 9 states that deciding whether the set of the 0-1 solutions of inequal-

ity (1) is a matroid can be carried out in polynomial time. It seems natural to

ask if one can decide in polynomial time whether the greedy set G maximizes

{a(J) : J ∈ F}.

We use the completeness of the subset sum problem (SSP) (the problem of

deciding whether there is a subset J of N for which a(J) = b) to show that

Theorem 10. If there is a polynomial time algorithm for deciding whether

G maximizes {a(J) : J ∈ F}, then P = NP .

Proof: We show how to solve the SSP for inequality (1) using an algorithm

which decides whether a(G) is maximum.

If a(G) = b the correct answer to the SSP is obviously yes. If G = N , then

the answer is no iff a(G) < b.

If G 6= N and a(G) < b, consider first the case n 6∈ G. Define a0 = b− 1, and

the inequality

(2)
n

∑

j=0

aj xj ≤ b .

The greedy solution for inequality (2) is G′ = {0}. If a(G′) is maximum for (2),

clearly the correct answer to the SSP is no. If a(G′) is not maximum for (2),

then there is some set J 63 0 in F such that a(J) > a0 = b− 1, and yes would be

the correct answer.

In case n ∈ G, let N :=N − G(t) and b := b − a(G(t)), and use the above

argument.

The result follows from the completeness of SSP (Garey and Jonhson [2]).
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