PORTUGALIAE MATHEMATICA

Vol. 52 Fasc. 4 - 1995

# WHEN IS A 0-1 KNAPSACK A MATROID ? 

J. Orestes Cerdeira ${ }^{1}$ and Paulo Barcia ${ }^{2}$


#### Abstract

We give a polynomial time algorithm for deciding whether the set of solutions of a 0-1 knapsack is a matroid.


## 1 - Introduction

Wolsey [3] gave a necessary and sufficient condition for the set of the feasible solutions of an arbitrary 0-1 knapsack to be a matroid. However, from that condition a polynomial time algorithm does not directly follow.

Recently Amado and Barcia [1] showed how matroids can be used, within a lagrangean relaxation approach, to obtain strong bounds for 0-1 knapsacks.

They described a polynomial time algorithm to decide whether a knapsack is a member of a special family of matroids. Yet, as pointed out in [1], knapsacks exist which are matroids and do not belong to that family.

Here we turn the result of Wolsey into a polynomial time algorithm to decide whether an arbitrary 0-1 knapsack is a matroid.

We also show that, unless $P=N P$, there is no polynomial time algorithm for deciding whether the greedy algorithm produces a maximum weight solution for a 0-1 knapsack problem.

[^0]
## 2 - Preliminaries

Let $a_{1}, a_{2}, \ldots, a_{n}$ be integer coefficients of the linear inequality

$$
\begin{equation*}
\sum_{j=1}^{n} a_{j} x_{j} \leq b, \tag{1}
\end{equation*}
$$

and assume $b \geq a_{1} \geq a_{2} \geq \ldots \geq a_{n}>0$. If $N=\{1,2, \ldots, n\}$, then $\mathcal{F}=\{J \subseteq N$ : $\left.a(J)=\sum_{j \in J} a_{j} \leq b\right\}$ is the set of the $0-1$ solutions of the knapsack defined by inequality (1). Clearly, the pair $M=(N, \mathcal{F})$ is an independence system.

Definition 1. A maximal independent set $C \subseteq N$ is a ceiling of $M$ if whenever $j \in C$ and $j-1 \notin C$, implies $(C-\{j\}) \cup\{j-1\} \notin \mathcal{F}$.

Definition 2. A minimal dependent set $S=\left\{j_{1}, \ldots, j_{r}\right\} \subseteq N\left(j_{1}<\ldots<j_{r}\right)$ is a strong cover of $M$ if $\left(S-\left\{j_{1}\right\}\right) \cup\{k\} \in \mathcal{F}$, where $k$ is the smallest integer greater than $j_{1}$ and $k \notin S$.

Wolsey [3] proved the following:
Theorem 3. $M$ is a matroid iff $M$ has a unique ceiling,
Theorem 4. If the number of strong covers is less than or equal to 2 , then $M$ is a matroid.

Here we show that deciding whether $M$ is a matroid amounts to check the independence of at most two sets which we specify. In case $M$ is a matroid, we show that these sets are strong covers, and no other strong cover exists, i.e., that the converse of Theorem 4 also holds.

## 3 - The main result

Let $G$ be the greedy set of $(N, \mathcal{F})$ with respect to the weights $a_{1}, \ldots, a_{n}$, i.e., the solution obtained by the greedy algorithm for the problem of maximizing $\{a(J): J \in \mathcal{F}\}$.

Recall that the greedy algorithm for $(N, \mathcal{F})$ starts with $G=\{1\}$ and, for $j=2, \ldots, n$, adds $j$ to $G$ whenever $a(G)+a_{j} \leq b$.
$G$ consists of $t \geq 1$ pairwise disjoint blocks $G(1), \ldots, G(t)$ of consecutive elements of $N$, where if $j \in G(i)$ and $j^{\prime} \in G(i+1)$, then $a_{j}>a_{j^{\prime}}$. We use $\bar{G}(i)$ to denote the set of all elements of $N$ which lie between $G(i)$ and $G(i+1), i=1, \ldots, t-1$,
$\bar{G}(t)=\{j \in N: j>l$, for all $l \in G(t)\}$. Note that $\bar{G}(i) \neq \emptyset$, for $i=1, \ldots, t-1$ and $\bar{G}(t)=\emptyset$ iff $n \in G$. For $i=1, \ldots, t$ define $N(i)=\bigcup_{j \leq i}(G(j) \cup \bar{G}(j))$, and assume $N(0)=\emptyset$.

Clearly $G$ is a ceiling. Moreover, as $G$ consists of the $|G \cap(N(i)-N(i-1))|$ smallest integers of $N(i)-N(i-1), i=1, \ldots, t$, any set $A$ satisfying all the inequalities $|A \cap N(i)| \leq|G \cap N(i)|$ is in $\mathcal{F}$.

Lemma 5. If $C \neq G$ is a ceiling of $M$, then $|C \cap N(i)|>|G \cap N(i)|$, for some $1 \leq i \leq t-1$ or $i=t$ if $n \notin G$.

Proof: Supose $C$ satisfies $|C \cap N(i)| \leq|G \cap N(i)|$, for $i=1, \ldots, t$. Since $G$ and $C$ are different ceilings, $C \nsubseteq G$ and $G \nsubseteq C$. Take the smallest integers $g \in G-C$ and $c \in C-G$. If $c<g$, then $G \cap\{1, \ldots, c-1\}=C \cap\{1, \ldots, c-1\}$. If we let $i$ be such that $c \in N(i)-N(i-1)$, we would have $|G \cap N(i)|<|C \cap N(i)|$, a contradiction.

We therefore have $c>g$ and, consequently, $G \cap\{1, \ldots, c-1\} \supset C \cap\{1, \ldots, c-1\}$. If $C^{\prime}=(C-\{c\}) \cup\{g\}$, then $\left|C^{\prime} \cap N(i)\right| \leq|G \cap N(i)|$, for $i=1, \ldots, t$, and $C$ cannot be a ceiling, since $C^{\prime} \in \mathcal{F}$.

Define $S(i)$ as the set of the $\sum_{j \leq i}|G(j)|+1$ greatest integers in $N(i)$, $i=1, \ldots, t$.

Theorem 6. If $M$ is a matroid, then $S(i), i=1, \ldots, t-1$ and $S(t)$ if $n \notin G$ are strong covers of $M$. No other strong cover exists.

Proof: Take any $S(i)$ on the conditions of the theorem. Since $\bigcup_{j \leq i} G(j)$ is a maximal independent set in $N(i)$ with cardinality $|S(i)|-1$, it follows, from the matroidal nature of $M$, that $S(i) \notin \mathcal{F}$.

To see that $S(i)=\{s, \ldots, g\}(s<\ldots<g)$ is a minimal dependent set, remove from $S(i)$ its greatest element $g$. Note that $g \notin G$. As $S(i)-\{g\}$ consists of the $\sum_{j \leq i}|G(j)|$ greatest integers in $N(i)-\{g\}$, while $G$ has the same number of elements in $N(i)-\{g\}$, we can conclude that removing any element from $S(i)$ produces an independent set.

We have just proved that $S(t)$ is a strong cover, whenever $n \notin G$.
Consider now $i<t$. The set $(S(i)-\{s\}) \cup\{g+1\}$ consists of the $\sum_{j \leq i}|G(j)|$ greatest integers in $N(i)$ together with $g+1$. The greedy set $G$ has the same number of elements in $N(i)$ and it also includes the element $g+1$. Therefore, $(S(i)-\{s\}) \cup\{g+1\} \in \mathcal{F}$ which completes the proof that all the $S(i)$ in the above conditions are strong covers.

We now show that no other strong cover exists.

Recall that any set $A$ satisfing $|A \cap N(i)| \leq|G \cap N(i)|, i=1, \ldots, t$, is independent. If $S$ is dependent $\left|S \cap N\left(i^{\prime}\right)\right| \geq\left|S\left(i^{\prime}\right)\right|=\left|G \cap N\left(i^{\prime}\right)\right|+1$, for some $i^{\prime} \in\{1, \ldots, t\}$. Suppose $S$ is a strong cover different from all the sets $S(i)$ of the theorem. Let $s^{\prime}$ be the smallest integer in $S$ and $k$ be the smallest integer greater than $s^{\prime}$ which is not in $S$. Note that $k \in N\left(i^{\prime}\right)$, since otherwise $S \supset S\left(i^{\prime}\right)$ would not be minimal. Thus, $\left(S-\left\{s^{\prime}\right\}\right) \cup\{k\}$ includes at least $\left|S\left(i^{\prime}\right)\right|$ elements in $N\left(i^{\prime}\right)$. As $S\left(i^{\prime}\right) \notin \mathcal{F}$ consists of the $\left|S\left(i^{\prime}\right)\right|$ greatest integers in $N\left(i^{\prime}\right),\left(S-\left\{s^{\prime}\right\}\right) \cup\{k\}$ cannot be in $\mathcal{F}$.■

The following result concerning the structure of $G$, whenever $M$ is a matroid, appears in [3] in terms of ceilings.

Theorem 7. If $M$ is a matroid, $t \leq 3$. Moreover if $t=3$, then $n \in G$.
Theorems 6 and 7 show that the converse of the implication in Theorem 4 also holds. Thus,

Theorem 8. $M$ is a matroid iff the number of strong covers is less than or equal to 2 .

The same two theorems give the following possible configurations for the greedy set $G$ and the strong covers, whenever $M$ is a matroid.
i) $G_{0}: t=1$ and $n \in G_{0}$ (i.e. $G_{0}=N$ ). There are no strong covers.
ii) $G_{1}: t=1$ and $n \notin G_{1}$; or $t=2$ and $n \in G_{1}$. The unique strong cover is $S(1)$.
iii) $G_{2}$ : $t=2$ and $n \notin G_{2}$; or $t=3$ and $n \in G_{2}$. The strong covers are $S(1)$ and $S(2)$.

We now state and prove our main result.
Theorem 9. $M$ is a matroid iff $G=G_{0}$, or $G=G_{1}$ and $S(1) \notin \mathcal{F}$, or $G=G_{2}$ and $S(1), S(2) \notin \mathcal{F}$.

Proof: If $G=G_{0}$, clearly $M$ is the free matroid.
It remains to be shown that $S(1) \notin \mathcal{F}$ when $G=G_{1}$, and $S(1), S(2) \notin \mathcal{F}$ when $G=G_{2}$, implies $M$ to be a matroid.

Supose $G=G_{2}$ and $M$ is not a matroid. Then there is some ceiling $C \neq G_{2}$ which, according to Lemma 5 , is such that $|C \cap N(i)|>\left|G_{2} \cap N(i)\right|$, for some $i=1,2$. Since $C \cap N(i) \in \mathcal{F}$ and $S(i)$ consists of the $\sum_{j \leq i}\left|G_{2}(j)\right|+1(\leq|C \cap N(i)|)$ greatest integers in $N(i)$, we would have $S(i)$ also in $\mathcal{F}$.

The proof for $G=G_{1}$ is similar.

## 4 - Final remark

Theorem 9 states that deciding whether the set of the $0-1$ solutions of inequality (1) is a matroid can be carried out in polynomial time. It seems natural to ask if one can decide in polynomial time whether the greedy set $G$ maximizes $\{a(J): J \in \mathcal{F}\}$.

We use the completeness of the subset sum problem (SSP) (the problem of deciding whether there is a subset $J$ of $N$ for which $a(J)=b$ ) to show that

Theorem 10. If there is a polynomial time algorithm for deciding whether $G$ maximizes $\{a(J): J \in \mathcal{F}\}$, then $P=N P$.

Proof: We show how to solve the SSP for inequality (1) using an algorithm which decides whether $a(G)$ is maximum.

If $a(G)=b$ the correct answer to the SSP is obviously yes. If $G=N$, then the answer is no iff $a(G)<b$.

If $G \neq N$ and $a(G)<b$, consider first the case $n \notin G$. Define $a_{0}=b-1$, and the inequality

$$
\begin{equation*}
\sum_{j=0}^{n} a_{j} x_{j} \leq b \tag{2}
\end{equation*}
$$

The greedy solution for inequality (2) is $G^{\prime}=\{0\}$. If $a\left(G^{\prime}\right)$ is maximum for (2), clearly the correct answer to the SSP is no. If $a\left(G^{\prime}\right)$ is not maximum for (2), then there is some set $J \not \supset 0$ in $\mathcal{F}$ such that $a(J)>a_{0}=b-1$, and yes would be the correct answer.

In case $n \in G$, let $N:=N-G(t)$ and $b:=b-a(G(t))$, and use the above argument.

The result follows from the completeness of SSP (Garey and Jonhson [2]).

## REFERENCES

[1] Amado, L. and Barcia, P. - Matroidal relaxations for 0-1 knapsack problems, Operations Research Letters, 14 (1993), 147-152.
[2] Garey, M.R. and Jonhson, D.S. - Computers and intractability: a guide to the theory of NP completeness, W.H. Freeman \& company, San Franscico, 1979.
[3] Wolsey, L.A. - Faces for a linear inequality in 0-1 variables, Mathematical Programming, 8 (1975), 165-178.

## J. Orestes Cerdeira,

Departamento de Matemática, Instituto Superior de Agronomia, Tapada da Ajuda, 1399 Lisboa Codex - PORTUGAL

E-mail: orestes@isa.utl.pt
and
Paulo Barcia,
Universidade Nova de Lisboa, Faculdade de Economia,
Travessa Estevão Pinto, Campolide, 1000 Lisboa - PORTUGAL
E-mail: barcia@fe.unl.pt


[^0]:    Received: February 10, 1995.
    Keywords: 0-1 knapsack, matroids, subset sum problem.
    ${ }^{1}$ Centro de Matemática e Aplicações Fundamentais (Projecto 6F91).
    ${ }^{2}$ Centro de Matemática e Aplicações Fundamentais (Projecto 6F91). The work of this author was partially supported by Projecto 8768MIC of JNICT.

