POSITIVE SOLUTIONS OF ELLIPTIC EQUATIONS IN TWO-DIMENSIONAL EXTERIOR DOMAINS

Adrian Constantin

Abstract

We consider the semilinear elliptic equation $\Delta u+f(x, u)=0$ in a twodimensional exterior domain. Sufficient conditions for the existence of a positive solution are given.

1. We consider the semilinear elliptic equation

$$
\begin{equation*}
L u=\Delta u+f(x, u)=0, \quad x \in G_{a} \tag{1}
\end{equation*}
$$

in an exterior domain $G_{a}=\left\{x \in R^{2}:|x|>a\right\}$ (here $a>0$) where f is nonnegative and locally Hölder continuous in $G_{a} \times R$.

Let us introduce the class \Re of nondecreasing functions $w \in C^{1}\left(R_{+}, R_{+}\right)$with $w(t)>0$ for $t>0$ satisfying $\lim _{t \rightarrow \infty} w(t)=\infty$ and $\int_{1}^{\infty} \frac{d t}{w(t)}=\infty$.

Equation (1) is considered subject to the assumptions:
(A) $f \in C_{\text {loc }}^{\lambda}\left(G_{a} \times R\right)$ for some $\lambda \in(0,1)$ (locally Hölder continuous);
(B) $0 \leq f(x, t) \leq \alpha(|x|) w\left(\frac{t}{|x|}\right)$ for all $x \in G_{a}$ and all $t \geq 0$ where $\alpha \in$ $C\left(R_{+}, R_{+}\right)$and $w \in \Re$ with $w(0)=0$.
We intend to give sufficient conditions for the existence of a positive solution of (1) - a C^{2}-function satisfying (1)- in $G_{b}=\left\{x \in R^{2}:|x|>b\right\}$ for some $b \geq a$.
2. Denote $S_{b}=\left\{x \in R^{2}:|x|=b\right\}$ for $b \geq a$. We will make use of the following.

[^0]Lemma [2]. Let L be the operator defined by (1) where f is nonnegative and satisfies assumption (A) in G_{a}. If there exists a positive solution u_{1} and a nonnegative solution u_{2} of $L u_{1} \leq 0$ and $L u_{2} \geq 0$, respectively, in $G_{b}(b \geq a)$ such that $u_{2}(x) \leq u_{1}(x)$ throughout $G_{b} \cup S_{b}$, then equation (1) has at least one solution $u(x)$ satisfying $u(x)=u_{1}(x)$ on S_{b} and $u_{2}(x) \leq u(x) \leq u_{1}(x)$ throughout G_{b}.

We prove now
Theorem. Assume that (A), (B) hold and that

$$
\begin{equation*}
\int_{a}^{\infty} r \alpha(r) d r<\infty \tag{2}
\end{equation*}
$$

Then there is a $b \geq a$ such that (1) has a positive solution in G_{b}.
Proof: We consider the nonlinear differential equation

$$
\begin{equation*}
\frac{d}{d r}\left\{r \frac{d y}{d r}\right\}+r \alpha(r) w\left(\frac{y}{\ln (r)}\right)=0, \quad r \geq e \tag{3}
\end{equation*}
$$

where we define $w(-y)=-w(y)$ for $y \geq 0$ (we can extend w this way since $w(0)=0)$. As one can easily check, the so-defined w belongs to $C^{1}(R, R)$.

Liouville's transformation $r=e^{s}, h(s)=y\left(e^{s}\right)$ changes (3) into

$$
\begin{equation*}
h^{\prime \prime}(s)+e^{2 s} \alpha\left(e^{s}\right) w\left(\frac{h(s)}{s}\right)=0, \quad s \geq 1 \tag{4}
\end{equation*}
$$

Let us show that equation (4) has a solution $h(s)$ which is positive in $[c, \infty)$ for some $c \geq 1$.

Hypothesis (2) guarantees (see [1]) that for every solution $h(s)$ of (4) there exist real constants m, l such that $h(s)=m s+l+o(s)$ as $s \rightarrow \infty(m=$ $\left.\lim _{s \rightarrow \infty} h^{\prime}(s)\right)$. We will show that any nontrivial solution $h(s)$ of (4) is of constant sign for s in a neighbourhood of ∞ and since w is odd on R, this gives a solution of (4) which is positive in $[c, \infty)$ for some $c \geq 1$.

Assume that there is a nontrivial solution $h(s)$ of (4) which has a strictly increasing sequence of zeros $\left\{s_{n}\right\}_{n \geq 1}$ accumulating at ∞. Then we have that the corresponding m, l are both equal to 0 , i.e. $\lim _{s \rightarrow \infty} h(s)=\lim _{s \rightarrow \infty} h^{\prime}(s)=0$. Denote

$$
K=\sup _{s \geq 1}\{|h(s)|\}>0, \quad M=\sup _{|u| \leq K}\left\{\left|w^{\prime}(u)\right|\right\}>0
$$

and observe that $|w(u)| \leq M|u|$ for $|u| \leq K$ (by the mean-value theorem since $w(0)=0)$.

Since $\lim _{n \rightarrow \infty} s_{n}=\infty$ and $\int_{a}^{\infty} r \alpha(r) d r<\infty$, there exists an n_{0} such that $\int_{s_{n_{0}}}^{\infty} e^{2 s} \alpha\left(e^{s}\right) d s<\frac{1}{M}$. The relation $h\left(s_{n_{0}}\right)=0$ implies $\left|h^{\prime}\left(s_{n_{0}}\right)\right|>0$ (we have local uniqueness for the solutions of (4) since $w \in C^{1}(R, R)$ so that $h\left(s_{n_{0}}\right)=$ $h^{\prime}\left(s_{n_{0}}\right)=0$ would imply $h(s)=0$ for all $s \geq 1$) and since $\lim _{s \rightarrow \infty} h^{\prime}(s)=0$, there is a root $s_{n_{1}}$ of $h(s)$ with $\left|h^{\prime}(s)\right|<\frac{1}{2}\left|h^{\prime}\left(s_{n_{0}}\right)\right|$ for $s \geq s_{n_{1}}$. Let $T \in\left[s_{n_{0}}, s_{n_{1}}\right]$ be such that $\left|h^{\prime}(s)\right|$ attains its maximal value on this interval at T.

Since $\left|h^{\prime}(T)\right|$ is by construction equal to $\sup _{s_{n_{0}} \leq s}\left\{\left|h^{\prime}(s)\right|\right\}$, we have by the mean-value theorem that

$$
|h(s)|=\left|h(s)-h\left(s_{n_{0}}\right)\right| \leq\left(s-s_{n_{0}}\right)\left|h^{\prime}(T)\right|, \quad s_{n_{0}} \leq s,
$$

and we obtain

$$
\frac{|h(s)|}{s} \leq\left|h^{\prime}(T)\right|, \quad s_{n_{0}} \leq s
$$

Integrating (4) on $[T, s](T<s)$, we get

$$
h^{\prime}(s)-h^{\prime}(T)+\int_{T}^{s} e^{2 \tau} \alpha\left(e^{\tau}\right) w\left(\frac{|h(\tau)|}{\tau}\right) d \tau=0, \quad T \leq s,
$$

thus

$$
\left|h^{\prime}(T)\right| \leq\left|h^{\prime}(s)\right|+\int_{T}^{\infty} e^{2 \tau} \alpha\left(e^{\tau}\right) w\left(\frac{|h(\tau)|}{\tau}\right) d \tau, \quad T \leq s .
$$

Letting $s \rightarrow \infty\left(\right.$ remember that $\left.\lim _{s \rightarrow \infty} h^{\prime}(s)=0\right)$ we get, in view of the previous remarks,

$$
\begin{aligned}
& \left|h^{\prime}(T)\right| \leq \int_{T}^{\infty} e^{2 \tau} \alpha\left(e^{\tau}\right) w\left(\frac{|h(\tau)|}{\tau}\right) d \tau \leq M \int_{T}^{\infty} e^{2 \tau} \alpha\left(e^{\tau}\right) \frac{|h(\tau)|}{\tau} d \tau \leq \\
& \quad \leq M\left|h^{\prime}(T)\right| \int_{T}^{\infty} e^{2 \tau} \alpha\left(e^{\tau}\right) d \tau \leq M\left|h^{\prime}(T)\right| \int_{s_{n_{0}}}^{\infty} e^{2 \tau} \alpha\left(e^{\tau}\right) d \tau<\left|h^{\prime}(T)\right|
\end{aligned}
$$

a contradiction which shows that equation (4) has a solution $h(s)$ which is positive in $[c, \infty)$ for some $c \geq 1$.

To this solution there corresponds a solution $y(r)$ of (3), defined for $r \geq e$ and that is positive on $\left[e^{c}, \infty\right)$.

Let us define $u_{1}(x)=y(r), r=|x| \geq b=\max \left\{a, e^{c}\right\}$. We have

$$
\begin{aligned}
r L u_{1}(x) & =\frac{d}{d r}\left\{r \frac{d y}{d r}\right\}+r f\left(x, u_{1}(x)\right) \\
& \leq \frac{d}{d r}\left\{r \frac{d y}{d r}\right\}+r \alpha(r) w\left(\frac{y(r)}{r}\right) \\
& \leq \frac{d}{d r}\left\{r \frac{d y}{d r}\right\}+r \alpha(r) w\left(\frac{y(r)}{\ln (r)}\right)=0, \quad r \geq b
\end{aligned}
$$

so that $L u_{1}(x) \leq 0$ for all $x \in G_{b}$. Clearly $u_{2}(x)=0$ satisfies $L u_{2}(x) \geq 0$ in G_{b}. The Lemma shows that (1) has a solution $u(x)$ in G_{b} with $0 \leq u(x) \leq$ $u_{1}(x)=y(r)$ for $|x|=r>b$ and $u(x)=u_{1}(x)>0$ for $|x|=b$. Let now $d>b$. Since $u(x) \geq 0$ for $|x|=d>b$, by the maximum principle $(\Delta u(x) \leq 0$ in $\left.\left\{x \in R^{2}: b<|x|<d\right\}\right)$ we get that $u(x)>0$ for $b<|x|<d$. This shows $(d>b$ was arbitrary) that $u(x)$ is a positive solution of (1) in G_{b}.
3. To show the applicability of our result and its relation to other similar results from the literature ([2], [3], [4]) we consider the following

Example: The semilinear elliptic equation

$$
\Delta u+\frac{u}{|x|^{4}} \ln \left(\frac{u}{|x|}+1\right)=0, \quad|x|>1
$$

has a positive solution in G_{b} for some $b \geq 1$.
Indeed, we can apply our theorem with $\alpha(r)=\frac{1}{r^{3}}$ for $r \geq 1$ and $w(s)=$ $\operatorname{sln}(s+1), s \geq 0$. We cannot apply the results of [2], [3] or [4] since it is impossible to find a function $g \in C_{\mathrm{loc}}^{\lambda}\left(R_{+} \times R_{+}\right)$with $g(r, t)$ nonincreasing of t in R_{+}for each fixed $r>0$, such that $f(t, x) \leq t g(|x|, t),|x|>1, t \geq 0$.

REFERENCES

[1] Constantin, A. - On the asymptotic behaviour of second order nonlinear differential equations, Rend. Mat. Roma, 13 (1993), 627-634.
[2] Noussair, E.S. and Swanson, C.A. - Positive solutions of quasilinear elliptic equations in exterior domains, J. Math. Anal. and Appl., 75 (1980), 121-133.
[3] Swanson, C.A. - Criteria for oscillatory sublinear Schrödinger equations, Pacific J. Math., 104 (1983), 483-493.
[4] Swanson, C.A. - Positive solutions of $-\Delta u=f(x, u)$, Nonlinear Analysis, 9 (1985), 1319-1323.

[^0]: Received: January 19, 1995.
 AMS Subject Classification (1991): 35B05.
 Keywords and Phrases: Elliptic equation, Exterior domain.

