PORTUGALIAE MATHEMATICA Vol. 52 Fasc. 4 – 1995

SEMI-GENERALIZED CONTINUOUS MAPS IN TOPOLOGICAL SPACES

MIGUEL CALDAS CUEVA

1 – Introduction

Throughout this paper we adopt the notations and terminology of [6], [1] and [3] and the following conventions: (X, τ) , (Y, σ) and (Z, γ) (or simply X, Y and Z) will always denote topological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of (X, τ) . A subset Aof X is said to be semi-open [6] if for some open set $0, 0 \subset A \subset Cl(0)$, where Cl(0) denotes the closure of 0 in X. The complement of a semi-open set is called semi-closed [2]. The family of all semi-open (resp. semi-closed) sets in (X, τ) is denoted by $S0(X, \tau)$ (resp. $SC(X, \tau)$). The intersection of all semi-closed sets containing A is called the semi-closure of A [5] and is denoted by sCl(A). A map $f: (X, \tau) \to (Y, \sigma)$ is said to be semi-continuous [6] (resp. irresolute [5]) if the inverse image of every open subset (resp. semi-open subset) of (Y, σ) is semi-open in (X, τ) .

Levine [7] has defined a subset A to be g-closed if $\operatorname{Cl}(A) \subset 0$ when $A \subset 0$ and 0 is open. The complement of a g-closed set is called g-open. The purpose of this paper is to introduce and study the concepts of two new class of maps, namely sg-continuous maps, which includes the class of continuous maps; and the class of sg-irresolute maps defined analogous irresolute maps. Moreover we introduce the concepts of sg-compactness and sg-connectedness of topological spaces. Among the theorems proved are the following:

Received: April 29, 1994; Revised: December 9, 1994.

AMS (1980) Subject Classification (1985-Revision): 54D10.

Keywords: Topology, semi-open sets, map semi-continuous map irresolute, sg-closed sets.

- (A) The following are equivalent:
 - i) X is sg-connected;
 - ii) X and ϕ are the only subsets of X which are both sg-open and sgclosed;
 - iii) Each sg-continuous map of X into a discrete space Y with at least two points is a constant map.
- (B) sg-connectedness is preserved under sg-irresolute surjections.

2 – Semi-generalized continuous maps

Here we introduce the concept of semi-generalized continuous maps. To state this, we recall some definitions and properties.

Definition 2.1. A subset A of a space X is said to be semi-generalized closed (written in short as sg-closed set) [1] if $sCl(A) \subset 0$ whenever $A \subset 0$ and $0 \in SO(X, \tau)$. A subset A of X is said to be a semi-generalized open set (written in short as sg-open) if, its complement A^c is sg-closed in X.

Example 2.1:

- i) [1]. Let τ be the usual topology on the real line \mathbb{R} and let A be the open interval (a, b). Then A is sg-closed but not g-closed.
- ii) Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, X\}$. If $A = \{a, b\}$, then A is g-closed but not sg-closed.

Remark 2.1.

- i) Example 2.1 shows that g-closed and sg-closed sets are, in general, independent.
- ii) Every semi-closed set is sg-closed but the converse is not true as may be seen from the following example.

Example 2.2: Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{c, d\}, X\}$. If $A = \{a, b, d\}$, then sCl(A) = X and so A is not semi-closed. Since X is the only semi-open set containing A, A is sg-closed.

In [1] has proved that the intersection and the union of two sg-closed sets is generally not a sg-closed. Hence, we have the following definition.

Definition 2.2. The intersection of all sg-closed sets containing a set A is called the semi-generalized-closure of A and is denoted by sgCl(A).

If A is a sg-closed set, then sgCl(A) = A. The converse is not true, since the intersection of sg-closed sets need not be sg-closed.

Lemma 2.1. If $A \subset X$, then $A \subset \operatorname{sgCl}(A) \subset \operatorname{sCl}(A) \subset \operatorname{Cl}(A)$.

Proof: A closed (semi-closed) set is sg-closed. ■

Definition 2.3. A map $f: X \to Y$ is said to be semi-generalized continuous (abbreviated by sg-continuous) if, for every closed set F of Y the inverse image $f^{-1}(F)$ is sg-closed in X.

Clearly it is proved that a map $f: X \to Y$ is sg-continuous if and only if the inverse image of every open set in Y is sg-open in X.

Remark 2.2. Every semi-continuous map $f: X \to Y$ (in particular, continuous) is sg-continuous, but the converse is not true as may be seen from the following examples.

Example 2.3: [6]. Let X = Y = [0, 1]. Let $f: X \to Y$ as follows: f(x) = 1 if $0 \le x \le \frac{1}{2}$ and f(x) = 0 if $\frac{1}{2} \le x \le 1$. Then f is semi-continuous, therefore by Remark 2.2, sg-continuous but it is not continuous.

Example 2.4: Let $X = \{a, b, c, d\}$, $\tau = \{\phi, \{c, d\}, X\}$, $Y = \{p, q\}$, $\sigma = \{\phi, \{q\}, Y\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be defined by f(a) = f(b) = f(d) = p, f(c) = q. Since if $A = \{a, b, d\}$ then, by Example 2.2, A is sg-closed. But A not semi-closed. Therefore f is sg-continuous but it is not semi-continuous.

Remark 2.3. When X is semi $T_{1/2}$, the concepts of semi-continuity and sg-continuity coincide (see [1] and [4] for the concept and property of semi $T_{1/2}$ -spaces).

Theorem 2.1. Let $f: X \to Y$ be a map from a topological space X into a topological space Y.

- i) The following statements are equivalent.
 - **a**) f is sg-continuous.
 - **b**) The inverse image of each open set in Y is sg-open in X.
- ii) If $f: X \to Y$ is sg-continuous, then $f(\operatorname{sgCl}(A) \subset \operatorname{Cl}(f(A)))$ for every subset A of X.

- iii) The following statements are equivalent.
 - **a**) For each point x in X and each open set V in Y with $f(x) \in V$, there is a sg-open set U in X such that $x \in U$, $f(U) \subset V$.
 - **b**) For every subset A of X, $f(\operatorname{sgCl}(A)) \subset \operatorname{Cl}(f(A))$ holds.
 - c) For each subset B of Y, $\operatorname{sgCl}(f^{-1}(B)) \subset f^{-1}(\operatorname{Cl}(B))$.

Proof: i) a) \Leftrightarrow b): See Definition 2.3.

ii) Since $A \subset f^{-1}f(A)$, we have $A \subset f^{-1}(\operatorname{Cl}(f(A)))$. Now $\operatorname{Cl}(f(A))$ is a closed set in Y and hence $f^{-1}(\operatorname{Cl}(f(A)))$ is a sg-closed set containing A. Consequently $\operatorname{sgCl}(A) \subset f^{-1}(\operatorname{Cl}(f(A)))$. Therefore $f(\operatorname{sgCl}(A)) \subset ff^{-1}(\operatorname{Cl}(f(A))) \subset \operatorname{Cl}(a(A))$.

iii) a) \Leftrightarrow b): Suppose that a) holds and let $y \in f(\operatorname{sgCl}(A))$ and let V be any open neighbourhood of y. Then there exists a point $x \in X$ and a sg-open U such that $f(x) = y, x \in U, x \in \operatorname{sgCl}(A)$ and $f(U) \subset V$. Since $x \in \operatorname{sgCl}(A), U \cap A \neq \emptyset$ holds and hence $f(A) \cap V \neq \emptyset$. Therefore we have $y = f(x) \in \operatorname{Cl}(f(A))$.

Conversely, if b) holds and let $x \in X$ and let V be any open set containing f(x). Let $A = f^{-1}(V^c)$, then $x \notin A$. Since $f(\operatorname{sgCl}(A)) \subset \operatorname{Cl}(f(A)) \subset V^c$, it is shown that $\operatorname{sgCl}(A) = A$. Then, since $x \notin \operatorname{sgCl}(A)$, there exists a sg-open set U containing x such that $U \cap A = \emptyset$ and hence $f(U) \subset f(A^c) \subset V$.

b) \Leftrightarrow c): Suppose that b) holds and let *B* be any subset of *Y*. Replacing *A* by $f^{-1}(B)$ we get from b) $f(\operatorname{sgCl}(f^{-1}(B))) \subset \operatorname{Cl}(ff^{-1}(B)) \subset (B)$. Hence $\operatorname{sgCl}(f^{-1}(B)) \subset f^{-1}(\operatorname{Cl}(B))$.

Conversely, suppose that c) holds, let B = f(A) where A is a subset of X. Then $\operatorname{sgCl}(A) \subset \operatorname{sgCl}(f^{-1}(B)) \subset f^{-1}(\operatorname{Cl}(f(A)))$. Therefore $f(\operatorname{sgCl}(A)) \subset \operatorname{Cl}(f(A))$. This completes the proof.

3 – Relation between sg-continuous maps and sg-irresolute maps

Analogous to irresolute maps in topological spaces, we introduce the class of semi-generalized-irresolute (or sg-irresolute) maps which is included in the class of sg-continuous maps. In this section we investigate basic properties of sg-irresolute maps.

Definition 3.1. A map $f: X \to Y$ from a topological space X into a topological space Y is called sg-irresolute if the inverse image of every sg-closed set in Y is sg-closed in X.

Theorem 3.1. A map $f: X \to Y$ is sg-irresolute if and only if, for every sg-open A of Y, $f^{-1}(A)$ is sg-open in X.

Proof: Necessity. If $f: X \to Y$ is sg-irresolute, then for every sg-closed B of Y, $f^{-1}(B)$ is sg-closed in X. If A is any sg-open subset of Y, then A^c is sg-closed. Thus $f^{-1}(A^c)$ is sg-closed, but $f^{-1}(A^c) = (f^{-1}(A))^c$ so that $f^{-1}(A)$ is sg-open.

Sufficiency. If for all sg-open subsets A of Y, $f^{-1}(A)$ is sg-open in X, and if B is any sg-closed subset of Y, then B^c is sg-open. Also $f^{-1}(B^c) = (f^{-1}(B))^c$ is sg-open. Thus $f^{-1}(B)$ is sg-closed.

Theorem 3.2. If a map $f: X \to Y$ is sg-irresolute, then it is sg-continuous but not conversely.

Proof: Since every closed set is sg-closed, it is proved that f is sg-continuous. The converse need not be true as seen from the following example.

Example 3.1: Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$ and $\sigma = \{\phi, \{a\}, Y\}$. Let $f: (X, \tau) \to (Y, \tau)$ be defined by f(a) = f(c) = b and f(b) = c. Then f is sg-continuous. However, $\{b\}$ is sg-closed in Y but $f^{-1}(\{b\})$ is not sg-closed in X. Therefore, f is not sg-irresolute.

Theorem 3.3. If $f: X \to Y$ and $g: Y \to Z$ are both sg-irresolute, then $g_0 f: X \to Z$ is sg-irresolute.

Proof: If $A \subset Z$ is sg-open, then $g^{-1}(A)$ is sg-open and $f^{-1}(g^{-1}(A))$ is sg-open since g and f are sg-irresolute. Thus $(g_0 f)^{-1}(A) = f^{-1}(g^{-1}(A))$ is sg-open, and $g_0 f$ is sg-irresolute.

Theorem 3.4. Let X, Y and Z be any topological spaces. For any sgirresolute map $f: X \to Y$ and any sg-continuous map $g: Y \to Z$, the composition $g_0 f: X \to Y$ is sg-continuous.

Proof: It follows from definitions.

Theorem 3.5. Let (Y, σ) be a topological space where "every semi-closed subset is closed". If $f: (X, \tau) \to (Y, \sigma)$ is bijective, pre-semi-open (i.e., for all $O \in SO(X, \tau), f(O) \in SO(Y, \sigma)$) and sg-continuous, then f is sg-irresolute.

Proof: Let A be a sg-closed set in (Y, σ) . Let $f^{-1}(A) \subset O$ where $O \in SO(X, \tau)$. Therefore, $A \subset f(O)$ holds. Since f(O) is semi-open in Y and A is sg-

closed in Y, $\mathrm{sCl}(A) \subset f(O)$ holds and hence $f^{-1}(\mathrm{sCl}(A)) \subset f^{-1}f(O) = O$. Since f is sg-continuous, and $\mathrm{sCl}(A)$ is closed in Y, $f^{-1}(\mathrm{sCl}(A))$ is sg-closed. Therefore $\mathrm{sCl}(f^{-1}(\mathrm{sCl}(A))) \subset 0$ and so $\mathrm{sCl}(f^{-1}(A)) \subset 0$. Hence $f^{-1}(A)$ is sg-closed in X. Then f is sg-irresolute.

Example 3.2: Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b, c\}, Y\}$. Let $f: (X, \tau) \to (Y, \sigma)$ the identity map. We have that in (Y, σ) every semi-closed subset is closed. f is sg-continuous bijective but it is not pre-semi-open and so f is not sg-irresolute.

Theorem 3.6. If a map $f: X \to Y$ is sg-irresolute, then, for every subset A of X, $f(\operatorname{sgCl}(A)) \subset \operatorname{sCl}(f(A))$.

Proof: If $A \subset X$, then consider $\mathrm{sCl}(f(A))$ which is sg-closed in Y. Thus by Definition 3.1, $f^{-1}(\mathrm{sCl}(f(A)))$ is sg-closed in X. Furthermore, $A \subset f^{-1}(f(A)) \subset f^{-1}(\mathrm{sCl}(f(A)))$. Therefore by the destination of sg-closure $\mathrm{sgCl}(A) \subset f^{-1}(\mathrm{sCl}(f(A)))$, and consequently, $f(\mathrm{sgCl}(A)) \subset f(f^{-1}(\mathrm{sCl}(f(A)))) \subset \mathrm{sCl}(f(A))$.

The following two examples show that the concepts of irresolute maps and sg-irresolute maps are independent of each other.

Example 3.3: Let (X, τ) and (Y, σ) be the space in Example 3.2. Then, the identity map $f: (X, \tau) \to (Y, \sigma)$ is irresolute. However $\{a, b\}$ is sg-closed in Y but is not sg-closed in X. Therefore f is not sg-irresolute.

Example 3.4: Let X, Y and f be as in Example 2.4. Now $\{p\}$ is semi-closed in Y and $A = \{a, b, d\}$ sg-closed, but it is not semi-closed in X. Therefore f is sg-irresolute but it is not irresolute.

4 – sg-compactness and sg-connectedness

Definition 4.1. A collection $\{A_{\alpha} : \alpha \in \nabla\}$ of sg-open sets in a topological space X is called a sg-open cover of a subset B of X if $B \subset \bigsqcup \{A_{\alpha} : \alpha \in \nabla\}$ holds.

Definition 4.2. A topological space X is semi-generalized-compact (or sgcompact) if every sg-open cover of X has a finite subcover.

Definition 4.3. A subset B of a topological space X is said to be sgcompact relative to X if, for every collection $\{A_{\alpha} : \alpha \in \nabla\}$ of sg-open subsets of

X such that $B \subset \bigsqcup \{A_{\alpha} : \alpha \in \nabla\}$, there exists a finite subset ∇_0 of ∇ such that $B \subset \bigsqcup \{A_{\alpha} : \alpha \in \nabla_0\}$.

Definition 4.4. A subset B of a topological space X is said to be sg-compact if B is sg-compact as a subspace of X.

Theorem 4.1. Every sg-closed subset of a sg-compact space X is sg-compact relative to X.

Proof: Let A be a sg-closed subset of X. Then A^c is sg-open in X. Let $M = \{G_{\alpha} : \alpha \in \nabla\}$ be a cover of A by sg-open subsets in X. Then $M^* = M \sqcup A^c$ is a sg-open cover of X, i.e., $X = (\bigsqcup \{G_{\alpha} : \alpha \in \nabla\}) \sqcup A^c$. By hypothesis, X is sg-compact, hence M^* is reducible to a finite cover of X, say $X = G_{\alpha_1} \sqcup G_{\alpha_2} \sqcup ... \sqcup G_{\alpha_m} \sqcup A^c$, $G_{\alpha_k} \in M$. But A and A^c are disjoint; hence $A \subset G_{\alpha_1} \sqcup ... \sqcup G_{\alpha_m}$, $G_{\alpha_k} \in M$. We have just shown that any sg-open cover M of A contains a finite subcover, i.e., A is sg-compact relative to X.

Theorem 4.2.

- i) A sg-continuous image of a sg-compact space is compact.
- ii) If a map $f: X \to Y$ is sg-irresolute and a subset B of X is sg-compact relative to X, then the image f(B) is sg-compact relative to Y.

Proof: i) Let $f: X \to Y$ be a sg-continuous map from a sg-compact space X onto a topological space Y. Let $\{A_{\alpha}: \alpha \in \nabla\}$ be an open cover of Y. Then $\{f^{-1}(A_{\alpha}); \alpha \in \nabla\}$ is a sg-open cover of X. Since X is sg-compact, it has a finite subcover, say $\{f^{-1}(A_1), ..., f^{-1}(A_n)\}$. Since f is onto $\{A_1, ..., A_n\}$ is a cover of Y and so Y is compact.

ii) Let $\{A_{\alpha} : \alpha \in \nabla\}$ be any collection of sg-open subsets of Y such that $f(B) \subset \bigsqcup \{A_{\alpha} : \alpha \in \nabla\}$. Then $B \subset \bigsqcup \{f^{-1}(A_{\alpha}) : \alpha \in \nabla\}$ holds. By hypothesis there exists a finite subset ∇_0 of ∇ such that $B \subset \bigsqcup \{f^{-1}(A_{\alpha}) : \alpha \in \nabla_0\}$. Therefore we have $f(B) \subset \bigsqcup \{A_{\alpha} : \alpha \in \nabla_0\}$ which shows that f(B) is sg-compact relative to Y.

Definition 4.5. A topological space X is said to be sg-connected if X can not be written as a disjoint union of two non-empty sg-open sets. A subset of X is sg-connected if it is sg-connected as a subspace.

In view of the Definition 4.5, we can give a characterization of sg-connected spaces.

Theorem 4.3. For a topological space X, the following are equivalent.

- i) X is sg-connected.
- ii) X and ϕ are the only subsets of X which are both sg-open and sg-closed.
- iii) Each sg-continuous map of X into a discrete space Y with at least two points is a constant map.

Proof: i) \Rightarrow ii): Let *O* be a sg-open and sg-closed subset of *X*. Then *O*^c is both sg-open and sg-closed. Since *X* is the disjoint union of the sg-open sets *O* and *O*^c, one of these must be empty, that is $O = \phi$ or O = X.

ii) \Rightarrow i): Suppose that $X = A \cup B$ where A and B are disjoint non-empty sg-open subsets of X. Then A is both sg-open and sg-closed. By assumption, $A = \phi$ or X. Therefore X is sg-connected.

ii) \Rightarrow iii): Let $f: X \to Y$ be a sg-continuous map then X is covered by sg-open and sg-closed covering $\{f^{-1}(y): y \in Y\}$. By assumption $f^{-1}(y) = \phi$ or X for each $y \in Y$. If $f^{-1}(y) = \emptyset$ for all $y \in Y$, then f fails to be map. Then, there exists only one point $y \in Y$ such that $f^{-1}(y) \neq \emptyset$ and hence $f^{-1}(y) = X$. This shows that f is a constant map.

iii) \Rightarrow ii): Let O be both sg-open and sg-closed in X. Suppose $O \neq \emptyset$. Let $f: X \to Y$ be a sg-continuous map defined by $f(O) = \{y\}$ and $f(O^c) = \{w\}$ for some distinct points y and w in Y. By assumption f is constant. Therefore we have O = X.

It is obvious that every sg-connected space is connected. The following example shows that the converse is not true.

Example 4.1: Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$. Then the topological space (X, τ) is connected. However, since $\{a\}$ is both sg-open and sg-closed, X is not sg-connected by Theorem 4.3.

As a direct consequence of Theorem 4.3, we have:

Corollary 4.1. In a topological space (X, τ) with at least two points, if $SO(X, \tau) = SC(X, \tau)$, X is not sg-connected.

Proof: Using the hypothesis and Theorem 5 due to in [1] there is a proper non-empty subset of X which is both sg-open and sg-closed in X. By Theorem 4.3, X is not sg-connected.

Finally, we proved sg-connectedness is preserved under sg-irresolute surjections.

Theorem 4.4.

- i) $f: X \to Y$ is a sg-continuous surjection and X is sg-connected, then Y is connected.
- ii) If $f: X \to Y$ is sg-irresolute surjection and X is sg-connected, then Y is sg-connected.

Proof: i) Suppose that Y is not connected. Let $Y = A \sqcup B$ where A and B are disjoint non-empty open set in Y. Since f is sg-continuous and onto, $X = f^{-1}(A) \sqcup f^{-1}(B)$ where $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint non-empty and sg-open in X. This contradicts the fact that X is sg-connected. Hence Y is connected.

ii) The argument is a minor modification of the proof i). \blacksquare

REFERENCES

- BHATTACHARYYA, P. and LAHIRI, B.K. Semi-generalized closed sets in topology, Ind. Jr. Math., 29(3) (1987), 375–382.
- [2] BISWAS, N. On characterization of semi-continuous function, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 48(8) (1970), 399–402.
- [3] CALDAS, M. On g-closed sets and g-continuous mappings, Kyungpook Math. Jr., 33(2) (1993), 205–209.
- [4] CALDAS, M. Semi T_{1/2}-spaces, Atas Sem. Bras. Anal., 40 (1994), 191–196.
- [5] CROSSLEY, S.G. and HILDEBRAND, S.K. Semi-topological properties, Fund. Math., 74 (1974), 233–254.
- [6] LEVINE, N. Semi-open sets and semi-continuity in topological space, Amer. Math. Monthly, 70 (1963), 36–41.
- [7] LEVINE, N. Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19 (1970), 89–96.

M. Caldas,

Universidade Federal Fluminense, Departamento de Matemática Aplicada – IMUFF, Rua São Paulo s/n, 24020-005 Niterói, RJ – BRASIL E-mail: GNAMCCS@BRUFF