PORTUGALIAE MATHEMATICA Vol. 52 Fasc. 4 – 1995

THE LINEAR CAUCHY PROBLEM FOR A CLASS OF DIFFERENTIAL EQUATIONS WITH DISTRIBUTIONAL COEFFICIENTS

C.O.R. SARRICO

Abstract: We consider the problem $X^{(n)} = \sum_{i=1}^{n} U_i X^{(n-i)} + V$, $X^{(n-i)}(t_0) = a_i$ in dimension 1 ($X \in \mathcal{D}'$ is unknown, n is a positive integer, $V \in \mathcal{D}'$, $U_1, ..., U_n \in C^{\infty} \oplus \mathcal{D}'_m^p$, $\mathcal{D}'_m^p = \mathcal{D}'^p \cap \mathcal{D}'_m$, \mathcal{D}'^p is the space of distributions of order $\leq p$ in the sense of Schwartz, \mathcal{D}'_m is the space of distributions with nowhere-dense support, $a_1, ..., a_n \in \mathbb{C}$ and $t_0 \in \mathbb{R}$).

Necessary and sufficient conditions for existence and uniqueness of this problem in $C^q \oplus \mathcal{D}'_m$ where $q = \max(n, n - 1 + p)$ are given and also the way of getting an explicit solution when it exists.

The solutions are considered in a generalized sense defined with the help of the distributional product we introduced in [2] and they are consistent with the usual solutions.

As an example we take $X'(t) = i g \,\delta'(t) X(t), X(t_0) = 1$ for a certain $t_0 < 0$ $(i = \sqrt{-1}, g \in \mathbb{R}$ and δ is the Dirac measure) and we prove that in our sense, its unique solution in $C^1 \oplus \mathcal{D}'_m$ is $X(t) = 1 + i g \,\delta(t)$ (Colombeau [1] also considers this problem with another approach). More examples are presented.

0 – Introduction

Let \mathcal{D} be the space of indefinitely differentiable complex functions on \mathbb{R}^N with compact support, \mathcal{D}' the space of distributions, $L(\mathcal{D})$ the continuous linear maps $\mathcal{D} \to \mathcal{D}$. The basic idea of [2] is to define products of distributions by employing the algebraic structure of $L(\mathcal{D})$, given by the composition product. First we define a product $T\phi \in \mathcal{D}'$ for $T \in \mathcal{D}', \phi \in L(\mathcal{D})$, by $\langle T\phi, x \rangle = \langle T, \phi(x) \rangle$ for $x \in \mathcal{D}$.

Received: September 21, 1993; Revised: September 7, 1994.

AMS Subject Classification: Primary 34A30; Secondary 46F10.

Keywords: Ordinary differential equations, Products of distributions, Distributions, Generalized functions.

Second, we define an epimorphism $\tilde{\zeta} : L(\mathcal{D}) \to \mathcal{D}'$ given by $\langle \tilde{\zeta}(\phi), x \rangle = \int \phi(x)$. Finally given $\alpha \in \mathcal{D}$ with $\int \alpha = 1$, a projection $s_{\alpha} : L(\mathcal{D}) \to L(\mathcal{D})$ is defined in such a way that for $T, S \in \mathcal{D}', T_{\alpha} S := T(s_{\alpha} \phi)$ does not depend on the choice of $\phi \in L(\mathcal{D})$ with $\tilde{\zeta}(\phi) = S$. The operator s_{α} is given by

$$\left[(s_{\alpha}\phi)(x) \right](y) = \int \phi_t \left[\alpha(y-t) \, x(t) \right] dt, \quad \text{for } y \in \mathbb{R}^N.$$

Here, ϕ_t denotes the operator ϕ when it acts on functions of $t \in \mathbb{R}^N$.

In order to maintain consistency with the classical product, we single out a subspace $\mathcal{H}_{\alpha} \subset L(\mathcal{D})$ such that $\zeta_{\alpha} = \widetilde{\zeta} \mid \mathcal{H}_{\alpha} \colon \mathcal{H}_{\alpha} \to C^{\infty} \oplus \mathcal{D}'_{m}$ is an isomorphism, where \mathcal{D}'_{m} denotes the space of distributions with nowhere dense support (in [2] we denote \mathcal{D}'_{m} by \mathcal{D}'_{n}). Then, given $\alpha \in \mathcal{D}$ with $\int \alpha = 1$, the product $T \in \mathcal{D}'$ with $S = \beta + f \in C^{\infty} \oplus \mathcal{D}'_{m}$ turns out to be

$$T \cdot S = T\beta + (T * \check{\alpha}) f ,$$

where $\check{\alpha} \in \mathcal{D}$ is defined by $\check{\alpha}(t) = \alpha(-t)$, and the products on the right-hand side are the classical ones.

The product on $\mathcal{D}' \times (C^{\infty} \oplus \mathcal{D}'_m)$ thus defined depends on α , is distributive, satisfies the Leibnitz rule, is invariant for translations and is also invariant for a group G of unimodular transformations (linear transformations $h: \mathbb{R}^N \to \mathbb{R}^N$ with $|\det h| = 1$), if α is so invariant. It is neither commutative nor associative. Commutativity may be recovered after integration if both factors are in \mathcal{D}'_m , if one of them has compact support and if the map $t \to -t$ belongs to G. We also give a sufficient condition for associativity.

In the following examples we take $\alpha \in \mathcal{D}$ with $\int \alpha = 1$, invariant for the group of orthogonal transformations G in \mathbb{R}^N (we always do the same in non relativistic applications). Thus, if N = 1, α is an even function. In the following δ denotes the Dirac distribution concentrated on $0 \in \mathbb{R}^N$ and H denotes the Heaviside distribution.

Examples:

1) With N = 1,

$$\delta \cdot \delta = \delta \cdot 0 + (\delta * \check{\alpha}) \delta = (\delta * \alpha) \delta = \alpha \delta = \alpha(0) \delta .$$

Sometimes the product does not depend of the α -function, as examples 2 and 3 show.

2) With N = 1,

$$\begin{split} H_{\alpha} \delta &= H \cdot 0 + (H * \check{\alpha}) \, \delta = (H * \alpha) \, \delta = \Big[\int_{0}^{+\infty} \alpha(u-t) \, dt \Big] \delta \\ &= \Big[\int_{0}^{+\infty} \alpha(-t) \, dt \Big] \delta = \frac{1}{2} \, \delta \ , \end{split}$$

because α is an even function. In dimension N we have $H_{\alpha} \delta = \frac{1}{2^N} \delta$. **3**) With N = 1 and $\beta \in C^{\infty}$

3) With
$$N = 1$$
 and $\beta \in C^{\infty}$,

$$\delta'_{\alpha}(\beta+\delta) = \delta'\beta + (\delta'*\check{\alpha})\delta = \beta(0)\delta' - \beta'(0)\delta + \alpha'\delta =$$
$$= \beta(0)\delta' - \beta'(0)\delta + \alpha'(0)\delta = \beta(0)\delta' - \beta'(0)\delta,$$

because $\alpha'(0) = 0$.

The consistency with the classical product can be obtained if we put the C^{∞} -function β in the right-hand side factor;

4) With N = 1, $\delta_{\alpha} \beta = \delta \beta + (\delta * \check{\alpha}) \cdot 0 = \delta \beta = \beta(0) \delta$. On the other hand,

$$\beta_{\alpha} \delta = \beta \cdot 0 + (\beta * \check{\alpha}) \delta = (\beta * \alpha) \delta = (\beta * \alpha)(0) \delta$$

For details, we refer the reader to [2].

Let $\mathcal{D}^{\prime p}$, $p \in \{0, 1, 2, ..., \infty\}$, be the space of distributions of order $\leq p$ in the sense of Schwartz. We can naturally extend our definition of product.

0.1 Definition. Let $T \in \mathcal{D}'^p$, $S = \beta + f \in C^p \oplus \mathcal{D}'_m$ and let G be a group of unimodular transformations of \mathbb{R}^N . We define the (G, α) -product $T \underset{\alpha}{\cdot} S$ by putting

$$T \cdot S = T\beta + T \cdot f \; ,$$

where $T\beta$ is interpreted in the classical sense.

In the following we always take as G the orthogonal group in dimension 1. We always employ this product with N = 1 in problems like the following:

$$P_a^V \equiv \begin{cases} X' = UX + V, \\ X(t_0) = a \end{cases},$$

where $U = \gamma + T \in C^{\infty} \oplus \mathcal{D}'_m$, $a \in \mathbb{C}$ and $t_0 \in \mathbb{R}$. In this problem, we know that there are sometimes distributions X such that P_a^V is satisfied with the product considered in the classical sense: such solutions will be called "classical solutions".

We also define new solutions, called " w_{α} -solutions", as follows. First we associate to the problem P_a^V the problem Q_a^V defined by

$$Q_a^V \equiv \begin{cases} X' = X \gamma + T \stackrel{\cdot}{}_{\alpha} X + V, \\ X(t_0) = a . \end{cases}$$

We will say that $X \in \mathcal{D}'$ is a w_{α} -solution of P_a^V when there is an open set $\Omega \subset \mathbb{R}$, with $t_0 \in \Omega$, such that the restriction X_{Ω} of X to Ω is a continuous function and X satisfies Q_a^V . It is important to note that in general $X \gamma + T \stackrel{\cdot}{}_{\alpha} X \neq U \stackrel{\cdot}{}_{\alpha} X$ and $X \gamma + T \stackrel{\cdot}{}_{\alpha} X \neq X \stackrel{\cdot}{}_{\alpha} U$ (the map $P_a^V \to Q_a^V$ takes advantage of the noncommutativity of the product). Clearly all classical solutions are w_{α} -solutions. We shall see that P_a^V may have no classical solutions and have a w_{α} -solution which can be independent of α (Example 5.1). We will prove that if there is a w_{α} -solution of P_a^V in a certain space this solution is unique, we give conditions for the existence of a w_{α} -solution and a way of getting an explicit solution when it exists. We present solved problems such that

- **a**) For any α chosen, there is a w_{α} -solution of P_a^V and this solution is independent of α .
- **b**) The existence of a w_{α} -solution of P_a^V depends on α , but for all α for which the w_{α} -solution exists, the w_{α} -solution does not depend explicitly on α .
- c) The w_{α} -solution of P_a^V exists for a certain set of α 's and depends explicitly on α .

In the following, the n order Cauchy problem is considered.

1 – The classical solutions of the linear Cauchy problem P_a^V

Let us consider the linear Cauchy problem

$$P_a^V \equiv \begin{cases} X^{(n)} = \sum_{i=1}^n U_i X^{(n-i)} + V, \\ X^{(n-i)}(t_0) = a_i, \quad i = 1, 2, ..., n \end{cases}$$

where n is a positive integer, $U_1, ..., U_n \in C^{\infty} \oplus \mathcal{D}'^p_m, \mathcal{D}'^p_m = \mathcal{D}'^p \cap \mathcal{D}'_m, V \in \mathcal{D}', a = (a_1, ..., a_n) \in \mathbb{C}^n$ and $t_0 \in \mathbb{R}$.

If we ask for a solution $X \in \mathcal{D}'(\mathbb{R})$ which shall be a C^{n-1} function in some neighbourhood of t_0 , the problem is sometimes possible if we interpret the products in classical sense, that is, products of \mathcal{D}'^p -distributions by C^p -functions. We call these solutions, classical solutions. Thus, we must ask for them in the space C^{n-1+p} .

2 – The w_{α} -solutions of the linear Cauchy problem P_a^V

Now, let us associate to the problem P_a^V the problem

$$Q_a^V \equiv \begin{cases} X^{(n)} = \sum_{i=1}^n \left(X^{(n-i)} \gamma_i + T_i \frac{1}{\alpha} X^{(n-i)} \right) + V, \\ X^{(n-i)}(t_0) = a_i, \quad i = 1, 2, ..., n \end{cases}$$

where γ_i and T_i are such that $\gamma_i + T_i = U_i \in C^{\infty} \oplus \mathcal{D}'_m^p$.

2.1 Definition. We say that $X \in \mathcal{D}'$ is a w_{α} -solution of P_a^V when there is an open set Ω of \mathbb{R} containing t_0 such that the restriction X_{Ω} of X to Ω is a $C^{n-1}(\Omega)$ -function and X is solution of Q_a^V .

It is an immediate consequence of the definitions 0.1 and 2.1 that

2.2 Proposition. For all even functions $\alpha \in \mathcal{D}$ with $\int \alpha = 1$, if $X \in C^{n-1+p}$ is a classical solution of P_a^V then X is a w_α -solution of P_a^V .

We shall see that P_a^V may have no classical solutions in C^{n-1+p} and have a w_{α} -solution in $C^{n-1+p} \oplus \mathcal{D}'_m$, which obviously is, in a generalized sense, a new solution of the problem P_a^V . In some cases, this solution does not even depend on the α -function.

3 – The uniqueness of the w_{α} -solution of P_a^V in $C^q \oplus \mathcal{D}'_m$ with $q = \max(n, n-1+p)$

3.1 Proposition. If there exists a w_{α} -solution of P_a^V in $C^q \oplus \mathcal{D}'_m$, with $q = \max(n, n - 1 + p)$, then this solution is unique.

Proof: We shall give the proof only in the case n = 1. The general case is similar. Note also that it is sufficient to prove that if X is a w_{α} -solution of P_a^V , with a = 0 and V = 0, then X = 0.

By assumption there is an open set Ω of \mathbb{R} containing t_0 such that $X_{\Omega} \in C^0(\Omega)$ and $X = \beta + f \in C^q \oplus \mathcal{D}'_m$ is a solution of

$$Q_0^0 \equiv \begin{cases} X' = X \,\gamma_1 + T_1 \, \frac{1}{\alpha} X, \\ X(t_0) = 0 \; , \end{cases}$$

with $\gamma_1 \in C^{\infty}$ and $T_1 \in \mathcal{D}'_m^p$. Then, $\beta' + f' = \beta \gamma_1 + f \gamma_1 + T_1 \beta + f(\alpha * T_1)$ and $\beta(t_0) = 0$, which is equivalent to

$$\begin{cases} \beta' - \beta \gamma = -f' + f \gamma_1 + T_1 \beta + f(\alpha * T_1), \\ \beta(t_0) = 0. \end{cases}$$

Noting that $\beta' - \beta \gamma \in C^{q-1}$ and $-f' + f \gamma_1 + T_1 \beta + f(\alpha * T_1) \in \mathcal{D}'_m$, we have **a**) $\beta' - \beta \gamma = 0$;

b) $-f' + f \gamma_1 + T_1 \beta + f(\alpha * T_1) = 0;$ **c**) $\beta(t_0) = 0.$

From a) and c) it follows that $\beta = 0$. Thus, b) is equivalent to

$$f' - f[\gamma_1 + (\alpha * T_1)] = 0$$
,

which is a differential equation with C^{∞} coefficients. We know that the solutions of this equation in \mathcal{D}' are distributions corresponding to C^{∞} -functions and so f = 0 because $f \in \mathcal{D}'_m$. Finally $X = \beta + f = 0$.

4 – The existence of a w_{lpha} -solution of P_a^V in $C^q \oplus \mathcal{D}_m'$

Let us consider the problem P_a^0 .

4.1 Proposition. $X = \beta_1 + f \in C^q \oplus \mathcal{D}'_m$ is a w_α -solution of P^0_a with $q = \max\{n, n - 1 + p\}$ if and only if the following conditions are satisfied with $U_i = \gamma_i + T_i$

a) $\beta_1 \in C^q$ is the solution of the Cauchy problem

(4.1.1)
$$\begin{cases} \beta_1^{(n)} = \sum_{i=1}^n \beta_1^{(n-i)} \gamma_i, \\ \beta_1^{(n-i)}(t_0) = a_i, \quad i = 1, ..., n \end{cases}$$

b) $f \in \mathcal{D}'_m$ is a solution of the differential equation

(4.1.2)
$$f^{(n)} - \sum_{i=1}^{n} f^{(n-i)} \Big[\gamma_i + (\alpha * T_i) \Big] = \sum_{i=1}^{n} T_i \, \beta_1^{(n-i)} \, .$$

c) There is an open set Ω containing t_0 and such that $f_{\Omega} = 0$.

Proof: We only consider the case n = 1. The general case is similar. First, let us assume that $X = \beta_1 + f$ is a w_{α} -solution of $P_{a_1}^0$ in $C^q \oplus \mathcal{D}'_m$ with $q = \max(1, p)$. By 2.1 there is an open set Ω containing t_0 such that $X_{\Omega} \in C^0(\Omega)$ and X is a solution of

$$Q_a^0 \begin{cases} X' = X \gamma_1 + T_1 \underset{\alpha}{\cdot} X \\ X(t_0) = a_1 \end{cases},$$

in $C^q \oplus \mathcal{D}'_m$, with $q = \max\{1, p\}$. Thus, as in the proof of 3.1, we have

a') $\beta'_1 - \beta_1 \gamma_1 = 0;$ **b**') $f' - f[\gamma_1 + (\alpha * T_1)] = T_1 \beta_1;$ **c**') $\beta_1(t_0) = a_1.$

Hence, conditions a) and b) are satisfied. Condition c) follows immediately from $X_{\Omega} = (\beta_1 + f)_{\Omega} = \beta_{1_{\Omega}} + f_{\Omega} \in C^0(\Omega)$ and $f \in \mathcal{D}'_m$.

Now suppose that a), b) and c) are satisfied. Then, $X = \beta_1 + f$ is a w_{α} -solution of P_a^0 because

$$X' = \beta_1' + f' = \beta_1 \gamma_1 + f \left[\gamma_1 + (\alpha * T_1) \right] + T_1 \beta_1 = \beta_1 \gamma_1 + f \gamma_1 + T_1 \frac{1}{\alpha} f + T_1 \beta_1$$

= $(\beta_1 + f) \gamma_1 + T_1 \frac{1}{\alpha} (f + \beta_1) = X \gamma_1 + T_1 \frac{1}{\alpha} X$

and also because $X_{\Omega} = (\beta_1 + f)_{\Omega} = \beta_{1_{\Omega}} + f_{\Omega} = \beta_{1_{\Omega}} \in C^0(\Omega)$ and $t_0 \in \Omega$.

Sometimes, the following note can be useful when we are looking for a solution of 4.1.2.

4.2 Note. If $\beta_1 \in C^q$ is a solution of the Cauchy problem 4.1.1 and there exists $S \in \mathcal{D}'_m$ such that $S^{(n)} = \sum_{i=1}^n T_i \beta_1^{(n-i)}$ and $\sum_{i=1}^n S^{(n-i)}[\gamma_i + (\alpha * T_i)] = 0$ then S is a solution of 4.1.2 in \mathcal{D}'_m .

Finally we can verify the proposition which allows us to determine the w_{α} solution of the P_a^V problem.

4.3 Proposition. If

I) $g \in \hat{\mathcal{D}}'$ is a particular w_{α} -solution of $X^{(n)} = \sum_{i=1}^{n} U_i X^{(n-i)} + V$, that is, g is a solution of

$$X^{(n)} = \sum_{i=1}^{n} \left(X^{(n-i)} \gamma_i + T_i \frac{1}{\alpha} X^{(n-i)} \right) + V$$

and

II) There exists $c = (c_1, ..., c_n)$ such that

a) Y_c is a w_{α} -solution of

$$P_c^0 \equiv \begin{cases} X^{(n)} = \sum_{i=1}^n U_i X^{(n-i)}, \\ X^{(n-i)}(t_0) = c_i, \quad i = 1, ..., n ; \end{cases}$$

b) $(Y_c + g)^{(n-i)}(t_0) = a_i$ in the sense that there exists an open set Ω of **R** such that $t_0 \in \Omega$, $(Y_c + g)_{\Omega} \in C^{n-1}(\Omega)$ and $(Y_c + g)_{\Omega}^{(n-i)}(t_0) = a_i$, i = 1, 2, ..., n,

then

$$X = Y_c + g$$
 is the w_{α} -solution of P_a^V problem.

5 – Examples

5.1. Let us consider the problem

$$P_{a}^{0} = Q_{a}^{0} \equiv \begin{cases} X' = i g \,\delta' \,X, \tag{5.1.1} \end{cases}$$

$$a = \Im_a = \begin{cases} X(t_0) = a \end{cases},$$
 (5.1.2)

where $i = \sqrt{-1}$, δ' is the derivative of Dirac measure, $g, t_0, a \in \mathbb{R}$, $t_0 < 0$ and $g \neq 0$.

 C^1 is the space of classical solutions X because $\delta' \in \mathcal{D}'^1$. P_a^0 has no classical solutions unless a = 0. In fact, $X' \in C^0$ and $i g \, \delta' X \in \mathcal{D}'_m$ which implies $X' = i g \, \delta' X = 0$. This is possible only in the case X = 0 which is not compatible with 5.1.2 unless a = 0. Hence, if a = 0, P_a^0 has only the solution X = 0 in C^1 . If $a \neq 0$, P_a^0 has no classical solutions. We will prove that for all $a \in \mathbb{R}$, P_a^0 always has the w_α -solution $X = a(1 + ig\delta)$ in $C^1 \oplus \mathcal{D}'_m$, which does not depend of the choice of α and coincides with the classical solution X = 0 if a = 0. In fact, by applying 4.1 we have the following:

a) The Cauchy problem

$$\begin{cases} \beta_1' = 0, \\ \beta_1(t_0) = a \end{cases}$$

has the unique solution $\beta_1(t) = a$.

- **b**) By 4.2 the equation $S' = i g \, \delta' a$ has the solution $S = i g \, a \, \delta \in \mathcal{D}'_m$, and $i g \, a \, \delta [0 + (\alpha * i g \, \delta')] = 0$ for all α . Thus, $f = i g \, a \, \delta$ is a solution of 4.1.2 in \mathcal{D}'_m .
- c) There is an open set Ω of \mathbb{R} containing t_0 such that $f_{\Omega} = (i g a \delta)_{\Omega} = 0$ because $t_0 < 0$.

We conclude that $X = a + i g a \delta = a(1 + i g \delta)$ is a w_{α} -solution of P_a^0 in $C^1 \oplus \mathcal{D}'_m$. The uniqueness of this solution in $C^1 \oplus \mathcal{D}'_m$ follows by 3.1.

Colombeau [1], p. 69, asserts that the "scattering operator" can be heuristically defined from the Cauchy problem

$$\begin{cases} S'(t) = -i g H(t) S(t), \\ S(t_0) = I \end{cases},$$

where $g \in \mathbb{R}$, H(t) is the Hamiltonean interaction (distribution operator valued) and I the identity operator on the Fock space. Thus, if we denote by $S_{t_0}(t)$ the formal solution of this problem, the scattering operator will be defined by $S_{-\infty}(+\infty)$.

A drastic simplification which consists in taking \mathbf{C} as a Fock space and $H(t) = -\delta'(t)$ leads Colombeau to consider the problem P_a^0 with a = 1. Thus, the scattering operator, a complex number in this case, can be computed.

$$S_{-\infty}(+\infty) = 1 \; .$$

This result is in agreement with example 2 page 75 of Colombeau [1].

Remark. Problem P_1^0 has the solution $e^{ig\delta(t)}$ in the sense of Colombeau, but this solution is not a distribution and it is not true that

$$e^{ig\delta(t)} = \sum_{n=0}^{\infty} \frac{[i \, g \, \delta(t)]^n}{n!}$$

as it is usually supposed in heuristic computations, on account of the divergence of this series in G (see [1]). If we consider the distributional product [2] this series is always convergent in \mathcal{D}' and its α -sum can be computed:

(5.1.3)
$$e^{ig\delta(t)} = \sum_{n=0}^{\infty} \frac{[i g \,\delta(t)]^n}{n!} = \begin{cases} 1 + \frac{e^{ig\alpha(0)} - 1}{\alpha(0)} \,\delta(t), & \text{if } \alpha(0) \neq 0, \\ 1 + i g \,\delta(t), & \text{if } \alpha(0) = 0. \end{cases}$$

However, only in the case $\alpha(0) = 0$ does the series 5.1.3 converge to the solution of the problem P_1^0 . Thus, in this case, it is possible in \mathcal{D}' to make consistent the heuristic solution $e^{ig\delta(t)}$ with the solution $1 + ig\delta(t)$ and write

$$e^{ig\delta(t)} = \sum_{n=0}^{\infty} \frac{[i\,g\,\delta(t)]^n}{n!} = 1 + i\,g\,\delta(t) \ .$$

5.2. Let us consider the problem

$$P_a^V \equiv \begin{cases} X' + (1+\delta') X = \sin t, \\ X(-\pi) = a \end{cases}$$

with $V = \sin t$. We can prove that if $a = \frac{1}{2}(e^{\pi} + 1)$ this problem has only the classical solution $X(t) = \frac{1}{2}e^{-t} + \frac{1}{2}(\sin t - \cos t)$ in C^1 and has no classical solutions if $a \neq \frac{1}{2}(e^{\pi} + 1)$.

Now we will prove that for all $a \in \mathbb{R}$ the problem P_a^V has always one and only one w_{α} -solution in $C^1 \oplus \mathcal{D}'_m$, and this solution does not depend of the choice of the α -function. This solution is

$$X(t) = \left(a - \frac{1}{2}\right)e^{-(t+\pi)} + \frac{1}{2}(\sin t - \cos t) + e^{-\pi}\left[\frac{1}{2}(e^{\pi} + 1) - a\right]\delta(t)$$

and it coincides with the classical solution when $a = \frac{1}{2}(e^{\pi} + 1)$. In fact, if we consider the problem P_c^0 and the associated

$$Q_c^0 \equiv \begin{cases} X' = -X - \delta' \cdot X, \\ X(-\pi) = c , \end{cases}$$

we have, by applying 4.1:

a) $\beta_1(t) = c e^{-(t+\pi)} \in C^1$ is the unique solution of the problem

$$\begin{cases} \beta_1' = -\beta_1, \\ \beta_1(-\pi) = c \end{cases}$$

- **b**) $f = -c e^{-\pi} \delta \in \mathcal{D}'_m$ is a solution of $f' f[(-1) + \alpha * (-\delta')] = -\delta' c e^{-(t+\pi)}$ for any α chosen (now we cannot apply 4.2 because there does not exist $S' \in \mathcal{D}'_m$ such that $S' = -\delta' c e^{-(t+\pi)} = -c e^{-\pi} \delta' - c e^{-\pi} \delta$);
- c) There is an open set Ω of \mathbb{R} such that $-\pi \in \Omega$ and $f_{\Omega} = (-c e^{-\pi} \delta)_{\Omega} = 0$. Hence, for any α chosen, $X(t) = c e^{-(t+\pi)} - c e^{-\pi} \delta(t)$ is a w_{α} -solution of P_c^0 . Also, by applying 4.3, it is easy to see that

I)
$$g(t) = \frac{1}{2}(\sin t - \cos t) + \frac{1}{2}\delta(t) \in \mathcal{D}'$$
 is a solution of $X' = -X - \delta' \cdot \frac{1}{\alpha}X + \sin t$

and

II) There exists c such that $Y_c(t) = c e^{-(t+\pi)} - c e^{-\pi} \delta(t)$ is a w_α -solution of P_c^0 and $(Y_c + g)(-\pi) = a$. In fact, $Y_c(-\pi) + g(-\pi) = c + \frac{1}{2}$ and $c + \frac{1}{2} = a$ implies $c = a - \frac{1}{2}$.

Hence,

$$X(t) = \left(a - \frac{1}{2}\right)e^{-(t+\pi)} - \left(a - \frac{1}{2}\right)e^{-\pi}\delta(t) + \frac{1}{2}(\sin t - \cos t) + \frac{1}{2}\delta(t)$$
$$= \left(a - \frac{1}{2}\right)e^{-(t+\pi)} + \frac{1}{2}(\sin t - \cos t) + e^{-\pi}\left[\frac{1}{2}(e^{\pi} + 1) - a\right]\delta(t) ,$$

is the unique solution of P_a^V in $C^1 \oplus \mathcal{D}'_m$.

5.3. In the examples presented the w_{α} -solution does not depend on the α function chosen. This does not happen in general although in this example the α function does not appear explicitly in the solution.

Let us consider the problem

$$P_1^V \equiv \begin{cases} X' - \delta' X = \delta'', \\ X(-1) = 1 \end{cases}$$

The associated problem

$$P_c^0 \equiv Q_c^0 \equiv \begin{cases} X' - \delta' X = 0, \\ X(-1) = c, \end{cases}$$

can be seen as a particular case of 5.1 with g = -i, a = c and $t_0 = -1$ although g was real in that case. Thus, there is one and only one w_{α} -solution $Y_c = c(1+\delta)$ of P_c^0 in $C^1 \oplus \mathcal{D}'_m$ for any α chosen. Also $X = \delta'$ is a solution of $X' = \delta \cdot X + \delta''$ for all α such that $\alpha''(0) = 0$ and we can compute c because $(Y_c + g)(-1) = 1$ and c = 1 follows. Hence, $X = 1 + \delta + \delta'$ is the unique w_{α} -solution of P_1^V in $C^1 \oplus \mathcal{D}'_m$ if we choose α such that $\alpha''(0) = 0$.

5.4. A little modification of the last example allows us to understand that the solution can depend explicitly on the α -function. It is what happens in the following problem

$$P_1^1 \equiv \begin{cases} X' - \delta' X = 1, \\ X(-1) = 1. \end{cases}$$

It is easy to see that for each α the w_{α} -solution of P_1^1 in $C^1 \oplus \mathcal{D}'_m$ is

$$X(t) = \frac{1}{1 + e^{\alpha(-1)}} \left(1 + e^{\alpha(t)} + \delta(t) \right) \,.$$

ACKNOWLEDGEMENT – Some years ago, after reading my paper [2], Prof. Vaz Ferreira, of Bologna University, wrote me a letter where the present problem was raised. I am very grateful for his kind suggestions.

I am grateful to Prof. Michael Oberguggenberger for his beautiful and concise description of my product in [3]. I follow his treatment in the introduction.

I would also like to thank the referee for his helpful suggestions and Prof. Owen Brison for assistance with the English.

REFERENCES

- [1] COLOMBEAU, J.F. An elementary introduction to new generalized functions, North-Holland, 1985.
- [2] SARRICO, C.O.R. About a family of distributional products important in the applications, *Portugaliae Math.*, 45(3) (1988).
- [3] OBERGUGGENBERGER, M. Mathematical Reviews, 90f: 46068.

C.O.R. Sarrico, Centro de Matemática e Aplicações Fundamentais, Av. Prof. Gama Pinto, 2, 1699 Lisboa Codex – PORTUGAL