THE LINEAR CAUCHY PROBLEM FOR A CLASS OF DIFFERENTIAL EQUATIONS WITH DISTRIBUTIONAL COEFFICIENTS

C.O.R. Sarrico

Abstract

We consider the problem $X^{(n)}=\sum_{i=1}^{n} U_{i} X^{(n-i)}+V, X^{(n-i)}\left(t_{0}\right)=a_{i}$ in dimension $1\left(X \in \mathcal{D}^{\prime}\right.$ is unknown, n is a positive integer, $V \in \mathcal{D}^{\prime}, U_{1}, \ldots, U_{n} \in C^{\infty} \oplus \mathcal{D}_{m}^{\prime p}$, $\mathcal{D}_{m}^{\prime p}=\mathcal{D}^{\prime p} \cap \mathcal{D}_{m}^{\prime}, \mathcal{D}^{\prime p}$ is the space of distributions of order $\leq p$ in the sense of Schwartz, $\mathcal{D}^{\prime}{ }_{m}$ is the space of distributions with nowhere-dense support, $a_{1}, \ldots, a_{n} \in \mathbb{C}$ and $\left.t_{0} \in \mathbb{R}\right)$.

Necessary and sufficient conditions for existence and uniqueness of this problem in $C^{q} \oplus \mathcal{D}_{m}^{\prime}$ where $q=\max (n, n-1+p)$ are given and also the way of getting an explicit solution when it exists.

The solutions are considered in a generalized sense defined with the help of the distributional product we introduced in [2] and they are consistent with the usual solutions.

As an example we take $X^{\prime}(t)=i g \delta^{\prime}(t) X(t), X\left(t_{0}\right)=1$ for a certain $t_{0}<0(i=\sqrt{-1}$, $g \in \mathbb{R}$ and δ is the Dirac measure) and we prove that in our sense, its unique solution in $C^{1} \oplus \mathcal{D}_{m}^{\prime}$ is $X(t)=1+i g \delta(t)$ (Colombeau [1] also considers this problem with another approach). More examples are presented.

0 - Introduction

Let \mathcal{D} be the space of indefinitely differentiable complex functions on \mathbb{R}^{N} with compact support, \mathcal{D}^{\prime} the space of distributions, $L(\mathcal{D})$ the continuous linear maps $\mathcal{D} \rightarrow \mathcal{D}$. The basic idea of [2] is to define products of distributions by employing the algebraic structure of $L(\mathcal{D})$, given by the composition product. First we define a product $T \phi \in \mathcal{D}^{\prime}$ for $T \in \mathcal{D}^{\prime}, \phi \in L(\mathcal{D})$, by $\langle T \phi, x\rangle=\langle T, \phi(x)\rangle$ for $x \in \mathcal{D}$.

[^0]Second, we define an epimorphism $\widetilde{\zeta}: L(\mathcal{D}) \rightarrow \mathcal{D}^{\prime}$ given by $\langle\widetilde{\zeta}(\phi), x\rangle=\int \phi(x)$. Finally given $\alpha \in \mathcal{D}$ with $\int \alpha=1$, a projection $s_{\alpha}: L(\mathcal{D}) \rightarrow L(\mathcal{D})$ is defined in such a way that for $T, S \in \mathcal{D}^{\prime}, T \cdot S:=T\left(s_{\alpha} \phi\right)$ does not depend on the choice of $\phi \in L(\mathcal{D})$ with $\widetilde{\zeta}(\phi)=S$. The operator s_{α} is given by

$$
\left[\left(s_{\alpha} \phi\right)(x)\right](y)=\int \phi_{t}[\alpha(y-t) x(t)] d t, \quad \text { for } y \in \mathbb{R}^{N}
$$

Here, ϕ_{t} denotes the operator ϕ when it acts on functions of $t \in \mathbb{R}^{N}$.
In order to maintain consistency with the classical product, we single out a subspace $\mathcal{H}_{\alpha} \subset L(\mathcal{D})$ such that $\zeta_{\alpha}=\widetilde{\zeta} \mid \mathcal{H}_{\alpha}: \mathcal{H}_{\alpha} \rightarrow C^{\infty} \oplus \mathcal{D}_{m}^{\prime}$ is an isomorphism, where \mathcal{D}_{m}^{\prime} denotes the space of distributions with nowhere dense support (in [2] we denote \mathcal{D}_{m}^{\prime} by \mathcal{D}_{n}^{\prime}). Then, given $\alpha \in \mathcal{D}$ with $\int \alpha=1$, the product $T \in \mathcal{D}^{\prime}$ with $S=\beta+f \in C^{\infty} \oplus \mathcal{D}_{m}^{\prime}$ turns out to be

$$
T \cdot S=T \beta+(T * \check{\alpha}) f,
$$

where $\check{\alpha} \in \mathcal{D}$ is defined by $\check{\alpha}(t)=\alpha(-t)$, and the products on the right-hand side are the classical ones.

The product on $\mathcal{D}^{\prime} \times\left(C^{\infty} \oplus \mathcal{D}_{m}^{\prime}\right)$ thus defined depends on α, is distributive, satisfies the Leibnitz rule, is invariant for translations and is also invariant for a group G of unimodular transformations (linear transformations $h: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ with $|\operatorname{det} h|=1$), if α is so invariant. It is neither commutative nor associative. Commutativity may be recovered after integration if both factors are in \mathcal{D}_{m}^{\prime}, if one of them has compact support and if the map $t \rightarrow-t$ belongs to G. We also give a sufficient condition for associativity.

In the following examples we take $\alpha \in \mathcal{D}$ with $\int \alpha=1$, invariant for the group of orthogonal transformations G in \mathbb{R}^{N} (we always do the same in non relativistic applications). Thus, if $N=1, \alpha$ is an even function. In the following δ denotes the Dirac distribution concentrated on $0 \in \mathbb{R}^{N}$ and H denotes the Heaviside distribution.

Examples:

1) With $N=1$,

$$
\delta \cdot \delta=\delta \cdot 0+(\delta * \check{\alpha}) \delta=(\delta * \alpha) \delta=\alpha \delta=\alpha(0) \delta .
$$

Sometimes the product does not depend of the α-function, as examples 2 and 3 show.
2) With $N=1$,

$$
\begin{aligned}
H \cdot \delta=H \cdot 0+(H * \check{\alpha}) \delta=(H * \alpha) \delta & =\left[\int_{0}^{+\infty} \alpha(u-t) d t\right] \delta \\
& =\left[\int_{0}^{+\infty} \alpha(-t) d t\right] \delta=\frac{1}{2} \delta
\end{aligned}
$$

because α is an even function. In dimension N we have $H \cdot \delta=\frac{1}{2^{N}} \delta$.
3) With $N=1$ and $\beta \in C^{\infty}$,

$$
\begin{aligned}
\delta^{\prime} \cdot(\beta+\delta)=\delta^{\prime} \beta+ & \left(\delta^{\prime} * \check{\alpha}\right) \delta=\beta(0) \delta^{\prime}-\beta^{\prime}(0) \delta+\alpha^{\prime} \delta= \\
& =\beta(0) \delta^{\prime}-\beta^{\prime}(0) \delta+\alpha^{\prime}(0) \delta=\beta(0) \delta^{\prime}-\beta^{\prime}(0) \delta
\end{aligned}
$$

because $\alpha^{\prime}(0)=0$.
The consistency with the classical product can be obtained if we put the C^{∞}-function β in the right-hand side factor;
4) With $N=1, \delta_{\alpha} \beta=\delta \beta+(\delta * \check{\alpha}) \cdot 0=\delta \beta=\beta(0) \delta$. On the other hand,

$$
\beta \cdot \delta=\beta \cdot 0+(\beta * \check{\alpha}) \delta=(\beta * \alpha) \delta=(\beta * \alpha)(0) \delta .
$$

For details, we refer the reader to [2].
Let $\mathcal{D}^{\prime p}, p \in\{0,1,2, \ldots, \infty\}$, be the space of distributions of order $\leq p$ in the sense of Schwartz. We can naturally extend our definition of product.
0.1 Definition. Let $T \in \mathcal{D}^{\prime p}, S=\beta+f \in C^{p} \oplus \mathcal{D}_{m}^{\prime}$ and let G be a group of unimodular transformations of \mathbb{R}^{N}. We define the (G, α)-product $T \cdot S$ by putting

$$
T_{\alpha} S=T \beta+T_{\alpha} f
$$

where $T \beta$ is interpreted in the classical sense.

In the following we always take as G the orthogonal group in dimension 1. We always employ this product with $N=1$ in problems like the following:

$$
P_{a}^{V} \equiv\left\{\begin{array}{l}
X^{\prime}=U X+V \\
X\left(t_{0}\right)=a
\end{array}\right.
$$

where $U=\gamma+T \in C^{\infty} \oplus \mathcal{D}_{m}^{\prime}, a \in \mathbb{C}$ and $t_{0} \in \mathbb{R}$. In this problem, we know that there are sometimes distributions X such that P_{a}^{V} is satisfied with the product considered in the classical sense: such solutions will be called "classical solutions".

We also define new solutions, called " w_{α}-solutions", as follows. First we associate to the problem P_{a}^{V} the problem Q_{a}^{V} defined by

$$
Q_{a}^{V} \equiv\left\{\begin{array}{l}
X^{\prime}=X \gamma+T \cdot X+V \\
X\left(t_{0}\right)=a
\end{array}\right.
$$

We will say that $X \in \mathcal{D}^{\prime}$ is a w_{α}-solution of P_{a}^{V} when there is an open set $\Omega \subset \mathbb{R}$, with $t_{0} \in \Omega$, such that the restriction X_{Ω} of X to Ω is a continuous function and X satisfies Q_{a}^{V}. It is important to note that in general $X \gamma+T_{\alpha} X \neq U_{\alpha} X$ and $X \gamma+T_{\alpha} X^{\prime} \neq X_{\alpha} U$ (the map $P_{a}^{V} \rightarrow Q_{a}^{V}$ takes advantage of the noncommutativity of the product). Clearly all classical solutions are w_{α}-solutions. We shall see that P_{a}^{V} may have no classical solutions and have a w_{α}-solution which can be independent of α (Example 5.1). We will prove that if there is a w_{α}-solution of P_{a}^{V} in a certain space this solution is unique, we give conditions for the existence of a w_{α}-solution and a way of getting an explicit solution when it exists. We present solved problems such that
a) For any α chosen, there is a w_{α}-solution of P_{a}^{V} and this solution is independent of α.
b) The existence of a w_{α}-solution of P_{a}^{V} depends on α, but for all α for which the w_{α}-solution exists, the w_{α}-solution does not depend explicitly on α.
c) The w_{α}-solution of P_{a}^{V} exists for a certain set of α 's and depends explicitly on α.

In the following, the n order Cauchy problem is considered.

1 - The classical solutions of the linear Cauchy problem P_{a}^{V}

Let us consider the linear Cauchy problem

$$
P_{a}^{V} \equiv\left\{\begin{array}{l}
X^{(n)}=\sum_{i=1}^{n} U_{i} X^{(n-i)}+V \\
X^{(n-i)}\left(t_{0}\right)=a_{i}, \quad i=1,2, \ldots, n
\end{array}\right.
$$

where n is a positive integer, $U_{1}, \ldots, U_{n} \in C^{\infty} \oplus \mathcal{D}_{m}^{\prime p}, \mathcal{D}_{m}^{\prime p}=\mathcal{D}^{\prime p} \cap \mathcal{D}_{m}^{\prime}, V \in \mathcal{D}^{\prime}$, $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{C}^{n}$ and $t_{0} \in \mathbb{R}$.

If we ask for a solution $X \in \mathcal{D}^{\prime}(\mathbb{R})$ which shall be a C^{n-1} function in some neighbourhood of t_{0}, the problem is sometimes possible if we interpret the products in classical sense, that is, products of $\mathcal{D}^{\prime p}$-distributions by C^{p}-functions. We call these solutions, classical solutions. Thus, we must ask for them in the space C^{n-1+p}.

2 - The w_{α}-solutions of the linear Cauchy problem P_{a}^{V}

Now, let us associate to the problem P_{a}^{V} the problem

$$
Q_{a}^{V} \equiv\left\{\begin{array}{l}
X^{(n)}=\sum_{i=1}^{n}\left(X^{(n-i)} \gamma_{i}+T_{i} \cdot X^{(n-i)}\right)+V \\
X^{(n-i)}\left(t_{0}\right)=a_{i}, \quad i=1,2, \ldots, n
\end{array}\right.
$$

where γ_{i} and T_{i} are such that $\gamma_{i}+T_{i}=U_{i} \in C^{\infty} \oplus \mathcal{D}_{m}^{\prime p}$.
2.1 Definition. We say that $X \in \mathcal{D}^{\prime}$ is a w_{α}-solution of P_{a}^{V} when there is an open set Ω of \mathbb{R} containing t_{0} such that the restriction X_{Ω} of X to Ω is a $C^{n-1}(\Omega)$-function and X is solution of Q_{a}^{V}.

It is an immediate consequence of the definitions 0.1 and 2.1 that
2.2 Proposition. For all even functions $\alpha \in \mathcal{D}$ with $\int \alpha=1$, if $X \in C^{n-1+p}$ is a classical solution of P_{a}^{V} then X is a w_{α}-solution of P_{a}^{V}.

We shall see that P_{a}^{V} may have no classical solutions in C^{n-1+p} and have a w_{α}-solution in $C^{n-1+p} \oplus \mathcal{D}_{m}^{\prime}$, which obviously is, in a generalized sense, a new solution of the problem P_{a}^{V}. In some cases, this solution does not even depend on the α-function.

3 - The uniqueness of the w_{α}-solution of P_{a}^{V} in $C^{q} \oplus \mathcal{D}_{m}^{\prime}$ with $q=$ $\max (n, n-1+p)$
3.1 Proposition. If there exists a w_{α}-solution of P_{a}^{V} in $C^{q} \oplus \mathcal{D}_{m}^{\prime}$, with $q=\max (n, n-1+p)$, then this solution is unique.

Proof: We shall give the proof only in the case $n=1$. The general case is similar. Note also that it is sufficient to prove that if X is a w_{α}-solution of P_{a}^{V}, with $a=0$ and $V=0$, then $X=0$.

By assumption there is an open set Ω of \mathbb{R} containing t_{0} such that $X_{\Omega} \in C^{0}(\Omega)$ and $X=\beta+f \in C^{q} \oplus \mathcal{D}_{m}^{\prime}$ is a solution of

$$
Q_{0}^{0} \equiv\left\{\begin{array}{l}
X^{\prime}=X \gamma_{1}+T_{1} \cdot X, \\
X\left(t_{0}\right)=0,
\end{array}\right.
$$

with $\gamma_{1} \in C^{\infty}$ and $T_{1} \in \mathcal{D}_{m}^{\prime p}$. Then, $\beta^{\prime}+f^{\prime}=\beta \gamma_{1}+f \gamma_{1}+T_{1} \beta+f\left(\alpha * T_{1}\right)$ and $\beta\left(t_{0}\right)=0$, which is equivalent to

$$
\left\{\begin{array}{l}
\beta^{\prime}-\beta \gamma=-f^{\prime}+f \gamma_{1}+T_{1} \beta+f\left(\alpha * T_{1}\right) \\
\beta\left(t_{0}\right)=0
\end{array}\right.
$$

Noting that $\beta^{\prime}-\beta \gamma \in C^{q-1}$ and $-f^{\prime}+f \gamma_{1}+T_{1} \beta+f\left(\alpha * T_{1}\right) \in \mathcal{D}_{m}^{\prime}$, we have
a) $\beta^{\prime}-\beta \gamma=0$;
b) $-f^{\prime}+f \gamma_{1}+T_{1} \beta+f\left(\alpha * T_{1}\right)=0$;
c) $\beta\left(t_{0}\right)=0$.

From a) and c) it follows that $\beta=0$. Thus, b) is equivalent to

$$
f^{\prime}-f\left[\gamma_{1}+\left(\alpha * T_{1}\right)\right]=0
$$

which is a differential equation with C^{∞} coefficients. We know that the solutions of this equation in \mathcal{D}^{\prime} are distributions corresponding to C^{∞}-functions and so $f=0$ because $f \in \mathcal{D}_{m}^{\prime}$. Finally $X=\beta+f=0$.

4 - The existence of a w_{α}-solution of P_{a}^{V} in $C^{q} \oplus \mathcal{D}_{m}^{\prime}$
Let us consider the problem P_{a}^{0}.
4.1 Proposition. $X=\beta_{1}+f \in C^{q} \oplus \mathcal{D}_{m}^{\prime}$ is a w_{α}-solution of P_{a}^{0} with $q=\max \{n, n-1+p\}$ if and only if the following conditions are satisfied with $U_{i}=\gamma_{i}+T_{i}$
a) $\beta_{1} \in C^{q}$ is the solution of the Cauchy problem

$$
\left\{\begin{array}{l}
\beta_{1}^{(n)}=\sum_{i=1}^{n} \beta_{1}^{(n-i)} \gamma_{i} \tag{4.1.1}\\
\beta_{1}^{(n-i)}\left(t_{0}\right)=a_{i}, \quad i=1, \ldots, n
\end{array}\right.
$$

b) $f \in \mathcal{D}_{m}^{\prime}$ is a solution of the differential equation

$$
\begin{equation*}
f^{(n)}-\sum_{i=1}^{n} f^{(n-i)}\left[\gamma_{i}+\left(\alpha * T_{i}\right)\right]=\sum_{i=1}^{n} T_{i} \beta_{1}^{(n-i)} \tag{4.1.2}
\end{equation*}
$$

c) There is an open set Ω containing t_{0} and such that $f_{\Omega}=0$.

Proof: We only consider the case $n=1$. The general case is similar. First, let us assume that $X=\beta_{1}+f$ is a w_{α}-solution of $P_{a_{1}}^{0}$ in $C^{q} \oplus \mathcal{D}_{m}^{\prime}$ with $q=\max (1, p)$. By 2.1 there is an open set Ω containing t_{0} such that $X_{\Omega} \in C^{0}(\Omega)$ and X is a solution of

$$
Q_{a}^{0}\left\{\begin{array}{l}
X^{\prime}=X \gamma_{1}+T_{1} \cdot X, \\
X\left(t_{0}\right)=a_{1},
\end{array}\right.
$$

in $C^{q} \oplus \mathcal{D}_{m}^{\prime}$, with $q=\max \{1, p\}$. Thus, as in the proof of 3.1 , we have
$\left.\mathbf{a}^{\prime}\right) \beta_{1}^{\prime}-\beta_{1} \gamma_{1}=0$;
b') $f^{\prime}-f\left[\gamma_{1}+\left(\alpha * T_{1}\right)\right]=T_{1} \beta_{1}$;
$\left.\mathbf{c}^{\prime}\right) \beta_{1}\left(t_{0}\right)=a_{1}$.
Hence, conditions a) and b) are satisfied. Condition c) follows immediately from $X_{\Omega}=\left(\beta_{1}+f\right)_{\Omega}=\beta_{1_{\Omega}}+f_{\Omega} \in C^{0}(\Omega)$ and $f \in \mathcal{D}_{m}^{\prime}$.

Now suppose that a), b) and c) are satisfied. Then, $X=\beta_{1}+f$ is a w_{α}-solution of P_{a}^{0} because

$$
\begin{aligned}
X^{\prime} & =\beta_{1}^{\prime}+f^{\prime}=\beta_{1} \gamma_{1}+f\left[\gamma_{1}+\left(\alpha * T_{1}\right)\right]+T_{1} \beta_{1}=\beta_{1} \gamma_{1}+f \gamma_{1}+T_{1} \cdot f+T_{1} \beta_{1} \\
& =\left(\beta_{1}+f\right) \gamma_{1}+T_{1} \cdot\left(f+\beta_{1}\right)=X \gamma_{1}+T_{1} \cdot X
\end{aligned}
$$

and also because $X_{\Omega}=\left(\beta_{1}+f\right)_{\Omega}=\beta_{1_{\Omega}}+f_{\Omega}=\beta_{1_{\Omega}} \in C^{0}(\Omega)$ and $t_{0} \in \Omega$.
Sometimes, the following note can be useful when we are looking for a solution of 4.1.2.
4.2 Note. If $\beta_{1} \in C^{q}$ is a solution of the Cauchy problem 4.1.1 and there exists $S \in \mathcal{D}_{m}^{\prime}$ such that $S^{(n)}=\sum_{i=1}^{n} T_{i} \beta_{1}^{(n-i)}$ and $\sum_{i=1}^{n} S^{(n-i)}\left[\gamma_{i}+\left(\alpha * T_{i}\right)\right]=0$ then S is a solution of 4.1.2 in \mathcal{D}_{m}^{\prime}.

Finally we can verify the proposition which allows us to determine the $w_{\alpha^{-}}$ solution of the P_{a}^{V} problem.

4.3 Proposition. If

I) $g \in \mathcal{D}^{\prime}$ is a particular w_{α}-solution of $X^{(n)}=\sum_{i=1}^{n} U_{i} X^{(n-i)}+V$, that is, g is a solution of

$$
X^{(n)}=\sum_{i=1}^{n}\left(X^{(n-i)} \gamma_{i}+T_{i} \cdot X^{(n-i)}\right)+V
$$

and
II) There exists $c=\left(c_{1}, \ldots, c_{n}\right)$ such that
a) Y_{c} is a w_{α}-solution of

$$
P_{c}^{0} \equiv\left\{\begin{array}{l}
X^{(n)}=\sum_{i=1}^{n} U_{i} X^{(n-i)}, \\
X^{(n-i)}\left(t_{0}\right)=c_{i}, \quad i=1, \ldots, n ;
\end{array}\right.
$$

b) $\left(Y_{c}+g\right)^{(n-i)}\left(t_{0}\right)=a_{i}$ in the sense that there exists an open set Ω of \mathbb{R} such that $t_{0} \in \Omega,\left(Y_{c}+g\right)_{\Omega} \in C^{n-1}(\Omega)$ and $\left(Y_{c}+g\right)_{\Omega}^{(n-i)}\left(t_{0}\right)=a_{i}$, $i=1,2, \ldots, n$,
then

$$
X=Y_{c}+g \text { is the } w_{\alpha} \text {-solution of } P_{a}^{V} \text { problem. }
$$

5 - Examples

5.1. Let us consider the problem

$$
P_{a}^{0}=Q_{a}^{0} \equiv\left\{\begin{array}{l}
X^{\prime}=i g \delta^{\prime} X \tag{5.1.1}\\
X\left(t_{0}\right)=a
\end{array}\right.
$$

where $i=\sqrt{-1}, \delta^{\prime}$ is the derivative of Dirac measure, $g, t_{0}, a \in \mathbb{R}, t_{0}<0$ and $g \neq 0$.
C^{1} is the space of classical solutions X because $\delta^{\prime} \in \mathcal{D}^{\prime 1} . P_{a}^{0}$ has no classical solutions unless $a=0$. In fact, $X^{\prime} \in C^{0}$ and $i g \delta^{\prime} X \in \mathcal{D}_{m}^{\prime}$ which implies $X^{\prime}=$ $i g \delta^{\prime} X=0$. This is possible only in the case $X=0$ which is not compatible with 5.1.2 unless $a=0$. Hence, if $a=0, P_{a}^{0}$ has only the solution $X=0$ in C^{1}. If $a \neq 0, P_{a}^{0}$ has no classical solutions. We will prove that for all $a \in \mathbb{R}, P_{a}^{0}$ always has the w_{α}-solution $X=a(1+i g \delta)$ in $C^{1} \oplus \mathcal{D}_{m}^{\prime}$, which does not depend of the choice of α and coincides with the classical solution $X=0$ if $a=0$. In fact, by applying 4.1 we have the following:
a) The Cauchy problem

$$
\left\{\begin{array}{l}
\beta_{1}^{\prime}=0 \\
\beta_{1}\left(t_{0}\right)=a
\end{array}\right.
$$

has the unique solution $\beta_{1}(t)=a$.
b) By 4.2 the equation $S^{\prime}=i g \delta^{\prime} a$ has the solution $S=i g a \delta \in \mathcal{D}_{m}^{\prime}$, and $i g a \delta\left[0+\left(\alpha * i g \delta^{\prime}\right)\right]=0$ for all α. Thus, $f=i g a \delta$ is a solution of 4.1.2 in \mathcal{D}_{m}^{\prime}.
c) There is an open set Ω of \mathbf{R} containing t_{0} such that $f_{\Omega}=(i g a \delta)_{\Omega}=0$ because $t_{0}<0$.

We conclude that $X=a+i g a \delta=a(1+i g \delta)$ is a w_{α}-solution of P_{a}^{0} in $C^{1} \oplus \mathcal{D}_{m}^{\prime}$. The uniqueness of this solution in $C^{1} \oplus \mathcal{D}_{m}^{\prime}$ follows by 3.1.

Colombeau [1], p. 69, asserts that the "scattering operator" can be heuristically defined from the Cauchy problem

$$
\left\{\begin{array}{l}
S^{\prime}(t)=-i g H(t) S(t) \\
S\left(t_{0}\right)=I
\end{array}\right.
$$

where $g \in \mathbb{R}, H(t)$ is the Hamiltonean interaction (distribution operator valued) and I the identity operator on the Fock space. Thus, if we denote by $S_{t_{0}}(t)$ the formal solution of this problem, the scattering operator will be defined by $S_{-\infty}(+\infty)$.

A drastic simplification which consists in taking \mathbb{C} as a Fock space and $H(t)=$ $-\delta^{\prime}(t)$ leads Colombeau to consider the problem P_{a}^{0} with $a=1$. Thus, the scattering operator, a complex number in this case, can be computed.

$$
S_{-\infty}(+\infty)=1
$$

This result is in agreement with example 2 page 75 of Colombeau [1].
Remark. Problem P_{1}^{0} has the solution $e^{i g \delta(t)}$ in the sense of Colombeau, but this solution is not a distribution and it is not true that

$$
e^{i g \delta(t)}=\sum_{n=0}^{\infty} \frac{[i g \delta(t)]^{n}}{n!}
$$

as it is usually supposed in heuristic computations, on account of the divergence of this series in G (see [1]). If we consider the distributional product [2] this series is always convergent in \mathcal{D}^{\prime} and its α-sum can be computed:

$$
e^{i g \delta(t)}=\sum_{n=0}^{\infty} \frac{[i g \delta(t)]^{n}}{n!}= \begin{cases}1+\frac{e^{i g \alpha(0)}-1}{\alpha(0)} \delta(t), & \text { if } \alpha(0) \neq 0 \tag{5.1.3}\\ 1+i g \delta(t), & \text { if } \alpha(0)=0\end{cases}
$$

However, only in the case $\alpha(0)=0$ does the series 5.1.3 converge to the solution of the problem P_{1}^{0}. Thus, in this case, it is possible in \mathcal{D}^{\prime} to make consistent the heuristic solution $e^{i g \delta(t)}$ with the solution $1+i g \delta(t)$ and write

$$
e^{i g \delta(t)}=\sum_{n=0}^{\infty} \frac{[i g \delta(t)]^{n}}{n!}=1+i g \delta(t)
$$

5.2. Let us consider the problem

$$
P_{a}^{V} \equiv\left\{\begin{array}{l}
X^{\prime}+\left(1+\delta^{\prime}\right) X=\sin t \\
X(-\pi)=a
\end{array}\right.
$$

with $V=\sin t$. We can prove that if $a=\frac{1}{2}\left(e^{\pi}+1\right)$ this problem has only the classical solution $X(t)=\frac{1}{2} e^{-t}+\frac{1}{2}(\sin t-\cos t)$ in C^{1} and has no classical solutions if $a \neq \frac{1}{2}\left(e^{\pi}+1\right)$.

Now we will prove that for all $a \in \mathbb{R}$ the problem P_{a}^{V} has always one and only one w_{α}-solution in $C^{1} \oplus \mathcal{D}_{m}^{\prime}$, and this solution does not depend of the choice of the α-function. This solution is

$$
X(t)=\left(a-\frac{1}{2}\right) e^{-(t+\pi)}+\frac{1}{2}(\sin t-\cos t)+e^{-\pi}\left[\frac{1}{2}\left(e^{\pi}+1\right)-a\right] \delta(t)
$$

and it coincides with the classical solution when $a=\frac{1}{2}\left(e^{\pi}+1\right)$. In fact, if we consider the problem P_{c}^{0} and the associated

$$
Q_{c}^{0} \equiv\left\{\begin{array}{l}
X^{\prime}=-X-\delta^{\prime} \cdot X \\
X(-\pi)=c
\end{array}\right.
$$

we have, by applying 4.1:
a) $\beta_{1}(t)=c e^{-(t+\pi)} \in C^{1}$ is the unique solution of the problem

$$
\left\{\begin{array}{l}
\beta_{1}^{\prime}=-\beta_{1} \\
\beta_{1}(-\pi)=c
\end{array}\right.
$$

b) $f=-c e^{-\pi} \delta \in \mathcal{D}_{m}^{\prime}$ is a solution of $f^{\prime}-f\left[(-1)+\alpha *\left(-\delta^{\prime}\right)\right]=-\delta^{\prime} c e^{-(t+\pi)}$ for any α chosen (now we cannot apply 4.2 because there does not exist $S^{\prime} \in \mathcal{D}_{m}^{\prime}$ such that $\left.S^{\prime}=-\delta^{\prime} c e^{-(t+\pi)}=-c e^{-\pi} \delta^{\prime}-c e^{-\pi} \delta\right) ;$
c) There is an open set Ω of \mathbb{R} such that $-\pi \in \Omega$ and $f_{\Omega}=\left(-c e^{-\pi} \delta\right)_{\Omega}=0$. Hence, for any α chosen, $X(t)=c e^{-(t+\pi)}-c e^{-\pi} \delta(t)$ is a w_{α}-solution of P_{c}^{0}. Also, by applying 4.3 , it is easy to see that
I) $g(t)=\frac{1}{2}(\sin t-\cos t)+\frac{1}{2} \delta(t) \in \mathcal{D}^{\prime}$ is a solution of $X^{\prime}=-X-\delta^{\prime} \cdot X+\sin t$ and
II) There exists c such that $Y_{c}(t)=c e^{-(t+\pi)}-c e^{-\pi} \delta(t)$ is a w_{α}-solution of P_{c}^{0} and $\left(Y_{c}+g\right)(-\pi)=a$. In fact, $Y_{c}(-\pi)+g(-\pi)=c+\frac{1}{2}$ and $c+\frac{1}{2}=a$ implies $c=a-\frac{1}{2}$.
Hence,

$$
\begin{aligned}
X(t) & =\left(a-\frac{1}{2}\right) e^{-(t+\pi)}-\left(a-\frac{1}{2}\right) e^{-\pi} \delta(t)+\frac{1}{2}(\sin t-\cos t)+\frac{1}{2} \delta(t) \\
& =\left(a-\frac{1}{2}\right) e^{-(t+\pi)}+\frac{1}{2}(\sin t-\cos t)+e^{-\pi}\left[\frac{1}{2}\left(e^{\pi}+1\right)-a\right] \delta(t)
\end{aligned}
$$

is the unique solution of P_{a}^{V} in $C^{1} \oplus \mathcal{D}_{m}^{\prime}$.
5.3. In the examples presented the w_{α}-solution does not depend on the α function chosen. This does not happen in general although in this example the α function does not appear explicitly in the solution.

Let us consider the problem

$$
P_{1}^{V} \equiv\left\{\begin{array}{l}
X^{\prime}-\delta^{\prime} X=\delta^{\prime \prime} \\
X(-1)=1
\end{array}\right.
$$

The associated problem

$$
P_{c}^{0} \equiv Q_{c}^{0} \equiv\left\{\begin{array}{l}
X^{\prime}-\delta^{\prime} X=0, \\
X(-1)=c,
\end{array}\right.
$$

can be seen as a particular case of 5.1 with $g=-i, a=c$ and $t_{0}=-1$ although g was real in that case. Thus, there is one and only one w_{α}-solution $Y_{c}=c(1+\delta)$ of P_{c}^{0} in $C^{1} \oplus \mathcal{D}_{m}^{\prime}$ for any α chosen. Also $X=\delta^{\prime}$ is a solution of $X^{\prime}=\delta \cdot X+\delta^{\prime \prime}$ for all α such that $\alpha^{\prime \prime}(0)=0$ and we can compute c because $\left(Y_{c}+g\right)(-1)^{\alpha}=1$ and $c=1$ follows. Hence, $X=1+\delta+\delta^{\prime}$ is the unique w_{α}-solution of P_{1}^{V} in $C^{1} \oplus \mathcal{D}_{m}^{\prime}$ if we choose α such that $\alpha^{\prime \prime}(0)=0$.
5.4. A little modification of the last example allows us to understand that the solution can depend explicitly on the α-function. It is what happens in the following problem

$$
P_{1}^{1} \equiv\left\{\begin{array}{l}
X^{\prime}-\delta^{\prime} X=1 \\
X(-1)=1
\end{array}\right.
$$

It is easy to see that for each α the w_{α}-solution of P_{1}^{1} in $C^{1} \oplus \mathcal{D}_{m}^{\prime}$ is

$$
X(t)=\frac{1}{1+e^{\alpha(-1)}}\left(1+e^{\alpha(t)}+\delta(t)\right) .
$$

ACKNOWLEDGEMENT - Some years ago, after reading my paper [2], Prof. Vaz Ferreira, of Bologna University, wrote me a letter where the present problem was raised. I am very grateful for his kind suggestions.
I am grateful to Prof. Michael Oberguggenberger for his beautiful and concise description of my product in [3]. I follow his treatment in the introduction.
I would also like to thank the referee for his helpful suggestions and Prof. Owen Brison for assistance with the English.

REFERENCES

[1] Colombeau, J.F. - An elementary introduction to new generalized functions, NorthHolland, 1985.
[2] Sarrico, C.O.R. - About a family of distributional products important in the applications, Portugaliae Math., 45(3) (1988).
[3] Oberguggenberger, M. - Mathematical Reviews, 90f: 46068.
C.O.R. Sarrico,

Centro de Matemática e Aplicações Fundamentais,
Av. Prof. Gama Pinto, 2, 1699 Lisboa Codex - PORTUGAL

[^0]: Received: September 21, 1993; Revised: September 7, 1994.
 AMS Subject Classification: Primary 34A30; Secondary 46F10.
 Keywords: Ordinary differential equations, Products of distributions, Distributions, Generalized functions.

