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NOTE ON THE CHEBYSHEV POLYNOMIALS
AND APPLICATIONS TO THE FIBONACCI NUMBERS

José Morgado

Abstract: In [12], Gheorghe Udrea generalizes a result obtained in [8], by showing
that, if (Un)n≥0 is the sequence of Chebyshev polynomials of the second kind, then the
product of any two distinct elements of the set

{

Un, Un+2r, Un+4r, 4Un+rUn+2rUn+3r

}

, r, n ∈ IN ,

increased by U2
aU2

b , for suitable nonnegative integers a and b, is a perfect square.

In this note, one obtains a similar result for the Chebyshev polynomials of the first

kind and one states some generalizations of results contained in [12] and in [8].

1 – Preliminaries

Diophantus raised the following problem ([4], pp. 179–181):

“To find four numbers such that the product of any two increased by unity is a square” ,

for which he obtained the solution 1
16 ,

33
16 ,

68
16 ,

105
16 .

Fermat ([3], p. 251) found the solution 1, 3, 8, 120.

In 1968, J.H. van Lint raised the problem whether the number 120 is the

unique (positive) integer n for which the set {1, 3, 8, 120} constitutes a solution
for Diophantus’ problem above; in the same year, A. Baker and H. Davenport

[1] studied this question and concluded that, in fact, 120 is the unique integer

satisfying the problem raised by J.H. van Lint.

In 1977, V.E. Hoggatt and G.E. Bergum [5] observed that 1, 3, 8 are, respec-

tively, the terms F2, F4, F6, of the Fibonacci sequence (Fn)n≥0, defined by the

conditions

F0 = 0 , F1 = 1 and Fn+2 = Fn+1 + Fn, n ≥ 0 ,
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and formulated the problem of finding a positive integer n such that

F2tn+ 1 , F2t+2n+ 1 , F2t+4n+ 1

be perfect squares.

Hoggatt and Bergum obtained the number

n = 4F2t+1 F2t+2 F2t+3 ,

which, for t = 1, gives exactly n = 120.

In 1984, this result was generalized ([8], p. 443), by showing that the product

of any two distinct elements of the set

{

Fn, Fn+2r, Fn+4r, 4Fn+rFn+2rFn+3r

}

,

increased by ±F 2
aF

2
b (for suitable integers a and b) is a perfect square, i.e., this

set is a Fibonacci quadruple.

In 1987, this result was generalized by A.F. Horadam [6], who proved that the

product of any two distinct elements of the set

{

wn, wn+2r, wn+4r, 4wn+rwn+2rwn+3r

}

,

increased by a suitable integer, is a perfect square, i.e., this set is a Diophantine

quadruple, not being necessarily a Fibonacci quadruple.

The sequence (wn)n≥0 was introduced, in 1965, by A.F. Horadam [7]:

wn = wn(a, b; p, q), w0 = a, w1 = b and wn = pwn−1 − q wn−2 ,

with a, b, p, q integers, and n ≥ 2. This sequence generalizes the sequence

(Fn)n≥0, since one has Fn = wn(0, 1; 1,−1).
In the paper of Gheorghe Udrea [12], one obtains another generalization of

the result contained in [8], by means of the Chebyshev polynomials of the second

kind.

The sequence of Chebyshev polynomials of the first kind is the sequence

(Tn(x))n≥0, where x ∈ C, defined by the recurrence relation

(1.1) Tn+2(x) = 2xTn+1 − Tn(x) ,

with T0(x) = 1 and T1(x) = x. Thus, one has

T2(x) = 2x
2 − 1, T3(x) = 4x

3 − 3x, T4(x) = 8x
4 − 8x2 + 1, ... .
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The sequence of Chebyshev polynomials of the second kind is the sequence

(Un(x))n≥0, where x ∈ C, defined by the same recurrence relation

(1.2) Un+2(x) = 2xUn+1(x)− Un(x) ,

with U0(x) = 1, and U1(x) = 2x. Thus, one has

U2(x) = 4x
2 − 1, U3(x) = 8x

3 − 4x, U4(x) = 16x
4 − 12x2 + 1, ... .

The (ordinary) generating function of (Tn(x))n≥0 is the formal series

(1.3) g1(y) = T0(x) + T1(x) y + T2(x) y
2 + ...+ Tn(x) y

n + ... .

By taking into account the recurrence relation (1.1), we are led to consider

the reducing polynomial

k(y) = 1− 2x y + y2 .

One has clearly

g1(y) k(y) =
[

T0(x) + T1(x) y + T2(x) y
2 + ...+ Tn(x) y

n + ...
]

(1− 2xy + y2)

= T0(x) +
[

T1(x)− 2xT0(x)
]

y + ...

+ ...+
[

Tn(x)− 2xTn−1(x) + Tn−2(x)
]

yn + ... = 1− xy ,

since, by (1.1), Tn(x) − 2xTn−1(x) + Tn−2(x) is the zero polynomial for n ≥ 2.
Thus, one obtains the generating function, g1(y), under a finite form,

g1(y) =
1− xy

1− 2xy + y2
,

which can be written as

g1(y) =
1− xy

[

y − (x+
√
x2 − 1)

] [

y − (x−
√
x2 − 1)

]

=
A

y − (x+
√
x2 − 1)

+
B

y − (x−
√
x2 − 1)

,

where
{

A+B = −x,
A(x−

√
x2 − 1) +B(x+

√
x2 − 1) = −1 .

From this, it follows (with x 6= ±1) that

A =
1− x2 − x

√
x2 − 1

2
√
x2 − 1

and B =
1− x2 + x

√
x2 − 1

2
√
x2 − 1

,
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and, consequently,

g1(y) =
1

2
√
x2 − 1

[

√
x2 − 1

1− (x+
√
x2 − 1) y

+

√
x2 − 1

1− (x−
√
x2 − 1) y

]

=
1

2

[

1+(x+
√

x2−1) y+(x+
√

x2−1)2 y2+...+(x+
√

x2−1)n yn+...
]

+
1

2

[

1+(x−
√

x2−1) y+(x−
√

x2−1)2 y2+...+(x−
√

x2−1)n yn+...
]

.

Since, by (1.3) Tn(x) is the coefficient of y
n, one concludes that

(1.4) Tn(x) =
1

2

[

(x+
√

x2 − 1)n + (x−
√

x2 − 1)n
]

.

For the Chebyshev polynomials of the second kind, one finds, by a similar

way, the corresponding generating function, under a finite form (with x 6= ±1):

g2(y) =
1

y2 − 2xy + 1

=
1

2
√
x2 − 1

[

x+
√
x2 − 1

1− (x+
√
x2 − 1) y

− x−
√
x2 − 1

1− (x−
√
x2 − 1) y

]

and one obtains, after the developments in power series of

x+
√
x2 − 1

1− (x+
√
x2 − 1) y

and
x−

√
x2 − 1

1− (x−
√
x2 − 1) y

,

Un(x) =
1

2
√
x2 − 1

[

(x+
√

x2 − 1)n+1 − (x−
√

x2 − 1)n+1

]

.(1.5)

Since, for each x ∈ C, there is some θ ∈ C such that x = cos θ, one can write

Tn(cos θ) =
1

2

[

(cos θ + i sin θ)n + (cos θ − i sin θ)n
]

= cosn θ ,(1.6)

Un(cos θ) =
1

2i sin θ

[

(cos θ + i sin θ)n+1 − (cos θ − i sin θ)n+1
]

(1.7)

=
sin(n+ 1) θ

sin θ
.

By means of the relations (1.6) and (1.7), it is easy to see that the following

connections, between the two kinds of Chebyshev polynomials, hold:

Tn(x) = Un(x)− xUn−1(x) , n ≥ 1 ,(1.8)

(1− x2)Un(x) = xTn+1(x)− Tn+2(x) , n ≥ 0 ,(1.9)

T 2
n+1(x) = 1 + (x

2 − 1)U2
n(x) , n ≥ 0 .(1.10)
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The Chebyshev polynomials, Tn(x) and Un(x), are special ultraspherical (or

Gegenbauer) polynomials. The ultraspherical polynomials are special cases of the

Jacobi polynomials, i.e., of the polynomials P
(α,β)
n (x) such that ([11], pp. 71–73),

P (α,β)
n (x) =

(−1)n (1− x)−α (1 + x)−β

2n · n! · dn

dxn

[

(1− x)α+n · (1 + x)β+n
]

.

The ultraspherical polynomials are the Jacobi polynomials, for which one has

α = β; for the Chebyshev polynomials of the first kind, one has α = β = − 1
2 and,

for the Chebyshev polynomials of the second kind, one has α = β = 1
2 .

By taking into account (1.6), it is natural to extend the meaning of Tn for

n < 0: one puts

T−r(x) = T−r(cos θ) = cos(−r) θ = cos r θ = Tr(cos θ) = Tr(x) .

2 – Some properties of the Chebyshev polynomials of the first kind

In order to obtain, for the Chebyshev polynomials of the first kind, a result

analogous to that obtained by Gheorghe Udrea for the Chebyshev polynomials

of the second kind, we need to prove the following lemma:

Lemma 1. If (Tn(x))n≥0 is the sequence of Chebyshev polynomials of the

first kind, then one has:

(2.1) Tn(x)Tn+r+s(x) +
1

2

[

Tr−s(x)− Tr+s(x)
]

= Tn+r(x)Tn+s(x) .

(2.2) 4Tn(x)Tn+r(x)Tn+s(x)Tn+r+s(x) +
1

4

[

Tr−s(x)− Tr+s(x)
]2
=

=
[

Tn(x)Tn+r+s(x) + Tn+r Tn+s(x)
]2

.

Proof: (Sometimes, instead of Tn(x), we shall write plainly Tn).

By setting x = cos θ (and so Tn = cosn θ), one has

Tn Tn+r+s = cosnθ cos(n+ r + s) θ =
1

2

[

cos(2n+ r + s) θ + cos(r + s) θ
]

and

Tn+r Tn+s = cos(n+ r)θ cos(n+ s)θ =
1

2

[

cos(2n+ r + s) θ + cos(r − s) θ
]
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and, consequently,

Tn Tn+r+s − Tn+r Tn+s =
1

2

[

cos(r + s) θ − cos(r − s) θ
]

.

Hence,

Tn Tn+r+s +
1

2
(Tr−s − Tr+s) = Tn+r Tn+s ,

which proves (2.1).

One has clearly

1

4
(Tr−s − Tr+s)

2 = T 2
n+r T

2
n+s + T 2

n T 2
n+r+s − 2Tn Tn+r Tn+s Tn+r+s

and so

4Tn Tn+r Tn+s Tn+r+s +
1

4
(Tr−s − Tr+s)

2 = (Tn Tn+r+s + Tn+r Tn+s)
2 ,

which proves (2.2).

Now, we are going to state the following

Theorem 1. If (Tn)n≥0 is the sequence of Chebyshev polynomials of the

first kind, then the product of any two distinct elements of the set

{

Tn, Tn+2r, Tn+4r, 4Tn+rTn+2rTn+3r

}

, n, r ∈ IN ,

increased by [12(Th − Tk)]
t, where Th and Tk, with k > h ≥ 0, are suitable terms

of the sequence (Tn)n≥0, and t is 1 or 2, according to the number of factors T , in

that product, is 2 or 4, is a perfect square.

Proof: Indeed, if one sets s = r, in (2.1), one obtains

(2.3) Tn Tn+2r +
1

2
(T0 − T2r) = T 2

n+r .

If r is replaced by 2r, in (2.3), one gets

(2.4) Tn Tn+4r +
1

2
(T0 − T4r) = T 2

n+2r .

By replacing, in (2.3) n by n+ 2r, one obtains

(2.5) Tn+2r Tn+4r +
1

2
(T0 − T2r) = T 2

n+3r .



NOTE ON THE CHEBYSHEV POLYNOMIALS 369

If one puts s = 2r, in (2.2), one gets

(2.6) 4Tn Tn+r Tn+2r Tn+3r +
[1

2
(Tr − T3r)

]2
= (Tn Tn+3r + Tn+r Tn+2r)

2 .

Now, by changing n into n+ r, in (2.6), it comes

(2.7) 4Tn+r Tn+2r Tn+3r Tn+4r +
[1

2
(Tr − T3r)

]2
=

= (Tn+r Tn+4r + Tn+2r Tn+3r)
2 .

If one replaces n by n + r, in (2.2), and, furthermore, one puts s = r, one

obtains

(2.8) 4Tn+r T
2
n+2r Tn+3r +

[1

2
(T0 − T2r)

]2
= (Tn+r Tn+3r + T 2

n+2r)
2 ,

which completes the proof of the theorem above.

3 – Applications to the Fibonacci numbers

There is a connection between, on the one hand, the sequence of Fibonacci

numbers, (Fn)n≥0, with

(3.1) Fn =
1√
5

[(

1 +
√
5

2

)n

−
(

1−
√
5

2

)n]

,

and, on the other hand, the sequences (Un)n≥0 and (Tn)n≥0.

Indeed, from (1.5), it results

(3.2) Un

( i

2

)

=
1

i
√
5

[

( i

2
+

i

2

√
5
)n+1

−
( i

2
− i

2

√
5
)n+1

]

= in Fn+1 .

Now, from (1.8) and (3.2), one finds

Tn
( i

2

)

= Un

( i

2

)

− i

2
Un−1

( i

2

)

=
in

2
(2Fn+1 − Fn)

and, since Fn+1 = Fn + Fn−1, one has

(3.3) Tn
( i

2

)

=
in

2
(Fn + 2Fn−1) .

Thus, from (2.3) and (3.3), it follows

in

2
(Fn + 2Fn−1) ·

in+2r

2
(Fn+2r + 2Fn+2r−1) +

1

2

[

1− i2r

2
(F2r + 2F2r−1)

]

=

=

[

in+r

2
(Fn+r + 2Fn+r−1)

]2

,
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that is to say,

(−1)n+r
(

1

4
Fn Fn+2r +

1

2
Fn Fn+2r−1 +

1

2
Fn−1 Fn+2r + Fn−1 Fn+2r−1

)

−

− 1
2

[

(−1)r
(1

2
F2r + F2r−1

)

− 1
]

= (−1)n+r
(1

2
Fn+1 + Fn+r−1

)2
,

and hence,

(3.4) Fn Fn+2r + 2Fn+1 Fn+2r−1 + 2Fn−1 Fn+2r+1 +

+ 2(−1)n+r − (−1)n (F2r + 2F2r−1) = F 2
n+r + 4Fn+r−1 Fn+r+1 ,

and, analogously from the relations (2.4)–(2.8) and (3.3) other equalities can be

obtained.

Other more interesting results can be obtained by making use of another

connection between Tn and Fn. In fact, from (1.4), it results

Tn
( i

2

)

=
in

2

[(

1 +
√
5

2

)n

+

(

1−
√
5

2

)n]

=
in

2

{[(

1 +
√
5

2

)2n

−
(

1−
√
5

2

)2n]

/

[(

1 +
√
5

2

)n

−
(

1−
√
5

2

)n]}

,

and hence, for n > 0,

(3.5) Tn
( i

2

)

=
in

2
· F2n

Fn
.

Thus, from (2.3) and (3.5), one obtains

i2n+2r

4

F2n

Fn
· F2n+4r

Fn+2r
+
1

2

(

1− i2r

2

F4r

F2r

)

=
i2n+2r

4

(

F2n+2r

Fn+r

)2

,

whence,

(3.6)
F2n

Fn
· F2n+4r

Fn+2r
+ (−1)n

[

2(−1)r − F4r

F2r

]

=

(

F2n+2r

Fn+r

)2

.

Analogously, from (2.4) and (3.5), it follows that

i2n+4r

4
· F2n

Fn
· F2n+8r

Fn+4r
+
1

4

(

2− i4r
F8r

F4r

)

=

(

in+r

2
· F2n+4r

Fn+2r

)2

,

and, consequently, one has

(3.7)
F2n

Fn
· F2n+8r

Fn+4r
+ (−1)n

(

2− F8r

F4r

)

=

(

F2n+4r

Fn+2r

)2

.
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By using (2.5) and (3.5), one obtains

(3.8)
F2n+4r

Fn+2r
· F2n+8r

Fn+4r
+ (−1)n

(

2(−1)r − F4r

F2r

)

=

(

F2n+6r

Fn+3r

)2

.

from (2.6) and (3.5), it results

(3.9) 4 · F2n

Fn
· F2n+2r

Fn+r
· F2n+4r

Fn+2r
· F2n+6r

Fn+3r
+

(

F2r

Fr
− (−1)r F6r

F3r

)2

=

=

(

F2n

Fn
· F2n+6r

Fn+3r
+

F2n+2r

Fn+r
· F2n+4r

Fn+2r

)2

.

from (2.7) and (3.5), one obtains

(3.10) 4 · F2n+2r

Fn+r
· F2n+4r

Fn+2r
· F2n+6r

Fn+3r
· F2n+8r

Fn+4r
+

(

F2r

Fr
− (−1)r F6r

F3r

)2

=

=

(

F2n+2r

Fn+r
· F2n+8r

Fn+4r
+

F2n+4r

Fn+2r
· F2n+6r

Fn+3r

)2

.

Finally, from (2.8) and (3.5), it results

(3.11) 4 · F2n+2r

Fn+r
·
(

F2n+4r

Fn+2r

)2

· F2n+6r

Fn+3r
+

(

2− (−1)r F4r

F2r

)2

=

=

[

F2n+2r

Fn+r
· F2n+6r

Fn+3r
+

(

F2n+4r

Fn+2r

)2]2

.

This means that the following holds:

Theorem 2. If (Fn)n≥0 is the sequence of Fibonacci numbers, then the

product of any two distinct elements of the set

(3.12)

{

F2n

Fn
,
F2n+4r

Fn+2r
,
F2n+8r

Fn+4r
, 4 · F2n+2r

Fn+r
· F2n+4r

Fn+2r
· F2n+6r

Fn+3r

}

, with n > 0 ,

increased by ±(±2 − F2h

Fh
), if only 2 factors occur in that product; increased by

(F2l

Fl
−F2h

Fh
)2, if 4 different factors occur in that product, and increased by (2±F2h

Fh
)2,

if 4 factors occur in that product, but only three are different; h is the difference

between the greatest and the least subscripts of F in the denominators of the

factors and l is the difference between the subscripts of F in the denominators of

the intermediate factors.

It is clear that the four integers belonging to the set (3.12) are not necessarily

Fibonacci numbers and so the set (3.12) is a Diophantine quadruple, but, in

general, it is not a Fibonacci quadruple.
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In pursuance of a suggestion of the referee, we are going to present the results

contained in Theorem 2, under another form, through the introduction of the

Lucas numbers.

In [2], p. 395, L.E. Dickson says that E. Lucas

“employed the roots a, b of x2 = x + 1 and set

un =
an
− bn

a− b
, vn = a

n + b
n =

u2n

un

= un−1 + un+1 .

The u’s form the series of Pisano [Fibonacci] with terms 0, 1 prefixed, so that

u0 = 0, u1 = u2 = 1, u3 = 2.”

The v’s are the Lucas numbers.

One has vn = un−1 + un+1. In fact, the equality

an + bn =
an−1 − bn−1

a− b
+

an+1 − bn+1

a− b

is equivalent to

an+1 − bn+1 + a bn − an b = an−1 − bn−1 + an+1 − bn+1 ,

and this is equivalent to

a b(bn−1 − an−1) = an−1 − bn−1 ,

which is true, since a b = −1.
One has also

vn = an + bn =
(a2n − b2n)/(a− b)

(an − bn)/(a− b)
=

u2n

un
=

F2n

Fn
= Ln ,

with n > 0.

Thus, by taking into account Theorem 2, one concludes that the following

holds:

Theorem 2′. If (Ln)n>0 is the sequence of the Lucas numbers, then the

product of any two distinct elements of the set

(3.12)′
{

Ln, Ln+2r, Ln+4r, 4Ln+rLn+2rLn+3r

}

, with n > 0 ,

increased by ±(±2 − Lh), if only 2 factors L occur in that product; increased

by (Lk − Lh)
2, if 4 different factors L occur in that product, and increased by

(2 ± Lh)
2, if 4 factors L occur in that products, but only three are different; h

is the difference between the greatest and the least subscripts of L, and k is the

difference between the subscripts of L in the intermediate factors.
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4 – A generalization of the Chebyshev polynomials of the first and the

second kind

Let us consider the sequence of polynomials (Sn(x))n≥0 defined by the recur-

rence relation

(4.1) Sn+2(x) = 2xSn+1(x)− Sn(x) , n ≥ 0 ,

with S0(x) = a and S1(x) = b, being a, b ∈ Z[x].
Let g(y) = S0(x) + S1(x) y + ... + Sn(x) y

n + ..., be the generating function

of the sequence (Sn(x))n≥0. By making use of the reducing polynomial, k(y) =

1− 2xy + y2, one obtains the following finite form for g(y):

g(y) =
a+ (b− 2 a x) y
1− 2x y + y2

,

which can be written as

g(y) =
A

y − (x+
√
x2 − 1)

+
B

y − (x−
√
x2 − 1)

,

with

A =
(b− 2 a x)

√
x2 − 1 + a+ (b− 2 a x)x
2
√
x2 − 1

,

B =
(b− 2 a x)

√
x2 − 1−

[

a+ (b− 2 a x)x
]

2
√
x2 − 1

,

where x 6= ±1.
By operating as in §1 in order to get the formula (1.4), one obtains

(4.2)

Sn(x) =

(

a

2
+

a x− b

2
√
x2 − 1

)

(

x−
√

x2 − 1
)n

+

(

a

2
− a x− b

2
√
x2 − 1

)

(

x+
√

x2 − 1
)n

.

One sees that, for a = 1 and b = x, one has Sn(x) = Tn(x) and, for a = 1 and

b = 2x, one has Sn(x) = Un(x).

It follows also immediately that, if one sets x = cos θ in (4.2), then

(4.3) Sn(cos θ) = a cosn θ − (a cos θ − b) sinn θ

sin θ
.

If one puts a = 1 and b = x = cos θ, one obtains

Sn(cos θ) = cosn θ = Tn(cos θ) ,
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and, for a = 1 and b = 2x = 2 cos θ, one obtains

Sn(cos θ) = cosn θ − − cos θ sinn θ

sin θ
=
sin(n+ 1) θ

sin θ
= Un(cos θ) ,

as was to be expected.

If a = Tj(x) and b = Tj+1(x), then one has:

Sn(x) = Sn(cos θ) = cos j θ cosn θ −

[

cos j θ cos θ − cos(j + 1)θ
]

sinn θ

sin θ

= cos(j + n)θ + sin j θ sinn θ − sin j θ sin θ sinn θ

sin θ

= cos(j + n)θ = Tj+n(x) .

If a = Uj(x) and b = Uj+1(x), then one has, by (4.3),

Sn(x) = Sn(cos θ) =
sin(j + 1)θ

sin θ
cosnθ −

[

sin(j + 1)θ cos θ − sin(j + 2)θ
]

sinnθ

sin2 θ

=
sin(j + 1)θ cosnθ

sin θ
+
cos(j + 1)θ sinnθ

sin θ
=
sin(j + n+ 1)θ

sin θ

= Uj+n(cos θ) = Uj+n(x) .

Now, we are going to prove, for Sn (= Sn(x) = Sn(cos θ)), a result analogous

to Lemma 1.

Lemma 2. If (Sn)n≥0 is the sequence of polynomials defined by (4.1), then

one has:

(4.4) Sn Sn+r+s +
1

2
· a

2 + b2 − 2 a b x
1− x2

(Tr−s − Tr+s) = Sn+r Sn+s

and

(4.5) 4Sn Sn+r Sn+s Sn+r+s +

[

1

2
· a

2 + b2 − 2 a b x
1− x2

(Tr−s − Tr+s)

]2

=

= (Sn Sn+r+s + Sn+r Sn+s)
2 .
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Proof: Indeed, by taking into account the relation (4.3), one has

Sn(cos θ)Sn+r+s(cos θ)− Sn+r(cos θ)Sn+s(cos θ) =

=

(

a cosnθ−a cos θ − b

sin θ
sinnθ

)[

a cos(n+r+s)θ−a cos θ − b

sin θ
sin(n+r+s) θ

]

−

−
[

a cos(n+r)θ−a cos θ − b

sin θ
sin(n+r)θ

] [

a cos(n+s)θ−a cos θ − b

sin θ
sin(n+s)θ

]

=

= a2
[

cosnθ cos(n+ r + s)θ − cos(n+ r)θ cos(n+ s)θ
]

+

(

a cos θ − b

sin θ

)2[

sinnθ sin(n+ r + s)θ − sin(n+ r)θ sin(n+ s)θ
]

+ a · a cos θ − b

sin θ

{

[

sin(n+ r)θ cos(n+ s)θ + cos(n+ r)θ sin(n+ s)θ
]

−
[

cosnθ sin(n+ r + s)θ + sinnθ cos(n+ r + s)θ
]

}

=

= a2
[

cos(2n+ r + s)θ + cos(r + s)θ

2
− cos(2n+ r + s)θ + cos(r − s)θ

2

]

+

+

(

a cos θ−b

sin θ

)2[cos(r+s)θ−cos(2n+r+s)θ

2
− cos(r−s)θ−cos(2n+r+s)θ

2

]

=

=
1

2

[

a2 +

(

a cos θ − b

sin θ

)2] [

cos(r + s)θ − cos(r − s)θ
]

=
1

2
· a

2 + b2 − 2 a cos θ
sin2 θ

·
[

cos(r + s)θ − cos(r − s)θ
]

,

and, consequently, since Tj(x) = cos jx, one has (4.4).

Now, from (4.4), one obtains

4Sn Sn+r Sn+s Sn+r+s +

{

1

2
· a

2 + b2 − 2 a b cos θ
sin2 θ

[

cos(r−s)θ − cos(r+s)θ
]

}2

=

= 4Sn Sn+r Sn+s Sn+r+s + (Sn Sn+r+s − Sn+r Sn+s)
2

= (Sn Sn+r+s + Sn+r Sn+s)
2 ,

as desired.

It is clear that (4.4) generalizes (2.1); in fact, for a = 1 and b = x, one obtains

S0(x) = T0(x) = 1 and S1(x) = x = cos θ = T1(x), and (4.4) becomes (2.1). One

sees also that (4.4) generalizes the identity

Un(x)Un+r+s(x) + Ur−1(x)Us−1(x) = Un+r(x)Un+s(x) ,



376 J. MORGADO

obtained by Gheorghe Udrea for the Chebyshev polynomials of the second kind,

in [12]; in fact, for a = 1 and b = 2x = 2 cos θ, the identity (4.4) becomes the

identity above, obtained in [12].

Now, one can state the following

Theorem 3. Let (Sn(x))n≥0 be the sequence of polynomials defined by the

recurrence relation

Sn+2(x) = 2xSn+1(x)− Sn(x) , n ≥ 0 ,

with S0(x) = a, S1(x) = b, x ∈ C and x 6= ±1, where a, b ∈ Z[x]. Then, the

product of any two distinct elements of the set

(4.6)
{

Sn(x), Sn+2r(x), Sn+4r(x), 4Sn+r(x)Sn+2r(x)Sn+3r(x)
}

,

increased by
[

1

2
· a

2 + b2 − 2 a b x
1− x2

(Th(x)− Tk(x))

]t

,

where Th and Tk are suitable terms of the sequence (Tn)n≥0, independent of n,

with h < k, and t = 1 or t = 2, according to the number of factors S, in that

product, is 2 or 4, is a perfect square.

Proof: One proceeds as in the proof of Theorem 1.

Thus, by setting s = r, in (4.4), one obtains

Sn cos(θ)Sn+2r(cos θ) +
1

2
· a

2 + b2 − 2 a b cos θ
sin2 θ

(1− cos 2rθ) =
(

Sn+r(cos θ)
)2

,

that is to say,

(4.7) Sn(x)Sn+2r(x) +
1

2
· a

2 + b2 − 2 a b x
1− x2

(T0(x)− T2r(x)) =
(

Sn+r(x)
)2

.

By replacing r by 2r, in (4.7), one gets

(4.8) Sn(x)Sn+4r(x) +
1

2
· a

2 + b2 − 2 a b x
1− x2

(T0(x)− T4r(x)) = (Sn+r(x))
2 .

By replacing n by n+ 2r, in (4.7), it results in

(4.9) Sn+2r(x)Sn+4r(x) +
1

2

a2 + b2 − 2 a b x
1− x2

(T0(x)− T2r(x)) = (Sn+3r(x))
2 .
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By setting s = 2r, in (4.5), one gets

(4.10) 4Sn(x)Sn+r(x)Sn+2r(x)Sn+3r(x) +

+

{

1

2

a2 + b2 − 2 a b x
1− x2

[

Tr(x)− T3r(x)
]

}2

=

=
[

Sn(x)Sn+3r(x) + Sn+r(x)Sn+2r(x)
]2
.

If one replaces n by n+ r, in (4.10) one obtains

(4.11) 4Sn+r(x)Sn+2r(x)Sn+3r(x)Sn+4r(x) +

+

{

1

2

a2 + b2 − 2 a b x
1− x2

[Tr(x)− T3r(x)]

}2

=

=
[

Sn+r(x)Sn+4r(x) + Sn+2r(x)Sn+3r(x)
]2
.

Finally, by setting s = r, in (4.5), it results

(4.12) 4Sn(x) (Sn+r(x))
2 Sn+2r(x) +

{

1

2

a2 + b2 − 2 a b x
1− x2

[T0(x)− T2r(x)]

}2

=

=
[

Sn(x)Sn+2r(x) + (Sn+r(x))
2
]2

,

thus completing the proof.

REFERENCES

[1] Baker, A. and Davenport, H. – The equations 3x2 − 2 = y2 and 8x2 − 7 = z2,
Quart. J. Math., Oxford II ser., 20 (1969), 129–137.

[2] Dickson, L.E. – History of the Theory of Numbers, vol. I Chelsea Publishing
Company, New York, 1952.

[3] Fermat, P. – Observations sur Diophante, vol. III, de “Oeuvres de Fermat”,
publiées par les soins de M.M. Paul Tannery et Charles Henri, Paris, MDCCCXCI.

[4] Heath, T.L. – Diophantus of Alexandria. A Study on the History of Greek Alge-

bra, 2nd ed., Dover Publ., Inc., New York, 1964.
[5] Hoggatt, V.E. and Bergum, G.E. – Autorreferat of “A problem of Fermat and

the Fibonacci sequence”, Fibonacci Quart., 15 (1977), 323–330, Zbl. 383 (1979),
#10007.

[6] Horadam, A.F. – Generalization of a result of Morgado, Portugaliae Math., 44
(1987), 131–136.

[7] Horadam, A.F. – Basic properties of a certain generalized sequence of numbers,
Fibonacci Quart., 3(3) (1965), 161–176.

[8] Morgado, J. – Generalization of a result of Hoggatt and Bergum on Fibonacci
numbers, Portugaliae Math., 42 (1983–1984), 441–445.



378 J. MORGADO

[9] Morgado, J. – Note on a Shannon’s theorem concerning the Fibonacci numbers
and Diophantine quadruples, Portugaliae Math., 48 (1991), 429–439.

[10] Shannon, A.G. – Fibonacci numbers and Diophantine quadruples: generalization
of results of Morgado and Horadam, Portugaliae Math., 45 (1988), 165–169.

[11] Srivastava, H.M. and Manocha, H.L. – A Treatise on generating Functions,
Ellis Horwood Limited, 1984.

[12] Udrea, G. – A problem of Diophantus–Fermat and Chebyshev polynomials, to
appear in Portugaliae Math..
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