NOTE ON THE CHEBYSHEV POLYNOMIALS AND APPLICATIONS TO THE FIBONACCI NUMBERS

José Morgado

Abstract

In [12], Gheorghe Udrea generalizes a result obtained in [8], by showing that, if $\left(U_{n}\right)_{n \geq 0}$ is the sequence of Chebyshev polynomials of the second kind, then the product of any two distinct elements of the set $$
\left\{U_{n}, U_{n+2 r}, U_{n+4 r}, 4 U_{n+r} U_{n+2 r} U_{n+3 r}\right\}, \quad r, n \in \mathbb{N}
$$ increased by $U_{a}^{2} U_{b}^{2}$, for suitable nonnegative integers a and b, is a perfect square. In this note, one obtains a similar result for the Chebyshev polynomials of the first kind and one states some generalizations of results contained in [12] and in [8].

1 - Preliminaries

Diophantus raised the following problem ([4], pp. 179-181):
"To find four numbers such that the product of any two increased by unity is a square",
for which he obtained the solution $\frac{1}{16}, \frac{33}{16}, \frac{68}{16}, \frac{105}{16}$.
Fermat ([3], p. 251) found the solution 1, 3, 8, 120.
In 1968, J.H. van Lint raised the problem whether the number 120 is the unique (positive) integer n for which the set $\{1,3,8,120\}$ constitutes a solution for Diophantus' problem above; in the same year, A. Baker and H. Davenport [1] studied this question and concluded that, in fact, 120 is the unique integer satisfying the problem raised by J.H. van Lint.

In 1977, V.E. Hoggatt and G.E. Bergum [5] observed that 1, 3, 8 are, respectively, the terms F_{2}, F_{4}, F_{6}, of the Fibonacci sequence $\left(F_{n}\right)_{n \geq 0}$, defined by the conditions

$$
F_{0}=0, \quad F_{1}=1 \quad \text { and } \quad F_{n+2}=F_{n+1}+F_{n}, \quad n \geq 0
$$

[^0]and formulated the problem of finding a positive integer n such that
$$
F_{2 t} n+1, \quad F_{2 t+2} n+1, \quad F_{2 t+4} n+1
$$
be perfect squares.
Hoggatt and Bergum obtained the number
$$
n=4 F_{2 t+1} F_{2 t+2} F_{2 t+3},
$$
which, for $t=1$, gives exactly $n=120$.
In 1984, this result was generalized ([8], p. 443), by showing that the product of any two distinct elements of the set
$$
\left\{F_{n}, F_{n+2 r}, F_{n+4 r}, 4 F_{n+r} F_{n+2 r} F_{n+3 r}\right\}
$$
increased by $\pm F_{a}^{2} F_{b}^{2}$ (for suitable integers a and b) is a perfect square, i.e., this set is a Fibonacci quadruple.

In 1987, this result was generalized by A.F. Horadam [6], who proved that the product of any two distinct elements of the set

$$
\left\{w_{n}, w_{n+2 r}, w_{n+4 r}, 4 w_{n+r} w_{n+2 r} w_{n+3 r}\right\},
$$

increased by a suitable integer, is a perfect square, i.e., this set is a Diophantine quadruple, not being necessarily a Fibonacci quadruple.

The sequence $\left(w_{n}\right)_{n \geq 0}$ was introduced, in 1965, by A.F. Horadam [7]:

$$
w_{n}=w_{n}(a, b ; p, q), \quad w_{0}=a, \quad w_{1}=b \quad \text { and } \quad w_{n}=p w_{n-1}-q w_{n-2},
$$

with a, b, p, q integers, and $n \geq 2$. This sequence generalizes the sequence $\left(F_{n}\right)_{n \geq 0}$, since one has $F_{n}=w_{n}(0,1 ; 1,-1)$.

In the paper of Gheorghe Udrea [12], one obtains another generalization of the result contained in [8], by means of the Chebyshev polynomials of the second kind.

The sequence of Chebyshev polynomials of the first kind is the sequence $\left(T_{n}(x)\right)_{n \geq 0}$, where $x \in \mathbb{C}$, defined by the recurrence relation

$$
\begin{equation*}
T_{n+2}(x)=2 x T_{n+1}-T_{n}(x), \tag{1.1}
\end{equation*}
$$

with $T_{0}(x)=1$ and $T_{1}(x)=x$. Thus, one has

$$
T_{2}(x)=2 x^{2}-1, \quad T_{3}(x)=4 x^{3}-3 x, \quad T_{4}(x)=8 x^{4}-8 x^{2}+1, \quad \ldots .
$$

The sequence of Chebyshev polynomials of the second kind is the sequence $\left(U_{n}(x)\right)_{n \geq 0}$, where $x \in \mathbb{C}$, defined by the same recurrence relation

$$
\begin{equation*}
U_{n+2}(x)=2 x U_{n+1}(x)-U_{n}(x), \tag{1.2}
\end{equation*}
$$

with $U_{0}(x)=1$, and $U_{1}(x)=2 x$. Thus, one has

$$
U_{2}(x)=4 x^{2}-1, \quad U_{3}(x)=8 x^{3}-4 x, \quad U_{4}(x)=16 x^{4}-12 x^{2}+1, \quad \ldots .
$$

The (ordinary) generating function of $\left(T_{n}(x)\right)_{n \geq 0}$ is the formal series

$$
\begin{equation*}
g_{1}(y)=T_{0}(x)+T_{1}(x) y+T_{2}(x) y^{2}+\ldots+T_{n}(x) y^{n}+\ldots . \tag{1.3}
\end{equation*}
$$

By taking into account the recurrence relation (1.1), we are led to consider the reducing polynomial

$$
k(y)=1-2 x y+y^{2} .
$$

One has clearly

$$
\begin{aligned}
g_{1}(y) k(y)= & {\left[T_{0}(x)+T_{1}(x) y+T_{2}(x) y^{2}+\ldots+T_{n}(x) y^{n}+\ldots\right]\left(1-2 x y+y^{2}\right) } \\
= & T_{0}(x)+\left[T_{1}(x)-2 x T_{0}(x)\right] y+\ldots \\
& +\ldots+\left[T_{n}(x)-2 x T_{n-1}(x)+T_{n-2}(x)\right] y^{n}+\ldots=1-x y,
\end{aligned}
$$

since, by (1.1), $T_{n}(x)-2 x T_{n-1}(x)+T_{n-2}(x)$ is the zero polynomial for $n \geq 2$. Thus, one obtains the generating function, $g_{1}(y)$, under a finite form,

$$
g_{1}(y)=\frac{1-x y}{1-2 x y+y^{2}},
$$

which can be written as

$$
\begin{aligned}
g_{1}(y) & =\frac{1-x y}{\left[y-\left(x+\sqrt{x^{2}-1}\right)\right]\left[y-\left(x-\sqrt{x^{2}-1}\right)\right]} \\
& =\frac{A}{y-\left(x+\sqrt{x^{2}-1}\right)}+\frac{B}{y-\left(x-\sqrt{x^{2}-1}\right)},
\end{aligned}
$$

where

$$
\left\{\begin{array}{l}
A+B=-x, \\
A\left(x-\sqrt{x^{2}-1}\right)+B\left(x+\sqrt{x^{2}-1}\right)=-1 .
\end{array}\right.
$$

From this, it follows (with $x \neq \pm 1$) that

$$
A=\frac{1-x^{2}-x \sqrt{x^{2}-1}}{2 \sqrt{x^{2}-1}} \quad \text { and } \quad B=\frac{1-x^{2}+x \sqrt{x^{2}-1}}{2 \sqrt{x^{2}-1}},
$$

and, consequently,

$$
\begin{aligned}
g_{1}(y)= & \frac{1}{2 \sqrt{x^{2}-1}}\left[\frac{\sqrt{x^{2}-1}}{1-\left(x+\sqrt{x^{2}-1}\right) y}+\frac{\sqrt{x^{2}-1}}{1-\left(x-\sqrt{x^{2}-1}\right) y}\right] \\
= & \frac{1}{2}\left[1+\left(x+\sqrt{x^{2}-1}\right) y+\left(x+\sqrt{x^{2}-1}\right)^{2} y^{2}+\ldots+\left(x+\sqrt{x^{2}-1}\right)^{n} y^{n}+\ldots\right] \\
& +\frac{1}{2}\left[1+\left(x-\sqrt{x^{2}-1}\right) y+\left(x-\sqrt{x^{2}-1}\right)^{2} y^{2}+\ldots+\left(x-\sqrt{x^{2}-1}\right)^{n} y^{n}+\ldots\right] .
\end{aligned}
$$

Since, by (1.3) $T_{n}(x)$ is the coefficient of y^{n}, one concludes that

$$
\begin{equation*}
T_{n}(x)=\frac{1}{2}\left[\left(x+\sqrt{x^{2}-1}\right)^{n}+\left(x-\sqrt{x^{2}-1}\right)^{n}\right] . \tag{1.4}
\end{equation*}
$$

For the Chebyshev polynomials of the second kind, one finds, by a similar way, the corresponding generating function, under a finite form (with $x \neq \pm 1$):

$$
\begin{aligned}
g_{2}(y) & =\frac{1}{y^{2}-2 x y+1} \\
& =\frac{1}{2 \sqrt{x^{2}-1}}\left[\frac{x+\sqrt{x^{2}-1}}{1-\left(x+\sqrt{x^{2}-1}\right) y}-\frac{x-\sqrt{x^{2}-1}}{1-\left(x-\sqrt{x^{2}-1}\right) y}\right]
\end{aligned}
$$

and one obtains, after the developments in power series of

$$
\frac{x+\sqrt{x^{2}-1}}{1-\left(x+\sqrt{x^{2}-1}\right) y} \quad \text { and } \quad \frac{x-\sqrt{x^{2}-1}}{1-\left(x-\sqrt{x^{2}-1}\right) y}
$$

$$
\begin{equation*}
U_{n}(x)=\frac{1}{2 \sqrt{x^{2}-1}}\left[\left(x+\sqrt{x^{2}-1}\right)_{n+1}-\left(x-\sqrt{x^{2}-1}\right)_{n+1}\right] \tag{1.5}
\end{equation*}
$$

Since, for each $x \in \mathbb{C}$, there is some $\theta \in \mathbb{C}$ such that $x=\cos \theta$, one can write

$$
\begin{align*}
T_{n}(\cos \theta) & =\frac{1}{2}\left[(\cos \theta+i \sin \theta)^{n}+(\cos \theta-i \sin \theta)^{n}\right]=\cos n \theta \tag{1.6}\\
U_{n}(\cos \theta) & =\frac{1}{2 i \sin \theta}\left[(\cos \theta+i \sin \theta)^{n+1}-(\cos \theta-i \sin \theta)^{n+1}\right] \tag{1.7}\\
& =\frac{\sin (n+1) \theta}{\sin \theta}
\end{align*}
$$

By means of the relations (1.6) and (1.7), it is easy to see that the following connections, between the two kinds of Chebyshev polynomials, hold:

$$
\begin{align*}
& T_{n}(x)=U_{n}(x)-x U_{n-1}(x), \quad n \geq 1, \tag{1.8}\\
& \left(1-x^{2}\right) U_{n}(x)=x T_{n+1}(x)-T_{n+2}(x), \quad n \geq 0, \tag{1.9}\\
& T_{n+1}^{2}(x)=1+\left(x^{2}-1\right) U_{n}^{2}(x), \quad n \geq 0 . \tag{1.10}
\end{align*}
$$

The Chebyshev polynomials, $T_{n}(x)$ and $U_{n}(x)$, are special ultraspherical (or Gegenbauer) polynomials. The ultraspherical polynomials are special cases of the Jacobi polynomials, i.e., of the polynomials $P_{n}^{(\alpha, \beta)}(x)$ such that ([11], pp. 71-73),

$$
P_{n}^{(\alpha, \beta)}(x)=\frac{(-1)^{n}(1-x)^{-\alpha}(1+x)^{-\beta}}{2^{n} \cdot n!} \cdot \frac{d^{n}}{d x^{n}}\left[(1-x)^{\alpha+n} \cdot(1+x)^{\beta+n}\right] .
$$

The ultraspherical polynomials are the Jacobi polynomials, for which one has $\alpha=\beta$; for the Chebyshev polynomials of the first kind, one has $\alpha=\beta=-\frac{1}{2}$ and, for the Chebyshev polynomials of the second kind, one has $\alpha=\beta=\frac{1}{2}$.

By taking into account (1.6), it is natural to extend the meaning of T_{n} for $n<0$: one puts

$$
T_{-r}(x)=T_{-r}(\cos \theta)=\cos (-r) \theta=\cos r \theta=T_{r}(\cos \theta)=T_{r}(x) .
$$

2 - Some properties of the Chebyshev polynomials of the first kind

In order to obtain, for the Chebyshev polynomials of the first kind, a result analogous to that obtained by Gheorghe Udrea for the Chebyshev polynomials of the second kind, we need to prove the following lemma:

Lemma 1. If $\left(T_{n}(x)\right)_{n \geq 0}$ is the sequence of Chebyshev polynomials of the first kind, then one has:

$$
\begin{align*}
T_{n}(x) T_{n+r+s}(x)+\frac{1}{2}\left[T_{r-s}(x)\right. & \left.-T_{r+s}(x)\right]=T_{n+r}(x) T_{n+s}(x) . \tag{2.1}\\
4 T_{n}(x) T_{n+r}(x) T_{n+s}(x) T_{n+r+s}(x) & +\frac{1}{4}\left[T_{r-s}(x)-T_{r+s}(x)\right]^{2}= \tag{2.2}\\
& =\left[T_{n}(x) T_{n+r+s}(x)+T_{n+r} T_{n+s}(x)\right]^{2} .
\end{align*}
$$

Proof: (Sometimes, instead of $T_{n}(x)$, we shall write plainly T_{n}).
By setting $x=\cos \theta$ (and so $T_{n}=\cos n \theta$), one has

$$
T_{n} T_{n+r+s}=\cos n \theta \cos (n+r+s) \theta=\frac{1}{2}[\cos (2 n+r+s) \theta+\cos (r+s) \theta]
$$

and

$$
T_{n+r} T_{n+s}=\cos (n+r) \theta \cos (n+s) \theta=\frac{1}{2}[\cos (2 n+r+s) \theta+\cos (r-s) \theta]
$$

and, consequently,

$$
T_{n} T_{n+r+s}-T_{n+r} T_{n+s}=\frac{1}{2}[\cos (r+s) \theta-\cos (r-s) \theta]
$$

Hence,

$$
T_{n} T_{n+r+s}+\frac{1}{2}\left(T_{r-s}-T_{r+s}\right)=T_{n+r} T_{n+s}
$$

which proves (2.1).
One has clearly

$$
\frac{1}{4}\left(T_{r-s}-T_{r+s}\right)^{2}=T_{n+r}^{2} T_{n+s}^{2}+T_{n}^{2} T_{n+r+s}^{2}-2 T_{n} T_{n+r} T_{n+s} T_{n+r+s}
$$

and so

$$
4 T_{n} T_{n+r} T_{n+s} T_{n+r+s}+\frac{1}{4}\left(T_{r-s}-T_{r+s}\right)^{2}=\left(T_{n} T_{n+r+s}+T_{n+r} T_{n+s}\right)^{2}
$$

which proves (2.2).
Now, we are going to state the following
Theorem 1. If $\left(T_{n}\right)_{n \geq 0}$ is the sequence of Chebyshev polynomials of the first kind, then the product of any two distinct elements of the set

$$
\left\{T_{n}, T_{n+2 r}, T_{n+4 r}, 4 T_{n+r} T_{n+2 r} T_{n+3 r}\right\}, \quad n, r \in \mathbb{N}
$$

increased by $\left[\frac{1}{2}\left(T_{h}-T_{k}\right)\right]^{t}$, where T_{h} and T_{k}, with $k>h \geq 0$, are suitable terms of the sequence $\left(T_{n}\right)_{n \geq 0}$, and t is 1 or 2 , according to the number of factors T, in that product, is 2 or 4 , is a perfect square.

Proof: Indeed, if one sets $s=r$, in (2.1), one obtains

$$
\begin{equation*}
T_{n} T_{n+2 r}+\frac{1}{2}\left(T_{0}-T_{2 r}\right)=T_{n+r}^{2} \tag{2.3}
\end{equation*}
$$

If r is replaced by $2 r$, in (2.3), one gets

$$
\begin{equation*}
T_{n} T_{n+4 r}+\frac{1}{2}\left(T_{0}-T_{4 r}\right)=T_{n+2 r}^{2} . \tag{2.4}
\end{equation*}
$$

By replacing, in (2.3) n by $n+2 r$, one obtains

$$
\begin{equation*}
T_{n+2 r} T_{n+4 r}+\frac{1}{2}\left(T_{0}-T_{2 r}\right)=T_{n+3 r}^{2} . \tag{2.5}
\end{equation*}
$$

If one puts $s=2 r$, in (2.2), one gets

$$
\begin{equation*}
4 T_{n} T_{n+r} T_{n+2 r} T_{n+3 r}+\left[\frac{1}{2}\left(T_{r}-T_{3 r}\right)\right]^{2}=\left(T_{n} T_{n+3 r}+T_{n+r} T_{n+2 r}\right)^{2} . \tag{2.6}
\end{equation*}
$$

Now, by changing n into $n+r$, in (2.6), it comes

$$
\begin{align*}
& 4 T_{n+r} T_{n+2 r} T_{n+3 r} T_{n+4 r}+\left[\frac{1}{2}\left(T_{r}-T_{3 r}\right)\right]^{2}= \tag{2.7}\\
&=\left(T_{n+r} T_{n+4 r}+T_{n+2 r} T_{n+3 r}\right)^{2}
\end{align*}
$$

If one replaces n by $n+r$, in (2.2), and, furthermore, one puts $s=r$, one obtains

$$
\begin{equation*}
4 T_{n+r} T_{n+2 r}^{2} T_{n+3 r}+\left[\frac{1}{2}\left(T_{0}-T_{2 r}\right)\right]^{2}=\left(T_{n+r} T_{n+3 r}+T_{n+2 r}^{2}\right)^{2}, \tag{2.8}
\end{equation*}
$$

which completes the proof of the theorem above.

3 - Applications to the Fibonacci numbers

There is a connection between, on the one hand, the sequence of Fibonacci numbers, $\left(F_{n}\right)_{n \geq 0}$, with

$$
\begin{equation*}
F_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right], \tag{3.1}
\end{equation*}
$$

and, on the other hand, the sequences $\left(U_{n}\right)_{n \geq 0}$ and $\left(T_{n}\right)_{n \geq 0}$.
Indeed, from (1.5), it results

$$
\begin{equation*}
U_{n}\left(\frac{i}{2}\right)=\frac{1}{i \sqrt{5}}\left[\left(\frac{i}{2}+\frac{i}{2} \sqrt{5}\right)^{n+1}-\left(\frac{i}{2}-\frac{i}{2} \sqrt{5}\right)^{n+1}\right]=i^{n} F_{n+1} . \tag{3.2}
\end{equation*}
$$

Now, from (1.8) and (3.2), one finds

$$
T_{n}\left(\frac{i}{2}\right)=U_{n}\left(\frac{i}{2}\right)-\frac{i}{2} U_{n-1}\left(\frac{i}{2}\right)=\frac{i^{n}}{2}\left(2 F_{n+1}-F_{n}\right)
$$

and, since $F_{n+1}=F_{n}+F_{n-1}$, one has

$$
\begin{equation*}
T_{n}\left(\frac{i}{2}\right)=\frac{i^{n}}{2}\left(F_{n}+2 F_{n-1}\right) . \tag{3.3}
\end{equation*}
$$

Thus, from (2.3) and (3.3), it follows

$$
\begin{aligned}
\frac{i^{n}}{2}\left(F_{n}+2 F_{n-1}\right) \cdot \frac{i^{n+2 r}}{2}\left(F_{n+2 r}+2 F_{n+2 r-1}\right)+\frac{1}{2}[1 & \left.-\frac{i^{2 r}}{2}\left(F_{2 r}+2 F_{2 r-1}\right)\right]= \\
& =\left[\frac{i^{n+r}}{2}\left(F_{n+r}+2 F_{n+r-1}\right)\right]^{2},
\end{aligned}
$$

that is to say,

$$
\begin{aligned}
&(-1)^{n+r}\left(\frac{1}{4} F_{n} F_{n+2 r}+\frac{1}{2} F_{n} F_{n+2 r-1}+\frac{1}{2} F_{n-1} F_{n+2 r}+F_{n-1} F_{n+2 r-1}\right)- \\
&-\frac{1}{2}\left[(-1)^{r}\left(\frac{1}{2} F_{2 r}+F_{2 r-1}\right)-1\right]=(-1)^{n+r}\left(\frac{1}{2} F_{n+1}+F_{n+r-1}\right)^{2}
\end{aligned}
$$

and hence,

$$
\begin{align*}
F_{n} F_{n+2 r} & +2 F_{n+1} F_{n+2 r-1}+2 F_{n-1} F_{n+2 r+1}+ \tag{3.4}\\
& +2(-1)^{n+r}-(-1)^{n}\left(F_{2 r}+2 F_{2 r-1}\right)=F_{n+r}^{2}+4 F_{n+r-1} F_{n+r+1}
\end{align*}
$$

and, analogously from the relations (2.4)-(2.8) and (3.3) other equalities can be obtained.

Other more interesting results can be obtained by making use of another connection between T_{n} and F_{n}. In fact, from (1.4), it results

$$
\begin{aligned}
T_{n}\left(\frac{i}{2}\right) & =\frac{i^{n}}{2}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right] \\
& =\frac{i^{n}}{2}\left\{\left[\left(\frac{1+\sqrt{5}}{2}\right)^{2 n}-\left(\frac{1-\sqrt{5}}{2}\right)^{2 n}\right] /\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right]\right\}
\end{aligned}
$$

and hence, for $n>0$,

$$
\begin{equation*}
T_{n}\left(\frac{i}{2}\right)=\frac{i^{n}}{2} \cdot \frac{F_{2 n}}{F_{n}} \tag{3.5}
\end{equation*}
$$

Thus, from (2.3) and (3.5), one obtains

$$
\frac{i^{2 n+2 r}}{4} \frac{F_{2 n}}{F_{n}} \cdot \frac{F_{2 n+4 r}}{F_{n+2 r}}+\frac{1}{2}\left(1-\frac{i^{2 r}}{2} \frac{F_{4 r}}{F_{2 r}}\right)=\frac{i^{2 n+2 r}}{4}\left(\frac{F_{2 n+2 r}}{F_{n+r}}\right)^{2}
$$

whence,

$$
\begin{equation*}
\frac{F_{2 n}}{F_{n}} \cdot \frac{F_{2 n+4 r}}{F_{n+2 r}}+(-1)^{n}\left[2(-1)^{r}-\frac{F_{4 r}}{F_{2 r}}\right]=\left(\frac{F_{2 n+2 r}}{F_{n+r}}\right)^{2} \tag{3.6}
\end{equation*}
$$

Analogously, from (2.4) and (3.5), it follows that

$$
\frac{i^{2 n+4 r}}{4} \cdot \frac{F_{2 n}}{F_{n}} \cdot \frac{F_{2 n+8 r}}{F_{n+4 r}}+\frac{1}{4}\left(2-i^{4 r} \frac{F_{8 r}}{F_{4 r}}\right)=\left(\frac{i^{n+r}}{2} \cdot \frac{F_{2 n+4 r}}{F_{n+2 r}}\right)^{2}
$$

and, consequently, one has

$$
\begin{equation*}
\frac{F_{2 n}}{F_{n}} \cdot \frac{F_{2 n+8 r}}{F_{n+4 r}}+(-1)^{n}\left(2-\frac{F_{8 r}}{F_{4 r}}\right)=\left(\frac{F_{2 n+4 r}}{F_{n+2 r}}\right)^{2} \tag{3.7}
\end{equation*}
$$

By using (2.5) and (3.5), one obtains

$$
\begin{equation*}
\frac{F_{2 n+4 r}}{F_{n+2 r}} \cdot \frac{F_{2 n+8 r}}{F_{n+4 r}}+(-1)^{n}\left(2(-1)^{r}-\frac{F_{4 r}}{F_{2 r}}\right)=\left(\frac{F_{2 n+6 r}}{F_{n+3 r}}\right)^{2} \tag{3.8}
\end{equation*}
$$

from (2.6) and (3.5), it results

$$
\begin{align*}
4 \cdot \frac{F_{2 n}}{F_{n}} \cdot \frac{F_{2 n+2 r}}{F_{n+r}} \cdot \frac{F_{2 n+4 r}}{F_{n+2 r}} \cdot \frac{F_{2 n+6 r}}{F_{n+3 r}} & +\left(\frac{F_{2 r}}{F_{r}}-(-1)^{r} \frac{F_{6 r}}{F_{3 r}}\right)^{2}= \tag{3.9}\\
& =\left(\frac{F_{2 n}}{F_{n}} \cdot \frac{F_{2 n+6 r}}{F_{n+3 r}}+\frac{F_{2 n+2 r}}{F_{n+r}} \cdot \frac{F_{2 n+4 r}}{F_{n+2 r}}\right)^{2}
\end{align*}
$$

from (2.7) and (3.5), one obtains

$$
\begin{align*}
4 \cdot \frac{F_{2 n+2 r}}{F_{n+r}} \cdot \frac{F_{2 n+4 r}}{F_{n+2 r}} \cdot \frac{F_{2 n+6 r}}{F_{n+3 r}} \cdot & \frac{F_{2 n+8 r}}{F_{n+4 r}}+\left(\frac{F_{2 r}}{F_{r}}-(-1)^{r} \frac{F_{6 r}}{F_{3 r}}\right)^{2}= \tag{3.10}\\
& =\left(\frac{F_{2 n+2 r}}{F_{n+r}} \cdot \frac{F_{2 n+8 r}}{F_{n+4 r}}+\frac{F_{2 n+4 r}}{F_{n+2 r}} \cdot \frac{F_{2 n+6 r}}{F_{n+3 r}}\right)^{2}
\end{align*}
$$

Finally, from (2.8) and (3.5), it results

$$
\begin{align*}
4 \cdot \frac{F_{2 n+2 r}}{F_{n+r}} \cdot\left(\frac{F_{2 n+4 r}}{F_{n+2 r}}\right)^{2} \cdot \frac{F_{2 n+6 r}}{F_{n+3 r}}+ & \left(2-(-1)^{r} \frac{F_{4 r}}{F_{2 r}}\right)^{2}= \tag{3.11}\\
& =\left[\frac{F_{2 n+2 r}}{F_{n+r}} \cdot \frac{F_{2 n+6 r}}{F_{n+3 r}}+\left(\frac{F_{2 n+4 r}}{F_{n+2 r}}\right)^{2}\right]^{2}
\end{align*}
$$

This means that the following holds:
Theorem 2. If $\left(F_{n}\right)_{n \geq 0}$ is the sequence of Fibonacci numbers, then the product of any two distinct elements of the set

$$
\begin{equation*}
\left\{\frac{F_{2 n}}{F_{n}}, \frac{F_{2 n+4 r}}{F_{n+2 r}}, \frac{F_{2 n+8 r}}{F_{n+4 r}}, 4 \cdot \frac{F_{2 n+2 r}}{F_{n+r}} \cdot \frac{F_{2 n+4 r}}{F_{n+2 r}} \cdot \frac{F_{2 n+6 r}}{F_{n+3 r}}\right\}, \quad \text { with } n>0 \tag{3.12}
\end{equation*}
$$

increased by $\pm\left(\pm 2-\frac{F_{2 h}}{F_{h}}\right)$, if only 2 factors occur in that product; increased by $\left(\frac{F_{2 l}}{F_{l}}-\frac{F_{2 h}}{F_{h}}\right)^{2}$, if 4 different factors occur in that product, and increased by $\left(2 \pm \frac{F_{2 h}}{F_{h}}\right)^{2}$, if 4 factors occur in that product, but only three are different; h is the difference between the greatest and the least subscripts of F in the denominators of the factors and l is the difference between the subscripts of F in the denominators of the intermediate factors.

It is clear that the four integers belonging to the set (3.12) are not necessarily Fibonacci numbers and so the set (3.12) is a Diophantine quadruple, but, in general, it is not a Fibonacci quadruple.

In pursuance of a suggestion of the referee, we are going to present the results contained in Theorem 2, under another form, through the introduction of the Lucas numbers.

In [2], p. 395, L.E. Dickson says that E. Lucas
"employed the roots a, b of $x^{2}=x+1$ and set

$$
u_{n}=\frac{a^{n}-b^{n}}{a-b}, \quad v_{n}=a^{n}+b^{n}=\frac{u_{2 n}}{u_{n}}=u_{n-1}+u_{n+1}
$$

The u 's form the series of Pisano [Fibonacci] with terms 0,1 prefixed, so that $u_{0}=0, u_{1}=u_{2}=1, u_{3}=2$."

The v 's are the Lucas numbers.
One has $v_{n}=u_{n-1}+u_{n+1}$. In fact, the equality

$$
a^{n}+b^{n}=\frac{a^{n-1}-b^{n-1}}{a-b}+\frac{a^{n+1}-b^{n+1}}{a-b}
$$

is equivalent to

$$
a^{n+1}-b^{n+1}+a b^{n}-a^{n} b=a^{n-1}-b^{n-1}+a^{n+1}-b^{n+1},
$$

and this is equivalent to

$$
a b\left(b^{n-1}-a^{n-1}\right)=a^{n-1}-b^{n-1},
$$

which is true, since $a b=-1$.
One has also

$$
v_{n}=a^{n}+b^{n}=\frac{\left(a^{2 n}-b^{2 n}\right) /(a-b)}{\left(a^{n}-b^{n}\right) /(a-b)}=\frac{u_{2 n}}{u_{n}}=\frac{F_{2 n}}{F_{n}}=L_{n},
$$

with $n>0$.
Thus, by taking into account Theorem 2, one concludes that the following holds:

Theorem 2'. If $\left(L_{n}\right)_{n>0}$ is the sequence of the Lucas numbers, then the product of any two distinct elements of the set

$$
\begin{equation*}
\left\{L_{n}, L_{n+2 r}, L_{n+4 r}, 4 L_{n+r} L_{n+2 r} L_{n+3 r}\right\}, \quad \text { with } n>0 \tag{3.12}
\end{equation*}
$$

increased by $\pm\left(\pm 2-L_{h}\right)$, if only 2 factors L occur in that product; increased by $\left(L_{k}-L_{h}\right)^{2}$, if 4 different factors L occur in that product, and increased by $\left(2 \pm L_{h}\right)^{2}$, if 4 factors L occur in that products, but only three are different; h is the difference between the greatest and the least subscripts of L, and k is the difference between the subscripts of L in the intermediate factors.

4 - A generalization of the Chebyshev polynomials of the first and the second kind

Let us consider the sequence of polynomials $\left(S_{n}(x)\right)_{n \geq 0}$ defined by the recurrence relation

$$
\begin{equation*}
S_{n+2}(x)=2 x S_{n+1}(x)-S_{n}(x), \quad n \geq 0 \tag{4.1}
\end{equation*}
$$

with $S_{0}(x)=a$ and $S_{1}(x)=b$, being $a, b \in \mathbf{Z}[x]$.
Let $g(y)=S_{0}(x)+S_{1}(x) y+\ldots+S_{n}(x) y^{n}+\ldots$, be the generating function of the sequence $\left(S_{n}(x)\right)_{n \geq 0}$. By making use of the reducing polynomial, $k(y)=$ $1-2 x y+y^{2}$, one obtains the following finite form for $g(y)$:

$$
g(y)=\frac{a+(b-2 a x) y}{1-2 x y+y^{2}},
$$

which can be written as

$$
g(y)=\frac{A}{y-\left(x+\sqrt{x^{2}-1}\right)}+\frac{B}{y-\left(x-\sqrt{x^{2}-1}\right)}
$$

with

$$
\begin{aligned}
& A=\frac{(b-2 a x) \sqrt{x^{2}-1}+a+(b-2 a x) x}{2 \sqrt{x^{2}-1}} \\
& B=\frac{(b-2 a x) \sqrt{x^{2}-1}-[a+(b-2 a x) x]}{2 \sqrt{x^{2}-1}}
\end{aligned}
$$

where $x \neq \pm 1$.
By operating as in $\S 1$ in order to get the formula (1.4), one obtains

$$
\begin{align*}
S_{n}(x)= & \left(\frac{a}{2}+\frac{a x-b}{2 \sqrt{x^{2}-1}}\right)\left(x-\sqrt{x^{2}-1}\right)^{n} \tag{4.2}\\
& +\left(\frac{a}{2}-\frac{a x-b}{2 \sqrt{x^{2}-1}}\right)\left(x+\sqrt{x^{2}-1}\right)^{n}
\end{align*}
$$

One sees that, for $a=1$ and $b=x$, one has $S_{n}(x)=T_{n}(x)$ and, for $a=1$ and $b=2 x$, one has $S_{n}(x)=U_{n}(x)$.

It follows also immediately that, if one sets $x=\cos \theta$ in (4.2), then

$$
\begin{equation*}
S_{n}(\cos \theta)=a \cos n \theta-\frac{(a \cos \theta-b) \sin n \theta}{\sin \theta} \tag{4.3}
\end{equation*}
$$

If one puts $a=1$ and $b=x=\cos \theta$, one obtains

$$
S_{n}(\cos \theta)=\cos n \theta=T_{n}(\cos \theta)
$$

and, for $a=1$ and $b=2 x=2 \cos \theta$, one obtains

$$
S_{n}(\cos \theta)=\cos n \theta-\frac{-\cos \theta \sin n \theta}{\sin \theta}=\frac{\sin (n+1) \theta}{\sin \theta}=U_{n}(\cos \theta)
$$

as was to be expected.

If $a=T_{j}(x)$ and $b=T_{j+1}(x)$, then one has:

$$
\begin{aligned}
S_{n}(x) & =S_{n}(\cos \theta)=\cos j \theta \cos n \theta-\frac{[\cos j \theta \cos \theta-\cos (j+1) \theta] \sin n \theta}{\sin \theta} \\
& =\cos (j+n) \theta+\sin j \theta \sin n \theta-\frac{\sin j \theta \sin \theta \sin n \theta}{\sin \theta} \\
& =\cos (j+n) \theta=T_{j+n}(x)
\end{aligned}
$$

If $a=U_{j}(x)$ and $b=U_{j+1}(x)$, then one has, by (4.3),

$$
\begin{aligned}
S_{n}(x) & =S_{n}(\cos \theta)=\frac{\sin (j+1) \theta}{\sin \theta} \cos n \theta-\frac{[\sin (j+1) \theta \cos \theta-\sin (j+2) \theta] \sin n \theta}{\sin ^{2} \theta} \\
& =\frac{\sin (j+1) \theta \cos n \theta}{\sin \theta}+\frac{\cos (j+1) \theta \sin n \theta}{\sin \theta}=\frac{\sin (j+n+1) \theta}{\sin \theta} \\
& =U_{j+n}(\cos \theta)=U_{j+n}(x) .
\end{aligned}
$$

Now, we are going to prove, for $S_{n}\left(=S_{n}(x)=S_{n}(\cos \theta)\right)$, a result analogous to Lemma 1.

Lemma 2. If $\left(S_{n}\right)_{n \geq 0}$ is the sequence of polynomials defined by (4.1), then one has:

$$
\begin{equation*}
S_{n} S_{n+r+s}+\frac{1}{2} \cdot \frac{a^{2}+b^{2}-2 a b x}{1-x^{2}}\left(T_{r-s}-T_{r+s}\right)=S_{n+r} S_{n+s} \tag{4.4}
\end{equation*}
$$

and

$$
\begin{align*}
4 S_{n} S_{n+r} S_{n+s} S_{n+r+s}+\left[\frac{1}{2} \cdot \frac{a^{2}+b^{2}-2 a b x}{1-x^{2}}\right. & \left.\left(T_{r-s}-T_{r+s}\right)\right]^{2}= \tag{4.5}\\
& =\left(S_{n} S_{n+r+s}+S_{n+r} S_{n+s}\right)^{2}
\end{align*}
$$

Proof: Indeed, by taking into account the relation (4.3), one has

$$
\begin{gathered}
S_{n}(\cos \theta) S_{n+r+s}(\cos \theta)-S_{n+r}(\cos \theta) S_{n+s}(\cos \theta)= \\
=\left(a \cos n \theta-\frac{a \cos \theta-b}{\sin \theta} \sin n \theta\right)\left[a \cos (n+r+s) \theta-\frac{a \cos \theta-b}{\sin \theta} \sin (n+r+s) \theta\right]- \\
-\left[a \cos (n+r) \theta-\frac{a \cos \theta-b}{\sin \theta} \sin (n+r) \theta\right]\left[a \cos (n+s) \theta-\frac{a \cos \theta-b}{\sin \theta} \sin (n+s) \theta\right]= \\
=a^{2}[\cos n \theta \cos (n+r+s) \theta-\cos (n+r) \theta \cos (n+s) \theta] \\
\quad+\left(\frac{a \cos \theta-b}{\sin \theta}\right)^{2}[\sin n \theta \sin (n+r+s) \theta-\sin (n+r) \theta \sin (n+s) \theta] \\
\quad+a \cdot \frac{a \cos \theta-b}{\sin \theta}\{[\sin (n+r) \theta \cos (n+s) \theta+\cos (n+r) \theta \sin (n+s) \theta] \\
\quad-[\cos n \theta \sin (n+r+s) \theta+\sin n \theta \cos (n+r+s) \theta]\}= \\
=a^{2}\left[\frac{\cos (2 n+r+s) \theta+\cos (r+s) \theta}{2}-\frac{\cos (2 n+r+s) \theta+\cos (r-s) \theta}{2}\right]+ \\
+\left(\frac{a \cos \theta-b}{\sin \theta}\right)^{2}\left[\frac{\cos (r+s) \theta-\cos (2 n+r+s) \theta}{2}-\frac{\cos (r-s) \theta-\cos (2 n+r+s) \theta}{2}\right]= \\
\quad=\frac{1}{2}\left[a^{2}+\left(\frac{a \cos \theta-b}{\sin \theta}\right)^{2}\right][\cos (r+s) \theta-\cos (r-s) \theta] \\
\quad=\frac{1}{2} \cdot \frac{a^{2}+b^{2}-2 a \cos \theta}{\sin n^{2} \theta} \cdot[\cos (r+s) \theta-\cos (r-s) \theta]
\end{gathered}
$$

and, consequently, since $T_{j}(x)=\cos j x$, one has (4.4).
Now, from (4.4), one obtains

$$
\begin{aligned}
4 S_{n} S_{n+r} S_{n+s} S_{n+r+s}+\left\{\frac{1}{2}\right. & \left.\cdot \frac{a^{2}+b^{2}-2 a b \cos \theta}{\sin ^{2} \theta}[\cos (r-s) \theta-\cos (r+s) \theta]\right\}^{2}= \\
& =4 S_{n} S_{n+r} S_{n+s} S_{n+r+s}+\left(S_{n} S_{n+r+s}-S_{n+r} S_{n+s}\right)^{2} \\
& =\left(S_{n} S_{n+r+s}+S_{n+r} S_{n+s}\right)^{2}
\end{aligned}
$$

as desired.
It is clear that (4.4) generalizes (2.1); in fact, for $a=1$ and $b=x$, one obtains $S_{0}(x)=T_{0}(x)=1$ and $S_{1}(x)=x=\cos \theta=T_{1}(x)$, and (4.4) becomes (2.1). One sees also that (4.4) generalizes the identity

$$
U_{n}(x) U_{n+r+s}(x)+U_{r-1}(x) U_{s-1}(x)=U_{n+r}(x) U_{n+s}(x)
$$

obtained by Gheorghe Udrea for the Chebyshev polynomials of the second kind, in [12]; in fact, for $a=1$ and $b=2 x=2 \cos \theta$, the identity (4.4) becomes the identity above, obtained in [12].

Now, one can state the following
Theorem 3. Let $\left(S_{n}(x)\right)_{n \geq 0}$ be the sequence of polynomials defined by the recurrence relation

$$
S_{n+2}(x)=2 x S_{n+1}(x)-S_{n}(x), \quad n \geq 0
$$

with $S_{0}(x)=a, S_{1}(x)=b, x \in \mathbb{C}$ and $x \neq \pm 1$, where $a, b \in \mathbf{Z}[x]$. Then, the product of any two distinct elements of the set

$$
\begin{equation*}
\left\{S_{n}(x), S_{n+2 r}(x), S_{n+4 r}(x), 4 S_{n+r}(x) S_{n+2 r}(x) S_{n+3 r}(x)\right\} \tag{4.6}
\end{equation*}
$$

increased by

$$
\left[\frac{1}{2} \cdot \frac{a^{2}+b^{2}-2 a b x}{1-x^{2}}\left(T_{h}(x)-T_{k}(x)\right)\right]^{t},
$$

where T_{h} and T_{k} are suitable terms of the sequence $\left(T_{n}\right)_{n \geq 0}$, independent of n, with $h<k$, and $t=1$ or $t=2$, according to the number of factors S, in that product, is 2 or 4 , is a perfect square.

Proof: One proceeds as in the proof of Theorem 1.
Thus, by setting $s=r$, in (4.4), one obtains

$$
S_{n} \cos (\theta) S_{n+2 r}(\cos \theta)+\frac{1}{2} \cdot \frac{a^{2}+b^{2}-2 a b \cos \theta}{\sin ^{2} \theta}(1-\cos 2 r \theta)=\left(S_{n+r}(\cos \theta)\right)^{2},
$$

that is to say,

$$
\begin{equation*}
S_{n}(x) S_{n+2 r}(x)+\frac{1}{2} \cdot \frac{a^{2}+b^{2}-2 a b x}{1-x^{2}}\left(T_{0}(x)-T_{2 r}(x)\right)=\left(S_{n+r}(x)\right)^{2} \tag{4.7}
\end{equation*}
$$

By replacing r by $2 r$, in (4.7), one gets

$$
\begin{equation*}
S_{n}(x) S_{n+4 r}(x)+\frac{1}{2} \cdot \frac{a^{2}+b^{2}-2 a b x}{1-x^{2}}\left(T_{0}(x)-T_{4 r}(x)\right)=\left(S_{n+r}(x)\right)^{2} \tag{4.8}
\end{equation*}
$$

By replacing n by $n+2 r$, in (4.7), it results in

$$
\begin{equation*}
S_{n+2 r}(x) S_{n+4 r}(x)+\frac{1}{2} \frac{a^{2}+b^{2}-2 a b x}{1-x^{2}}\left(T_{0}(x)-T_{2 r}(x)\right)=\left(S_{n+3 r}(x)\right)^{2} . \tag{4.9}
\end{equation*}
$$

By setting $s=2 r$, in (4.5), one gets

$$
\begin{align*}
& 4 S_{n}(x) S_{n+r}(x) S_{n+2 r}(x) S_{n+3 r}(x)+ \tag{4.10}\\
&+\left\{\frac{1}{2} \frac{a^{2}+b^{2}-2 a b x}{1-x^{2}}\right. {\left.\left[T_{r}(x)-T_{3 r}(x)\right]\right\}^{2}=} \\
&=\left[S_{n}(x) S_{n+3 r}(x)+S_{n+r}(x) S_{n+2 r}(x)\right]^{2}
\end{align*}
$$

If one replaces n by $n+r$, in (4.10) one obtains

$$
\begin{align*}
& 4 S_{n+r}(x) S_{n+2 r}(x) S_{n+3 r}(x) S_{n+4 r}(x)+ \tag{4.11}\\
&+\left\{\frac{1}{2} \frac{a^{2}+b^{2}-2 a b x}{1-x^{2}}\left[T_{r}(x)-T_{3 r}(x)\right]\right\}^{2}= \\
&= {\left[S_{n+r}(x) S_{n+4 r}(x)+S_{n+2 r}(x) S_{n+3 r}(x)\right]^{2} }
\end{align*}
$$

Finally, by setting $s=r$, in (4.5), it results

$$
\begin{array}{r}
4 S_{n}(x)\left(S_{n+r}(x)\right)^{2} S_{n+2 r}(x)+\left\{\frac{1}{2} \frac{a^{2}+b^{2}-2 a b x}{1-x^{2}}\left[T_{0}(x)-T_{2 r}(x)\right]\right\}^{2}= \tag{4.12}\\
=\left[S_{n}(x) S_{n+2 r}(x)+\left(S_{n+r}(x)\right)^{2}\right]^{2}
\end{array}
$$

thus completing the proof.

REFERENCES

[1] Baker, A. and Davenport, H. - The equations $3 x^{2}-2=y^{2}$ and $8 x^{2}-7=z^{2}$, Quart. J. Math., Oxford II ser., 20 (1969), 129-137.
[2] Dickson, L.E. - History of the Theory of Numbers, vol. I Chelsea Publishing Company, New York, 1952.
[3] Fermat, P. - Observations sur Diophante, vol. III, de "Oeuvres de Fermat", publiées par les soins de M.M. Paul Tannery et Charles Henri, Paris, MDCCCXCI.
[4] Heath, T.L. - Diophantus of Alexandria. A Study on the History of Greek Algebra, $2^{\text {nd }}$ ed., Dover Publ., Inc., New York, 1964.
[5] Hoggatt, V.E. and Bergum, G.E. - Autorreferat of "A problem of Fermat and the Fibonacci sequence", Fibonacci Quart., 15 (1977), 323-330, Zbl. 383 (1979), \#10007.
[6] Horadam, A.F. - Generalization of a result of Morgado, Portugaliae Math., 44 (1987), 131-136.
[7] Horadam, A.F. - Basic properties of a certain generalized sequence of numbers, Fibonacci Quart., 3(3) (1965), 161-176.
[8] Morgado, J. - Generalization of a result of Hoggatt and Bergum on Fibonacci numbers, Portugaliae Math., 42 (1983-1984), 441-445.
[9] Morgado, J. - Note on a Shannon's theorem concerning the Fibonacci numbers and Diophantine quadruples, Portugaliae Math., 48 (1991), 429-439.
[10] Shannon, A.G. - Fibonacci numbers and Diophantine quadruples: generalization of results of Morgado and Horadam, Portugaliae Math., 45 (1988), 165-169.
[11] Srivastava, H.M. and Manocha, H.L. - A Treatise on generating Functions, Ellis Horwood Limited, 1984.
[12] Udrea, G. - A problem of Diophantus-Fermat and Chebyshev polynomials, to appear in Portugaliae Math..

José Morgado,
Centro de Matemática da Faculdade de Ciências da Universidade do Porto,
Porto - PORTUGAL

[^0]: Received: November 4, 1994; Revised: January 13, 1995.

