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DIOPHANTINE QUADRUPLES FOR SQUARES OF
FIBONACCI AND LUCAS NUMBERS

Andrej Dujella

Abstract: Let n be an integer. A set of positive integers is said to have the property
D(n) if the product of its any two distinct elements increased by n is a perfect square.
In this paper, the sets of four numbers represented in terms of Fibonacci numbers with
the property D(F 2

n) and D(L2
n), where (Fn) is the Fibonacci sequence and (Ln) is the

Lucas sequence, are constructed. Among other things, it is proved that the set

{

2Fn−1, 2Fn+1, 2F 3
nFn+1Fn+2, 2Fn+1Fn+2Fn+3(2F

2
n+1 − F 2

n)
}

has the property D(F 2
n) and that the sets

{

2Fn−2, 2Fn+2, 2FnLn−1L
2
nLn+1, 10FnLn−1Ln+1[Ln−1Ln+1 − (−1)n]

}

,

{

Fn−3Fn−2Fn+1, Fn−1Fn+2Fn+3, FnL2
n, 4F 2

n−1FnF 2
n+1(2Fn−1Fn+1 − F 2

n)
}

have the property D(L2
n).

1 – Introduction

Let (Fn) be the Fibonacci sequence. In [10] Morgado has showed that the

product of any two distinct elements of the set

{

Fn, Fn+2r, Fn+4r, 4Fn+rFn+2rFn+3r

}

increased by F 2
a F 2

b or −F 2
a F 2

b , for suitable positive integers a and b, is a perfect

square.

Received : January 14, 1994; Revised : April 15, 1994.

Mathematics Subject Classification (1991): 11B39, 11D09.

Keywords and Phrases: Fibonacci numbers, Lucas numbers, property of Diophantus.



306 A. DUJELLA

Let n be a positive integer. The aim of this paper is to find out four distinct

positive integers, represented in terms of Fibonacci numbers, having the property

that the product of any two of them increased by F 2
n is a perfect square. It is

natural to suppose that at least one of them is not divisible by Fn. Our starting

point is the identity

4Fn−1 · Fn+1 + F 2
n = L2

n ,

where Ln = Fn−1 + Fn+1 is nth Lucas number.

Generally, we say that the set of positive integers {a1, ..., am} has the property

of Diophantus of order n, in brief D(n), if, forall i, j = 1, ..., m, i 6= j, the

following holds: aiaj + n = b2
ij , where bij is an integer. The set {a1, ..., am} is

called Diophantine m-tuple. In [4] it is showed that a set {a, b} with the property

D(e2), e ∈ Z, can be extended to the set {a, b, c, d} with the same property, if ab

is not a perfect square.

Let it be ab + e2 = k2. The manner of constructing is as follows: let s and t

be a positive integer solution of the Pellian equation S2 − ab T 2 = 1 (since ab is

not a perfect square, s and t exist). Let us define two double sequences yn,m and

zn,m, n, m ∈ Z, as follows:

y0,0 = e, z0,0 = e, y1,0 = k + a, z1,0 = k + b ,

y−1,0 = k − a, z−1,0 = k − b ,

yn+1,0 =
2k

e
yn,0 − yn−1,0, zn+1,0 =

2k

e
zn,0 − zn−1,0 , n ∈ Z ,

yn,1 = s yn,0 + a t zn,0, zn,1 = b t yn,0 + s zn,0 , n ∈ Z ,

yn,m+1 = 2 s yn,m − yn,m−1, zn,m+1 = 2 s zn,m − zn,m−1 , n, m ∈ Z .

Let us set xn,m = (y2
n,m − e2)/a. According to [4, Theorem 2], if xn,m and

xn+1,m are positive integers, then the set {a, b, xn,m, xn+1,m} has the property

D(e2). It is also proved that the sets {a, b, x0,m, x1,m}, m ∈ Z\{−1, 0}, and

{a, b, x−1,m, x0,m}, m ∈ Z\{0, 1}, have the property D(e2). It is enough to find

out one positive integer solution of the Pellian equation S2− abT 2 = 1 to extend

a set {a, b} with the property D(e2) to a set {a, b, c, d} with the same property.

2 – Quadruples with the property D(F 2
n)

For any positive integer n, it holds

(1) 4Fn−1 Fn+1 + F 2
n = L2

n .



SQUARES OF FIBONACCI AND LUCAS NUMBERS 307

Indeed, L2
n − F 2

n = (Fn−1 + Fn+1 − Fn) (Fn−1 + Fn+1 + Fn) = 2Fn−1 · 2Fn+1 =

4Fn−1Fn+1. Therefore, the sets {2Fn−1, 2Fn+1}, {Fn−1, 4Fn+1}, {4Fn−1, Fn+1}

have the property D(F 2
n). In order to extend these sets to quadruples with the

property D(F 2
n) by applying the construction described in the introduction, we

have to find a solution of Pellian equation S2 − 4Fn−1Fn+1T
2 = 1. One solution

can be found from the identity

(2) 4Fn−1 F 2
n Fn+1 + 1 = (F 2

n + Fn−1 Fn+1)
2 .

(see [10]). Hence, it can be put: s = F 2
n + Fn−1Fn+1, t = Fn. In this way, we

can get an infinite number of sets with the property D(F 2
n). Particularly, the

following theorem holds:

Theorem 1. For all integers n ≥ 2, the sets

{

2Fn−1, 2Fn+1, 2F
3
nFn+1Fn+2, 2Fn+1Fn+2Fn+3(2F

2
n+1 − F 2

n)
}

,

{

Fn−1, 4Fn+1, F 3
nFn+2Fn+3, Fn+1Fn+2Fn+4[F

2
n+2 + 2(−1)n]

}

and
{

4Fn−1, Fn+1, F 3
nLnLn+1, Fn+1F2n+4[F2n+2 + 2(−1)n]

}

have the property D(F 2
n).

For all integers n ≥ 3, the sets

{

2Fn−1, 2Fn+1, 2Fn−2Fn−1F
3
n , 2F 3

nFn+1Fn+2

}

,

{

Fn−1, 4Fn+1, Fn−2Fn−1Fn+1(2F
2
n − F 2

n−1), F 3
nFn+2Fn+3

}

and
{

4Fn−1, Fn+1, Fn−2F2n−2F2n−1, F 3
nLnLn+1

}

have the property D(F 2
n).

Proof: We will apply the construction described in the introduction. We are

going to show that all the sets from the Theorem 1 are of the form {a, b, x0,1, x1,1}

or {a, b, x−1,1, x0,1}.

Looking at the equations (1) and (2), we see that e = Fn, k = Ln, s =

F 2
n + Fn−1Fn+1, t = Fn. In order to simplify, let us put: Fn = v and Fn+1 = u.

Then, u2 − uv − v2 = (−1)n, so that (u2 − uv − v2)2 = 1 (see [12, p. 34]).

1) a = 2Fn−1, b = 2Fn+1.
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Respectively, it holds: y0,0 = z0,0 = Fn, y1,0 = 3Fn−1 + Fn+1, z1,0 = Fn−1 +

3Fn+1, y−1,0 = Fn, z−1,0 = −Fn. Hence,

y0,1 = v(u2 + vu− v2) ,

y1,1 = 4u3 + vu2 − 3v2u− v3 ,

y−1,1 = v(u2 − 3vu + 3v2) ,

so that

x0,1 =
[

y2
0,1 − v2(u2 − vu− v2)2

]

/2(u− v) = 2v3u(v + u) = 2F 3
nFn+1Fn+2 ,

x1,1 = 2u(v + u) (v + 2u) (2u2 − v2) = 2Fn+1Fn+2Fn+3(2F
2
n+1 − F 2

n) ,

x−1,1 = 2v3(u− v) (2v − u) = 2Fn−2Fn−1F
3
n .

2) a = Fn−1, b = 4Fn+1.

In this case, it holds: y0,0 = z0,0 = Fn, y1,0 = 2Fn−1 + Fn+1, z1,0 = Fn−1 +

5Fn+1, y−1,0 = Fn+1, z−1,0 = −Fn+3, so that

y0,1 = vu2 ,

y1,1 = 3u3 + vu2 − 2v2u− v3 ,

y−1,1 = u3 − 3vu2 + 2v2u + v3

and

x0,1 = v3(v + u) (v + 2u) = F 3
nFn+2Fn+3 ,

x1,1 = u(v + u) (2v + 3u) (3u2 − v2) = Fn+1Fn+2Fn+4[F
2
n+2 + 2(−1)n] ,

x−1,1 = u(u− v) (2v − u) (v2 + 2vu− u2) = Fn−2Fn−1Fn+1(2F
2
n − F 2

n−1) .

3) a = 4Fn−1, b = Fn+1.

Hence, y0,0 = z0,0 = Fn, y1,0 = 5Fn−1 + Fn+1, z1,0 = Fn−1 + 2Fn+1, y−1,0 =

−Fn−3, z−1,0 = Fn−1,

y0,1 = v(u2 + 3vu− 3v2) ,

y1,1 = 6u3 + vu2 − 5v2u− v3 ,

y−1,1 = 7v3 − 13v2u + 9vu2 − 2u3 ,
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and, finally,

x0,1 = v3(2u− v) (2v + u) = F 3
nLnLn+1 ,

x1,1 = u(v + u) (v + 3u) (3u2 − 2v2) = Fn+1F2n+4[F2n+2 + 2(−1)n] ,

x−1,1 = (u− v) (2v − u) (3v − u) (2v2 − 2vu + u2) = Fn−2F2n−2F2n−1 .

Theorem 1 may also be proved directly. For example, the following equations

hold:

Fn−1 · 4Fn+1 + F 2
n = L2

n ,

Fn−1 · F
3
nFn+2Fn+3 + F 2

n = (FnF 2
n+1)

2 ,

Fn−1 · Fn+1Fn+2Fn+4[F
2
n+2 + 2(−1)n] + F 2

n = [Fn+1F
2
n+2 + (−1)nFn+3]

2 ,

4Fn+1 · F
3
nFn+2Fn+3 + F 2

n = {Fn[2Fn+1Fn+2 − (−1)n]}2 ,

4Fn+1 · Fn+1Fn+2Fn+4[F
2
n+2 + 2(−1)n] + F 2

n = {Fn+3[2Fn+1Fn+2 + (−1)n]}2 ,

F 3
nFn+2Fn+3 · Fn+1Fn+2Fn+4[F

2
n+2 + 2(−1)n] + F 2

n =

= {Fn[F
4
n+2 + (−1)nF 2

n+2 − 1]}2 .

3 – Quadruples with the property D(L2
n)

For any integer n, n ≥ 2, the following holds

4Fn−2Fn+2 + L2
n = 9F 2

n .

Indeed, 9F 2
n − L2

n = (3Fn − Ln) (3Fn + Ln) = 2(Fn − Fn−1) · 2(Fn + Fn+1) =

4Fn−2Fn+2. By means of the identity

4Fn−2F
2
nFn+2 + 1 = (F 2

n + Fn−2Fn+2)
2

(see [10]) and the construction described in the introduction, the following theo-

rem can be proved in the same way as it is done in the Theorem 1:

Theorem 2. For any integer n ≥ 3, the following sets have the property

D(L2
n):

{

2Fn−2, 2Fn+2, 2FnLn−1L
2
nLn+1, 10FnLn−1Ln+1[Ln−1Ln+1 − (−1)n]

}

,
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{

2Fn−2, 2Fn+2, 2Fn−1FnFn+1L
2
n, 2FnLn−1L

2
nLn+1

}

,

{

Fn−2, 4Fn+2, FnL2
n(2Fn + Fn+2) (Fn + 2Fn+2),

Ln−1Ln+1(Ln−1 + 2Ln+1) [Ln(Fn−1 + 2Fn+1)− 9(−1)n]
}

,

{

Fn−2, 4Fn+2, Fn−1Fn+1(Fn−1 + 2Fn+1) (F
2
n+2 − 3F 2

n),

FnL2
n(2Fn + Fn+2) (Fn + 2Fn+2)

}

,

{

4Fn−2, Fn+2, FnL2
n(2Fn−2 + Fn) (2Fn + Fn+2),

Ln−1Ln+1(2Ln−1 + Ln+1) [Ln(2Fn−1 + Fn+1)− 9(−1)n]
}

and
{

4Fn−2, Fn+2, Fn−1Fn+1(2Fn−1 + Fn+1) (3F
2
n − F 2

n−2),

FnL2
n(2Fn−2 + Fn) (2Fn + Fn+2)

}

.

There exists a direct way of proving the Theorem 2, too. For example:

2Fn−2 · 2Fn+2 + L2
n = (3Fn)

2 ,

2Fn−2 · 2FnLn−1L
2
nLn+1 + L2

n = {Ln[2FnLn−1 − (−1)n]}2 ,

2Fn−2 · 10FnLn−1Ln+1[Ln−1Ln+1 − (−1)n] + L2
n = [2L2

n−1Ln+1 − 5(−1)nFn]
2 ,

2Fn+2 · 2FnLn−1L
2
nLn+1 + L2

n = {Ln[2F2n+1 − 3(−1)n]}2 ,

2Fn+2 · 10FnLn−1Ln+1[Ln−1Ln+1 − (−1)n] + L2
n = [2Ln−1L

2
n+1 − 5(−1)nFn]

2 ,

2FnLn−1L
2
nLn+1 · 10FnLn−1Ln+1[Ln−1Ln+1 − (−1)n] + L2

n =

= [Ln(2L
2
n−1L

2
n+1 − 1)]2 .

4 – Morgado identity

Morgado has proved the following identity in [11]:

FnFn+1Fn+2Fn+4Fn+5Fn+6 + L2
n+3 =

[

Fn+3(2Fn+2Fn+4 − F 2
n+3)

]2
.

Let us consider the problem of finding out the set {a, b, c, d} with the property

D(L2
n+3), such as a · b = FnFn+1Fn+2Fn+4Fn+5Fn+6. We shall attempt to solve

this problem by means of the construction described in the introduction. In this
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case, we are not going to use the Pellian equation S2−abT 2 = 1 but choose a and b

so that we shall be able to get the solution of the problem only by considering the

sequence xn,0. As it is said in the introduction, if x2,0 is a positive integer, then

the set {a, b, x1,0, x2,0} has the property D(L2
n+3). Hence, y0,0 = e, y1,0 = k + a,

y2,0 = 2k
e
(k + a)− e and

x2,0 =
y2
2,0 − e2

a
=

(y2,0 − e) (y2,0 + e)

a

=
2
e
(k2 + ak − e2) · 2k

e
(k + a)

a
=

4k(k + a) (k + b)

e2
.

It will be shown that in our case numbers a and b can be chosen so that x2,0 ∈ IN

or x−2,0 ∈ IN. It holds:

Theorem 3. Let n be a positive integer and kn = Fn+3(2Fn+2Fn+4−F 2
n+3).

The the following sets have the property D(L2
n+3):

{

FnFn+1Fn+2, Fn+4Fn+5Fn+6, 4Fn+3L
2
n+3, 4kn(4Fn+3 kn − 1)

}

,

{

FnFn+1Fn+4, Fn+2Fn+5Fn+6, Fn+3L
2
n+3, 4kn(Fn+3 kn + 1)

}

and
{

FnFn+2Fn+5, Fn+1Fn+4Fn+6, Fn+3L
2
n+3, 4kn(Fn+3 kn − 1)

}

.

Proof: 1) a = FnFn+1Fn+2, b = Fn+4Fn+5Fn+6.

Then, a + b = 6Fn+3(F
2
n+2 + F 2

n+4), so that

x1,0 = (k2 + 2ak + a2 − e2)/a = a + b + 2k

= Fn+3 (6F
2
n+2 + 6F 2

n+4 + 4Fn+2Fn+4 − 2F 2
n+2 + 4Fn+2Fn+4 − 2F 2

n+4)

= 4Fn+3L
2
n+3 ,

x2,0 =
4k

L2
n+3

[

k2 + k(a + b) + ab
]

=
4k

L2
n+3

(k x1,0 − L2
n+3) = 4k (4Fn+3 k − 1) .

2) a = FnFn+1Fn+4, b = Fn+2Fn+5Fn+6.
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Hence, a + b = Fn+3(10Fn+2Fn+4 − F 2
n+2 − F 2

n+4), so that

x−1,0 = a + b− 2k

= Fn+3 (10Fn+2Fn+4−F 2
n+2−F 2

n+4+2F 2
n+2−8Fn+2Fn+4+2F 2

n+4)

= Fn+3L
2
n+3 ,

x−2,0 = −
4k(a− k) (b− k)

L2
n+3

=
4k

L2
n+3

[

k(a + b)− ab− k2
]

=
4k

L2
n+3

(k x−1,0 + L2
n+3)

= 4k (Fn+3 k + 1) .

3) a = FnFn+2Fn+5, b = Fn+1Fn+4Fn+6.

Now, a + b = 3F 3
n+3, so that

x1,0 = a + b + 2k

= Fn+3 (3F
2
n+2 − 6Fn+2Fn+4 + 3F 2

n+4 − 2F 2
n+2 + 8Fn+2Fn+4 − 2F 2

n+4)

= Fn+3L
2
n+3 ,

x2,0 =
4k

L2
n+3

(k x1,0 − L2
n+3) = 4k (Fn+3k − 1) .

Remark 1. It can be shown that by using notation as in the Theorem 3,

the following holds:

4Fn+3 kn − 1 = (5Fn+3Fn+4 + F 2
n+2) (5Fn+2Fn+3 − F 2

n+4) ,

Fn+3 kn + 1 = F 2
n+2F

2
n+4 ,

Fn+3 kn − 1 = (F 2
n+5 − 2F 2

n+4) (F
2
n+4 − 2F 2

n+3) .

5 – Fibonacci number triples

Some integer solutions of Pythagorean equation x2 + y2 = z2 can be ob-

tained using Fibonacci numbers (in that case, Pythagorean triple x, y, z is called

Fibonacci number triple). Namely, the following relation (see [7]) is valid:

(3) (FnFn+3)
2 + (2Fn+1Fn+2)

2 = (F 2
n + 2Fn+1Fn+2)

2 .
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On the basis of this relation, another Diophantine quadruple can be obtained.

Let a = F 2
n , b = F 2

n+3. The aim is to find out the numbers x and y of the kind

that the set {a, b, x, y} may have the property D(4F 2
n+1F

2
n+2). In this case, ab

is a perfect square and the construction described in the introduction cannot be

applied. However, the following holds:

Theorem 4. The set {F 2
n , F 2

n+3, 4Fn−1F
3
n+2(F

2
n+3−2F

2
n+2), 4F

3
n+1Fn+4(F

2
n+3−

2F 2
n+2)} has the property D(4F 2

n+1F
2
n+2), for all n ∈ IN.

Proof:

F 2
n · F

2
n+3 + 4F 2

n+1F
2
n+2 = (F 2

n+1 + F 2
n+2)

2 = (F 2
n + 2Fn+1Fn+2)

2 .

We are now going to prove this theorem appealing to the Gelin–Cesáro identity:

Fn−2Fn−1Fn+1Fn+2 + 1 = F 4
n and to the Morgado identity: FnFn+2Fn+3Fn+5 +

1 = (F 2
n+4 − 2F 2

n+3)
2 (see [9]):

F 2
n · 4Fn−1F

3
n+2(F

2
n+3 − 2F 2

n+2) + 4F 2
n+1F

2
n+2 =

= 4F 2
n+2

{

Fn−1F
2
nFn+2F

2
n+3 − 2Fn−1F

2
nF 3

n+2

+ F 2
n+1

[

F 4
n+1 − Fn−1FnFn+2(2Fn+1 + Fn)

]}

= 4F 2
n+2

[

F 6
n+1 − 2Fn−1FnF 3

n+1Fn+2

+ Fn−1F
2
nFn+2(F

2
n+2 + 2Fn+1Fn+2 + F 2

n+1 − 2F 2
n+2 − F 2

n+1)
]

=
[

2Fn+2(F
3
n+1 − Fn−1FnFn+2)

]2
,

F 2
n · 4F

3
n+1Fn+4(F

2
n+3 − 2F 2

n+2) + 4F 2
n+1F

2
n+2 =

= 4F 2
n+1

{

F 2
nFn+1F

2
n+3Fn+4 − 2F 2

nFn+1F
2
n+2Fn+4

+ F 2
n+2

[

F 4
n+2 − FnFn+1(2Fn+2 − Fn)Fn+4

]}

= 4F 2
n+1

[

F 6
n+2 − 2FnFn+1F

3
n+3Fn+4

+ F 2
nFn+1Fn+4(Fn+3 − Fn+2) (Fn+3 + Fn+2)

]

=
[

2Fn+1(F
3
n+2 − FnFn+1Fn+4)

]2
,
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F 2
n+3 · 4Fn−1F

3
n+2(F

2
n+3 − 2F 2

n+2) + 4F 2
n+1F

2
n+2 =

= 4F 2
n+2

{

Fn−1Fn+2F
4
n+3 − 2Fn−1F

3
n+2F

2
n+3

+ F 2
n+1

[

F 4
n+1 − Fn−1(Fn+3 − 2Fn+1)Fn+2Fn+3

]}

= 4F 2
n+2

[

F 6
n+1 + 2Fn−1F

3
n+1Fn+2Fn+3

+ Fn−1Fn+2F
2
n+3(F

2
n+2 + 2Fn+1Fn+2 + F 2

n+1 − 2F 2
n+2 − F 2

n+1)
]

=
[

2Fn+2(F
3
n+1 + Fn−1Fn+2Fn+3)

]2
,

F 2
n+3 · 4F

3
n+1Fn+4(F

2
n+3 − 2F 2

n+2) + 4F 2
n+1F

2
n+2 =

= 4F 2
n+1

{

Fn+1F
4
n+3Fn+4 − 2Fn+1F

2
n+2F

2
n+3Fn+4

+ F 2
n+2

[

F 4
n+2 − (2Fn+2 − Fn+3)Fn+1Fn+3Fn+4

]}

= 4F 2
n+1

[

F 6
n+2 − 2Fn+1F

3
n+2Fn+3Fn+4

+ Fn+1F
2
n+3Fn+4(Fn+3 − Fn+2) (Fn+3 + Fn+2)

]

=
[

2Fn+1(Fn+1Fn+3Fn+4 − F 3
n+2)

]2
,

4Fn−1F
3
n+2(F

2
n+3 − 2F 2

n+2) · 4F
3
n+1Fn+4(F

2
n+3 − 2F 2

n+2) + 4F 2
n+1F

2
n+2 =

= 4F 2
n+1F

2
n+2

[

4Fn−1Fn+1Fn+2Fn+4(F
2
n+3 − 2F 2

n+2) + 1
]

= 4F 2
n+1F

2
n+2

[

4Fn−1Fn+1Fn+2Fn+4(4Fn−1Fn+1Fn+2Fn+4 + 1) + 1
]

=
[

2Fn+1Fn+2(2Fn−1Fn+1Fn+2Fn+4 + 1)
]2

.

6 – Diophantine quadruples for the products of Fibonacci numbers

Up to now, we have considered the sets with the property D(n) where n was

a square of an integer. Let us now consider how to obtain the sets with the

property D(n) in which n is not a erfect square using Fibonacci numbers. In this

connection, let us adduce the result of Arkin and Bergum [1]: the set
{

F12p − F12r

4
, 9F12p − F12r,

25F12p − 9F12r

16
,
49F12p − F12r

16

}
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has the property D(F12pF12r). This result is the direct consequence of the fact

that the set {4m, 144m+8, 25m+1, 49m+3} has the property D(16m+1). We

are going to show that the similar result can be obtained when there is a set of the

form {aim+ bi : i = 1, 2, 3, 4} with the property D(am+ b), where a, b, ai, bi ∈ Z.

The sets of this form have been considered in [4] and can be obtained e.g. from

more general formulas: the sets
{

m, (3l + 1)2m + 2l, (3l + 2)2m + 2l + 2, 9(2l + 1)2m + 8l + 4
}

,(4)

{

4m, (3l − 1)2m + l − 1, (3l + 1)2m + l + 1, 36l2m + 4l
}

,(5)

{

m, l2m− 2l − 2, (l + 1)2m− 2l, (2l + 1)2m− 8l − 4
}

,(6)

{

4m, (l − 1)2m + l − 3, (l + 1)2 + l + 3, 4l2m + 4l
}

,(7)

{

9m + 4(3l − 1), (3l − 1)2m + 2(l − 1) (6l2 − 4l + 1),(8)

(3l + 1)2m + 2l(6l2 + 2l − 1), (6l − 1)2m + 4l(2l − 1) (6l − 1)
}

,

{

m, (3l + 1)2m + 2l(3l + 1), (3l + 2)2m + 2(3l2 + 3l + 1),(9)

9(l + 1)2m + 2(l + 1) (3l + 2)
}

,

have the properties D(2(2l+1)m+1), D(8lm+1), D(2(2l+1)m+1), D(8lm+1),

D(2(6l − 1)m + (4l − 1)2), D(2(l + 1) (3l + 1)m + (2l + 1)2), respectively.

It is shown in [4] that Diophantine quadruple with the property D(n) does not

exist for an integer n, n ≡ 2 (mod 4) (see also [2]). In the same paper, it is proved

that if an integer n is: n 6≡ 2 (mod 4) and n /∈ S = {3, 5, 8, 12, 20,−1,−3,−4}

then, there exists at least one Diophantine quadruple with the property D(n)

and if n /∈ S ∪ t , where T = {7, 13, 15, 21, 24, 28, 32, 48, 52, 60, 84,−7,−12,−15}

then there exist at least two different Diophantine quadruples with the property

D(n). However, number 52 can be omitted from the set T regarding the fact that

the set {1, 12, 477, 23052} has the property D(52).

Let us return to the consideration of the set A = {aim + bi : i = 1, 2, 3, 4}

with the property D(am+ b). By multiplying the elements of the set A by n and

by substitution mn ↔ m, we get that the set A′ = {aim + bin : i = 1, 2, 3, 4}

has the property D(amn + bn2). Let l = am + bn. We conclude that the set

A′′ = {ai(l−bn)
a

+ bin : i = 1, 2, 3, 4} has the property that the product of its any

two distinct elements increased by ln is a square of a rational number. To insure

that the elements of A′′ are integers, we can proceed as follows.

For an integer a, let us assign the index of the least Fibonacci number divisible

by a with h(a). It is easy to show that h(a) exists and that h(a) ≤ a2 − 1 (see
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[13, p. 27]). It can also be shown (see [3]) that h(a) ≤ 2a and that h(a) = 2a iff

a = 6 · 5q, q ≥ 0.

The conclusion is that the set

{

ai Fh(a)p + (a bi − ai b)Fh(a)r

a
: i = 1, 2, 3, 4

}

has the property D(Fh(a)pFh(a)r).

Example 1: Putting l = 8 in (4) we get the set {m, 625m + 16, 676m + 18,

2601m + 68} with the property D(34m + 1). Considering the fact that F9 = 34,

i.e., h(34) = 9 and applying the above construction, we get the set

(10)

{

F9p − F9r

34
,
625F9p − 81F9r

34
,
676F9p − 64F9r

34
,
2601F9p − 289F9r

34

}

with the property D(F9pF9r). Putting e.g. p = 2, q = 1 in (10) we get the set

{75, 47419, 51312, 197387} with the property D(87856).

It is obvious that there exist formulas of a different type from the above

(4)–(9). It is provable that the set

(11)

{

1, a2 − 4,
a

4
(a3 − 2a2 − 3a + 8),

a

4
(a3 + 2a2 − 3a− 8)

}

has the property D(4 − a2). Putting a = L2n in (11) and using the fact that

L2
2n − 5F 2

2n = 4 (see [12, p. 29]), leads to the set

{

1, 5F 2
2n,

L2n

4
(25F 4

nL2
n + L2n),

L2n

4
(5F 2

nL4
n + L2n)

}

with the property D(−5F 2
2n).

7 – Concluding remarks

Remark 2. The question whether any of the Diophantine quadruples from

Theorems 1, 2, 3 or 4 can be extended to the Diophantine quintuple is still in

abeyance. The results from [6] imply that if the set {a, b, c, d} with the property

D(n) is any of quadruples from Theorems 1, 2, 3 or 4, then there exists a rational

number r so that the set {a, b, c, d, r} has the property that the product of its

any two distinct elements increased by n is the square of a rational number.
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For example, using the fourth set from the Theorem 1, we can get that the

product of any two distinct elements of the set

(12)

{

2Fn−1, 2Fn+1, 2Fn−2Fn−1F
3
n , 2F 3

nFn+1Fn+2,

4Ln(F
4
n − F 2

n−1F
2
n−2) (F

2
n+1F

2
n+2 − F 4

n) (2F
4
n − 1)

(16Fn−2F 2
n−1F

2
nF 2

n+1Fn+2 − 1)2

}

increased by F 2
n is the square of a rational number. Putting n = 3 and n = 4

in (12) leads to the set {777480, 8288641, 24865923, 66309128, 994636920} with

the property D(28794) and the set {219604, 22108804, 55272010, 596937708,

11938754160} with the property D(9 · 23514).

Remark 3. There is a natural problem of generalizing the results in this

paper concerning the sequence defined by wn = wn(a, b; p, q), w0 = a, w1 = b,

wn = p wn−1 − q wn−2 (n ≥ 2); the sequence was considered by Horadam [8].

It is provable (see [5]) that for un = wn(0, 1; p,−1) the sets {2un−1, 2un+1},

{un−1, 4un+1}, {4un−1, un+1} with the property D(u2
n) can be extended to the

quadruples with the property D(u2
n) and that the analogue of Theorem 3 is valid

for the sequence (un).
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