
PORTUGALIAE MATHEMATICA

Vol. 52 Fasc. 3 – 1995

NONEXISTENCE OF GLOBAL SOLUTIONS TO SOME
DIFFERENTIAL INEQUALITIES OF THE
SECOND ORDER AND APPLICATIONS

Philippe Souplet

Abstract: We establish the nonexistence of global nondecreasing positive solutions

for a class of differential inequalities of the type u′′ + u′p ≥ uq. As a consequence, we

prove the non global character of the solutions for nonlinear wave equations of the type

utt − ∆u + ut = λu + |u|q, when the initial data have positive projections on the first

eigenvector and a similar result for a heat equation with memory.

Résumé: Nous montrons qu’il n’existe pas de solutions globales positives et crois-

santes pour une classe d’inéquations différentielles du type u′′+u′p ≥ uq. A titre d’appli-

cation, nous prouvons le caractère non global des solutions pour des équations d’ondes

non-linéaires du type utt − ∆u + ut = λu + |u|q, dès que les données initiales ont des

projections positives sur la première fonction propre du Laplacien. Nous obtenons un

résultat similaire pour une équation de la chaleur avec un terme de mémoire.

0 – Introduction

The existence of blowing-up solutions for hyperbolic nonlinear evolution equa-

tions:

(0.1) utt −∆u = f(u)

or parabolic ones:

(0.2) ut −∆u = f(u)

has been extensively studied for more than thirty years.
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The methods used were mainly of two types:

– the energy method, leading to the blow-up of solutions with large enough

negative initial energy (cf. [1], [7], [8], [10]);

– the convexity method, where blow-up occurs for positive initial data

(cf. [2], [3], [5], [6]).

Recently, the interaction between nonlinear source and damping terms in the

problem

(0.3) utt −∆u+ ut
(

1 + |ut|
p−1

)

= ‖u|q−1 u ,

has been investigated ([4]). The authors, using the energy method, established

the global existence of all solutions if 1 < q ≤ p and the blow-up of “large”

solutions if 1 < p < q.

In the present paper, we shall prove the non global character of the solutions

for nonlinear wave equations of the type:

(0.4) utt −∆u+ ut = λu + |u|q ,

when the initial data have positive projections on the first eigenvector.

In the first section, we provide a detailed study of a class of differential in-

equalities of the form

(0.5) u′′ + f(u′) ≥ g(u)

(typically:

(0.6) u′′ + u′p ≥ uq ,

with q > p ≥ 1), for which we establish the non global character of the solutions

when u(0) > 0 and u′(0) ≥ 0. We here improve the results that we presented in

[9], by allowing to handle generalized solutions of the inequality. In the second

section, by combining the previous property and the convexity method, we deduce

the result concerning the nonlinear wave equation and give a similar property for

a heat equation with memory of the type:

(0.7) ut −∆u+ a u =

∫ t

0
|u|q(s) ds .
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1 – The differential inequalities of the type u′′ + u′p ≥ uq

We wish to study the global nonexistence of nondecreasing positive solutions

for the differential inequalities of the type:

(1.1) u′′ + u′p ≥ uq .

In order to give results in a framework as general as possible, we shall investigate

generalized solutions to some inequalities of the form:

(1.2) u′′ + f(u′) ≥ g(u) ,

in the sense that u′ is absolutely continuous and (1.2) is satisfied almost every-

where.

Let p, q be real numbers satisfying the condition:

(1.3) 1 ≤ p < q .

Let f, g : R→ R, be such that:

∃ a, a′ > 0, ∀ y ≥ 0, f(y) ≤ a yp + a′ ,(1.4)

f(0) ≤ 0 and lim sup
s→0

f(s) ≤ 0 ,(1.5)

∃ b, b′ > 0, ∀ y > 0, g(y) ≥ b yq − b′ ,(1.6)

∀ y > 0, g(y) > 0 and lim inf
s→y

g(s) > 0 .(1.7)

The main result of this section is:

Theorem 1.1. Let u ∈ W 2,1
loc ([0, T );R), with 0 < T ≤ +∞, and suppose

that (1.2) holds for a.e. t ∈ (0, T ). If

(1.8) u(0) > 0 and u′(0) ≥ 0 ,

then necessarily T < +∞ and besides we have:

(1.9) u > 0 and u′ > 0 on (0, T ) .

Furthermore, if we assume f and g to be continuous on R+∗, and denoting by

T ∗ the maximal existence time, the solution blows-up in the sense that:

(1.10) ‖u‖W 2,1(0,T ∗;R) = +∞ .
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Proof:

• First suppose that u′(0) = 0. Then by the continuity of u and u′, and

thanks to (1.5)(1.7), we have g(u) ≥ δ and f(u′) ≤ δ/2 on (0, ε) for some ε,

δ > 0. Therefore, by (1.2), we get u′′ ≥ δ/2 a.e. on (0, ε) and u′ > 0 on (0, ε).

• Suppose that u′ vanishes somewhere on (0, T ) and set:

t0 = min{t > 0, u
′(t) ≤ 0} > 0 .

We have u′ > 0 on (0, t0) so that u(t0) > 0 and, by (1.7) and the continuity of

u, g(u) ≥ δ > 0 on (t0 − ε, t0) for some δ, ε > 0. On the other hand, using (1.5),

the continuity of u′ and u′(t0) = 0, we get f(u
′) ≤ δ/2 on (t0 − ε, t0) for some

possibly smaller ε. By (1.2), we then have

u′′(t) ≥ δ/2, a.e. on (t0 − ε, t0) ,

and u′(t0 − ε) < 0, which contradicts the definition of t0. Thus (1.9) is proved.

From now on, we suppose that T = +∞.

• We first prove that:

(1.11) lim
t→+∞

u(t) = +∞ .

Suppose the contrary; by (1.9) we have

∀ t ≥ 0, 0 < u(t) < ` := lim
t→+∞

u(t) < +∞ .

From (1.2)(1.7), we deduce the existence of some T, δ > 0 such that:

u′′(t) + f(u′(t)) ≥ δ, for a.e. t > T .

On the other hand, (1.5) implies:

∃ ε > 0, ∀ y ≤ ε, f(y) ≤ δ/2 .

Therefore, there exists some t1 > T , such that u′(t1) > ε (otherwise we would

have u′′ ≥ δ/2 for a.e. t > T ), and since u is bounded and u′ is continuous, we

have:

∃ t2 = min {t > t1 | u
′(t) ≤ ε/2} > t1

and also

∃ t3 ∈ (t1, t2), ∀ t ∈ (t3, t2), u′(t) ≤ ε .
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But then u′′ ≥ δ/2 a.e. on (t3, t2), hence u
′ < u′(t3) = ε/2 on (t3, t2), which

contradicts the definition of t2.

• Case p < 2q/(q + 1).

Let us set:

(1.12) φ =
1

2
u2 .

From (1.2)(1.9), we get, for a.e. t > 0:

φ′′ = u′′u+ u′2 ≥ g(u)u+ u′2 − f(u′)u .

Using (1.4) and Young’s inequality with exponents 2/p and 2/(2− p) yields:

f(u′)u ≤ a′u+ u′2 + C u2/(2−p)

for some constant C > 0, and thus:

φ′′ ≥ b uq+1 − b′u− a′u− C u2/(2−p) .

Now, from the fact that q + 1 > 2/(2 − p) and thanks to (1.11), we can deduce

the existence of some ε > 0 such that

(1.13) φ′′ ≥ ε uq+1 ≥ ε φ(q+1)/2 > 0, a.e. for t large enough .

Finally, (1.13) together with φ′ = uu′ > 0 and q > 1 clearly imply the finite-time

blow-up of φ and a contradiction.

• Case p ≥ 2q/(q + 1).

By rescaling and using (1.11), we can reduce to the inequality:

(1.14) u′′ + u′p ≥ C uq ,

with C > 0. Setting α = q/p > 1 and

(1.15) Ψ(t) =
u′

uα
,

which belongs to W 1,1
loc (0, T ;R), we note that T = +∞ implies:

(1.16) lim inf
t→+∞

Ψ(t) = 0 and lim sup
t→+∞

Ψ(t) > 0 .

(Otherwise, by (1.14), for some ε > 0, we would have either u′ ≥ ε uα, for t large

enough, or u′′ ≥ ε uq a.e.). Therefore, if we fix a representant of Ψ′, there exists

some sequence (tn)→ +∞ such that:

(1.17) lim
n→∞

Ψ(tn) = 0
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and:

(1.18) ∀n ∈ N , Ψ′(tn) ≤ 0 .

Indeed, if no such sequence did exist, there should be some T, ε > 0 such that:

∀ t ≥ T , |Ψ(t)| ≤ ε ⇒ Ψ′(t) > 0 ,

which immediately contradicts (1.16). Condition (1.18) rewrites as u′′(tn) ≤

α(u′2/u)(tn) and, by (1.14)(1.17), we have, for n large enough:

(1.19)
u′2

uq+1
(tn) ≥

u′′

αuq
(tn) ≥

C

2α
> 0 .

Combining (1.17) and (1.19) yields:

up(q+1)/2−q(tn) =

[

u′p

uq
up(q+1)/2

u′p

]

(tn) → 0, as n→∞ ,

and since limt→+∞ u(t) = +∞, we deduce p(q + 1) < 2q: contradiction.

• We now just have to prove (1.10). Let us suppose that:

∫ T ∗

0
|u′′(t)| dt < +∞ .

Therefore u and u′ bear some limits, denoted by u(T ∗) and u′(T ∗), as t tends to

T ∗−. But then, since f and g are here assumed to be continuous, the solution of

the inequality could be extended to the right by a local solution of the ODE:
{

v′′ = g(v)− f(v′) , t ≥ T ∗ ,

v(T ∗) = u(T ∗) , v′(T ∗) = u′(T ∗) .

The proof is thus complete.

Remark 1.1. If we require classical solutions of (1.2), i.e. such that u is

twice differentiable and such that the inequality holds everywhere on [0, T ), it can

occur that the solution ceases to exist without blowing-up, because of the coming

out of a singularity. This stands in contrast with what happens for ordinary

differential equations.

Let us for instance consider the following example:

Proposition 1.2. Let p, q satisfy (1.3) and take f(u′) = ‖u′|p and g(u) =

‖u|q. Then there exist some T > 0 and some classical solution u of (1.2)(1.8)
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that cannot be extended to [0, T ] and such that u, u′ and u′′ remain bounded on

[0, T ). More precisely, one such function is given by:

(1.20) u(t) = 3 t2 + 3T t+ 2T 2 + (T − t)2 sin(ln(T − t)) , 0 ≤ t < T ,

for any T ≤ (1/3)2
1

2q .

Proof: Computing:

u′(t) = 6 t+ 3T − 2(T − t) sin(ln(T − t))− (T − t) cos(ln(T − t))

and

u′′(t) = 6 + sin(ln(T − t)) + 3 cos(ln(T − t)) ,

one easily obtains the following bounds:

0 < T 2 ≤ u ≤ 9T 2 ,

0 ≤ u′ ≤ 12T ,

2 ≤ u′′ ≤ 10 .

Then we get:

u′′ + u′p ≥ 2 ≥ (3T )2q ≥ uq on [0, T ) ,

so that u is a solution of (1.2)(1.8).

Last, u and u′ can be continued until the point T but u′ is not differentiable

in T−, so that the solution of (1.2)(1.8) is not extendable in the classical sense.

Remark 1.2. The assumption u′(0) ≥ 0 in Theorem 1.1 is essential. To see

that, it suffices to take f and g as in Proposition 1.2 and to consider the function

u(t) = e−2t which is a solution of (1.2) with T = +∞ for any p, q ≥ 1.

Remark 1.3. When p = q ≥ 1, the function u(t) = et is a global solution

to (1.2)(1.8) (with f and g as in Proposition 1.2). This counter-example shows

that the condition 1 ≤ p < q is optimal.

2 – Application: existence of nonglobal solutions for a nonlinear wave

equation with damping and source terms and a heat equation with

memory

The results of the previous section will allow us to provide conditions on the

initial data ensuring global nonexistence of the solution for wave equations of the
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type:

(2.1)

{

utt −∆u+ ut = λu+ |u|q in Ω ,

u = 0 on ∂Ω .

As in section 1, we will consider more general terms f(ut) and g(u).

Let Ω be a bounded open set of Rn, λ1 the first eigenvalue of (−∆) in H
1
0 (Ω),

and Φ1 the corresponding eigenfunction such that

∫

Ω
Φ1(x) dx = 1 .

Let f, g, f̃ , g̃ : R→ R, satisfying the following conditions:

∀ y ∈ R, f(y) ≤ f̃(y) ,(2.2)

f̃ is concave and f̃(0) ≤ 0 ,(2.3)

∃ a, a′ > 0, ∀ y ≥ 0, f(y) ≤ a y + a′ ,(2.4)

∀ y ∈ R, g(y) ≥ g̃(y) + λ1 y ,(2.5)

g̃ is convex and ∀ y > 0, g̃(y) > 0 ,(2.6)

∃ b, b′ > 0, ∃ q > 1, ∀ y ≥ 0, g̃(y) ≥ b yq − b′ .(2.7)

We consider the problem:

utt −∆u+ f(ut) = g(u) ,(2.8)

u ∈ L1loc([0, T );H
1
0 (Ω)) ∩W

1,1
loc ([0, T );L

2(Ω)) ∩W 2,1
loc ([0, T );H

−1(Ω)) ,(2.9)

f(ut), g(u) ∈ L1loc([0, T );H
−1(Ω)) .(2.10)

We then have the following result:

Theorem 2.1. Let u be a solution of (2.8)–(2.10). As soon as

(2.11)

∫

Ω
u(0, x) Φ1(x) dx > 0 and

∫

Ω
ut(0, x) Φ1(x) dx ≥ 0 ,

then u is nonglobal, i.e. T < +∞.

Proof: We set:

w(t) =

∫

Ω
u(t, x) Φ1(x) dx ,
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which belongs to W 2,1
loc ([0, T );R). Taking Φ1 ∈ H1

0 (Ω)∩C
∞(Ω) as a test-function

in (2.8) and using Green’s formula, it comes, a.e. on [0, T ):

w′′ +

∫

Ω
f(ut(t, x)) Φ1(x) dx =

∫

Ω

[

g(u(t, x))− λ1 u(t, x)
]

Φ1(x) dx .

Using (2.2)(2.5) and the fact that Φ1 is nonnegative, we have:

w′′ +

∫

Ω
f̃(ut(t, x)) Φ1(x) dx ≥

∫

Ω
g̃(u(t, x)) Φ1(x) dx .

By Jensen’s inequality, since f̃ is concave and g̃ convex, we get:

w′′ + f̃(w′) ≥ g̃(w) .

Thanks to hypotheses (2.3)(2.4)(2.6)(2.7), we can then apply Theorem 1.1 that

implies T < +∞.

Remark 2.1. The hypotheses on f and g in Theorem 2.1 were deliberately

given as general as possible for the convexity method to operate. As a counter-

part, we had to impose a priori a sufficient regularity class (2.9), (2.10) for the

solutions so that the calculations be justified.

When the growth of f or g is too fast, it might happen that no local existence-

uniqueness result is available. In the usual cases when such a result is known, for

instance (2.1) with q > 1 and (n − 2)q ≤ n, the result of Theorem 2.1 naturally

becomes — via the continuation principle — a blow-up result in the norm of the

local existence space.

Remark 2.2. In the case we deal with a solution u of (2.8)–(2.10) that

would remain nonnegative a.e. in Ω as long as it exists, the result of Theorem

2.1 obviously holds without any restriction on g(y) for y > 0, and applies in

particular when g(u) = ‖u|q−1 u.

By the method of Theorem 2.1, we can obtain a similar result for the following

heat equation with memory:

(2.12)







ut −∆u+ a u =

∫ t

0
|u|q(s) ds in Ω ,

u 6= 0 on ∂Ω .

Theorem 2.2. Take a∈R, q>1 and u a solution of (2.12) in C(0, T ;Lq(Ω))∩

C2(0, T ;H−1(Ω)). As soon as

(2.13)

∫

Ω
u(0, x) Φ1(x) dx = 0
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and

(2.14) u(0, ·) > 0, on a subset of Ω of positive measure ,

then u is nonglobal, i.e. T < +∞.

Proof: Since u is in the regularity class C(0, T ;Lq(Ω)) ∩ C2(0, T ;H−1(Ω)),

we can differentiate the equation, which becomes:

(2.15) utt −∆ut + aut = ‖u|
q .

Resuming the notations of the proof of Theorem 2.1, we have, by (2.12):

w′(0) =

∫

Ω
{∆u− a u}(0, x) Φ1(x) dx

= −(λ1 + a)

∫

Ω
u(0, x) Φ1(x) dx = 0

and, by (2.14)(2.15):

w′′(0) =

∫

Ω
{∆ut − a ut + |u|

q}(0, x) Φ1(x) dx

> −(λ1 + a)

∫

Ω
ut(0, x) Φ1(x) dx = 0 ,

so that w(ε) > 0 and w′(ε) > 0 for ε > 0 small enough. Using the same technique

as in Theorem 2.1, we are finally led to the inequality

w′′ + (λ1 + a)w′ ≥ wq

and can conclude as above.

Remark 2.3. If we impose the additional condition a ≤ −λ1, the result of

Theorem 2.1 still holds when replacing (2.13)–(2.14) by
∫

Ω u(0, x) Φ1(x) dx > 0.
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