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EXISTENCE OF VIABLE SOLUTIONS FOR
NONCONVEX-VALUED DIFFERENTIAL

INCLUSIONS IN BANACH SPACES

Truong Xuan Duc Ha

Abstract: A local existence result is proved for the viability problem

ẋ(t) ∈ F (t, x(t)) , x(0) = x0, x(t) ∈ K ,

where F (·, ·) is an integrably bounded, (strongly) measurable in t, Lipschitz continuous

in x multifunction with closed values and K is a closed subset of a separable Banach

space.

1 – Introduction

The viability problem

(1)















ẋ(t) ∈ F (t, x(t)),

x(0) = x0,

x(t) ∈ K ,

has been the subject of many papers (see [1, 2, 10, 14] and the references therein).
In particular, Bressan ([5, 6]) and Bressan–Cortesi ([7]) solved the viability prob-
lem (1) for jointly lower semicontinuous F . V.V. Goncharov ([11]) developed an
original fixed point argument, in order to handle the Caratheodory case. How-
ever, his result requires the convexity of the set K. Using the technique of
directionally continuous selection of [5], Colombo ([9]) had obtained recently the
local existence result for (1) when F is a Caratheodory lower semicontinuous, in-
tegrably bounded, closed valued multifunction and K is a locally compact subset
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of a reflexive Banach space. K. Deimling ([10], Theorem 9.3) and D. Bothe ([4],
Theorem 4.1) give existence results for “almost lsc” multifunctions defined on the
graph of another multifunction t→ K(t) under an assumption that involves the
measure of noncompactness.

In this note we consider the viability problem (1) in the case when F (·, ·) is
an integrably bounded, closed valued map which is measurable with respect to
the first argument and Lipschitz continuous with respect to the second argument.
We do not require the Banach space to be reflexive. However, we must place on
the multifunction F and on the set K a condition which is more strict than the
classical tangency condition. Nevertheless, our condition is closely related to the
usual assumptions, as Proposition 4.4 in [3] shows. The technique we shall adapt
here is motivated by that used by Larrieu in [12] for studying (1) in the case
when F is a singleton valued map in a Banach space.

2 – Existence of solutions to the viability problem (1)

Let E be a separable Banach space and let K ⊂ E be a nonempty closed set.
For measurability purpose, E (resp. Ω ⊂ E) is endowed with the σ-algebra B(E)
(resp. B(Ω)) of Borel subsets for the strong topology. Let I = [0, 1] be endowed
with Lebesgue measure and the σ-algebra L([0, 1]) of Lebesgue measurable sub-
sets. For nonempty sets A, B of E and a ∈ A we denote d(a,B) = inf{d(a, b),
b ∈ B}, d(A,B) = sup{d(a,B), a ∈ A}, H(A,B) = max{d(A,B), d(B,A)}.

Let F : I × E → E be a multifunction with nonempty closed values.

The main result of this note is the following

Theorem 2.1. Assume that

i) For all x ∈ E, F (·, x) is measurable for the above σ-algebras;

ii) There is a function k ∈ L1(I,R+) such that for all t ∈ I, all x1, x2 ∈ E

H
(

F (t, x1), F (t, x2)
)

≤ k(t) ‖x1 − x2‖ ;

iii) For any bounded set B of K, there is a function gB ∈ L1(I,R+) such that
for all t ∈ I and all x ∈ B

‖F (t, x)‖=: sup
y∈F (t,x)

‖y‖ ≤ gB(t) ;

iv) For every x ∈ K, the following equality

(2) lim inf
h→0+

1

h
d
(

x+

∫ t+h

t
F (r, x) dr, K

)

= 0

holds.
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Then for any t0 ∈ [0, 1) and any x0 ∈ K there exists a ∈ (t0, 1] such that the
viability problem (1) has solutions on [t0, a], i.e. there is an absolutely continuous
function x from [t0, a] into E satisfying















ẋ(t) ∈ F (t, x(t)) a.e. [t0, a],

x(t0) = x0,

x(t) ∈ K [t0, a] .

Firstly, let us prove the existence of approximate solutions.

Proposition 2.2. Suppose that the multifunction F satisfies conditions i)–
iv) of Theorem 2.1 and t0 ∈ [0, 1), x0 ∈ K, M > 1 are given. Let gM ∈ L1(I,R+)
and b ∈ (t0, 1] be such that

(3) ‖F (t, x)‖ ≤ gM (t)

for all t ∈ I, x ∈ K ∩B and

(4)

∫ b

t0

gM (r) dr ≤M − 1 ,

where B is the closed ball centered at x0 and with radius M .
Then for any ε ∈ (0, 1), a ∈ (t0, b) and y ∈ L1([t0, a], E) there are a function

f ∈ L1([t0, a], E) and a step function z from [t0, a] into K such that

1) z(t) ∈ K ∩B for all t ∈ [t0, a];

2) f(t) ∈ F (t, z(t)) for almost all t ∈ [t0, a];

3) ‖f(t)− y(t)‖ ≤ d(y(t), F (t, z(t))) + ε for almost all t ∈ [t0, a];

4) d(z(t), x0 +
∫ t
0 f(r) dr) ≤ ε for all t ∈ [t0, a].

For the proof of this proposition we need the following results concerning
measurable multifunctions in Banach spaces. The reader interested in the theory
of measurable multifunctions is referred to [8].

Lemma 2.3 [13]. Let Ω be a nonempty set in a Banach space E. Assume
that F : [a, b]×Ω→ E is a multifunction with nonempty closed values satisfying:

a) For every x ∈ Ω, F (·, x) is measurable on [a, b];

b) For every t ∈ [a, b], F (t, ·) is (Hausdorff) continuous on Ω.

Then for any measurable function x : [a, b] → Ω, the multifunction F (·, x(·))
is measurable on [a, b].
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Lemma 2.4 [13]. Let G : [a, b] → E be a measurable multifunction and
y : [a, b]→ E a measurable function. Then for any positive measurable function
r : [a, b] → R+, there exists a measurable selection g of G such that for almost
all t ∈ [a, b]

‖g(t)− y(t)‖ ≤ D
(

y(t), G(t)
)

+ r(t) .

Proof of Proposition 2.2: For the sake of convenience we take t0 = 0.
Denote by η(·) the modulus of uniform continuity of the function G(t) defined by

G(t) =

∫ t

0
gM (r) dr ,

so that |G(t)−G(t′)| ≤ ε if |t− t′| ≤ η(ε).
Denote

(5) α = min

{

b,
ε

4
, η
( ε

4

)

}

.

We now define inductively a finite sequence {ti}
n
i=0 ⊂ [0, b] with tn ∈ [a, b],

a function θ from [0, tn] into [0, tn] such that for all i ≤ n − 1 and t ∈ [ti, ti+1),
θ(t) = ti and a finite sequence {zi}

n
i=0 with z0 = x0 such that

a) |ti+1 − ti| ≤ α for i = 0, 1, ..., n− 1;

b) zi ∈ K ∩B for i = 0, 1, ..., n;

c) f(t) ∈ F (t, zθ(t)) for almost all t ∈ [0, a], where zθ(t) = zi if θ(t) = ti;

d) ‖f(t)− y(t)‖ ≤ d(y(t), F (t, zθ(t))) + ε for almost all t ∈ [0, a];

e) ‖zi − x0 −
∫ ti
0 f(r) dr‖ ≤ α ti, i = 0, 1, ..., n.

For i = 0, let t0 = 0 and z0 = x0 (f(0) need not be defined).
Suppose that the inductive procedure is realized on [0, ti] with ti < b, i.e. the

following conditions hold:

a) |tj+1 − tj | ≤ α for j = 0, 1, ..., i− 1;

b) zi ∈ K ∩B for j = 0, 1, ..., i;

c) f(t) ∈ F (t, zθ(t)) for almost all t ∈ [0, ti];

d) ‖f(t)− y(t)‖ ≤ d(y(t), F (t, zθ(t))) + ε for almost all t ∈ [0, ti];

e) ‖zj − z0 −
∫ tj
0 f(r) dr‖ ≤ α tj for j = 0, 1, ..., i.

Let

hi = max

{

h′ ≤ α, h′ ≤ b− ti | d
(

zi +

∫ ti+h′

ti

F (r, zi) dr, K
)

≤
αh′

4

}

.
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Set ti+1 = ti+hi. In view of Lemma 2.4, there is a function fi+1 ∈ L1([ti, ti+1], E)
such that fi+1(t) ∈ F (t, zi) for all t ∈ [ti, ti+1] and

‖fi+1(t)− y(t)‖ ≤ d
(

y(t), F (t, zi)
)

+ ε

for almost all t ∈ [ti, ti+1].
Extend f to [ti, ti+1) by setting, for all t ∈ [ti, ti+1)

f(t) = fi+1(t) .

Let zi+1 be a point of K such that

(6) d
(

zi +

∫ ti+hi

ti

f(r) dr, zi+1

)

≤
αhi

2
< αhi = α(ti+1 − ti) .

Then we have

∥

∥

∥zi+1 − z0 −

∫ ti+1

0
f(r) dr

∥

∥

∥ ≤

(7)
≤
∥

∥

∥zi+1 − zi −

∫ ti+1

ti

f(r) dr
∥

∥

∥+
∥

∥

∥zi − z0 −

∫ ti

0
f(r) dr

∥

∥

∥

≤ α(ti+1 − ti) + α ti = α ti+1 ,

which together with (4) gives

‖zi+1 − z0‖ ≤ α ti+1 +
∥

∥

∥

∫ ti+1

0
f(r) dr

∥

∥

∥ ≤ α ti+1 +

∫ ti+1

0
gM (r) dr

≤ α ti+1 +M − 1 ≤ 1 +M − 1 =M ,

which means that zi+1 ∈ B. Thus the conditions a)–e) are satisfied on [0, ti+1].
The inductive procedure can be now continued further. We claim that there

is a positive integer n such that tn > a. Suppose the contrary: tn ≤ a for all
n ≥ 1. Then the bounded increasing sequence {ti}i∈N converges to t ≤ a < b.
Therefore, the sequence {zi}i∈N converges to a point z ∈ K ∩ B. Indeed, by
construction we have

‖zn+1 − zn‖ ≤ α(tn+1 − tn) +
∥

∥

∥

∫ tn+1

tn

f(r) dr
∥

∥

∥

≤ α(tn+1 − tn) +

∫ tn+1

tn

gM (r) dr

and, for n > m

‖zn − zm‖ ≤ α(tn − tm) +

∫ tn

tm

gM (r) dr .
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Since {ti}
∞
i=0 is a Cauchy sequence, the sequence {zi}

∞
i=0 is also Cauchy and,

therefore, zn converges to a point z ∈ K.

Choose a scalar h ∈ (0, b− t) and a positive integer n0 such that for n ≥ n0

(8)































































d
(

z +

∫ t+h

t
F (r, z) dr,K

)

≤
αh

25
,

|t− tn| < η

(

αh

25

)

,

‖z − zn‖ <
αh

25
,

∫ t+h

t
k(r) ‖zn − z‖ dr ≤

αh

25
.

Let n > n0 be given. For an arbitrary measurable selection φn of F (t, zn) on
[0, t+ h] there exists a measurable selection φ of F (t, z) on [0, t+ h] such that

(9)
‖φn(t)− φ(t)‖ ≤ d

(

φn(t), F (t, z)
)

+
α

25

≤ k(t) ‖zn − z‖+
α

25
.

Then inequalities (8)–(9) give

d
(

zn +

∫ tn+h

tn

φn(r) dr, K
)

≤

≤ ‖zn − z‖+ d
(

z +

∫ t+h

t
φ(r) dr, K

)

+
∥

∥

∥

∫ t+h

tn+h
φ(r) dr

∥

∥

∥

+
∥

∥

∥

∫ t

tn

φn(r) dr
∥

∥

∥+
∥

∥

∥

∫ tn+h

t

(

φn(r)− φ(r)
)

dr
∥

∥

∥

≤ ‖zn − z‖+ d
(

z +

∫ t+h

t
F (r, z) dr, K

)

+

∫ t+h

tn+h
gM (r) dr

+

∫ t

tn

gM (r) dr +

∫ tn+h

t
‖φn(r)− φ(r)‖ dr

≤ ‖zn − z‖+ d
(

z +

∫ t+h

t
F (r, z) dr, K

)

+

∫ t+h

tn+h
gM (r) dr

+

∫ t

tn

gM (r) dr +

∫ t+h

t
k(r) ‖zn − z‖ dr +

αh

25
≤
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≤
αh

25
+
αh

25
+
αh

25
+
αh

25
+
αh

25
+
αh

25

<
αh

4
.

Since φn is an arbitrary measurable selection of F (t, zn) on [0, t+ h] it follows

d
(

zn +

∫ tn+h

tn

F (r, zn) dr, K
)

≤
αh

4
.

On the other hand, by construction, for n large enough we have tn+1 < t <

tn + h ≤ b, i.e. h > tn+1 − tn = hn. Thus the last inequality contradicts the
definition of hn. Therefore, there is a positive integer n such that tn ≥ a.

Now we define the function z on [0, a] by setting

(10) z(t) = zθ(t) .

It is clear that z(t) ∈ K ∩ B for all t ∈ [0, a]. Assume that t ∈ [ti, ti+1) ∩ [0, a].
Then (6), (7) and (10) imply

∥

∥

∥z(t)− z0 −

∫ t

0
f(r) dr

∥

∥

∥ =

=
∥

∥

∥zi − z0 +

∫ t

0
f(r) dr

∥

∥

∥

≤ ‖zi − zi+1‖+
∥

∥

∥zi+1 − z0 −

∫ ti+1

0
f(r) dr

∥

∥

∥+
∥

∥

∥

∫ ti+1

t
f(r) dr

∥

∥

∥

≤ α(ti+1 − ti) +
∥

∥

∥

∫ ti+1

ti

f(r) dr
∥

∥

∥+ α ti+1 +
∥

∥

∥

∫ ti+1

ti

f(r) dr
∥

∥

∥

≤ 2α+ 2

∫ ti+1

ti

g(M)(r) dr .

Taking account of (5) we get

∥

∥

∥z(t)− z0 −

∫ t

0
f(r) dr

∥

∥

∥ ≤ ε ,

which concludes the proof.

Proof of Theorem 2.1: Without loss of generality we can assume that
t0 = 0.

Let (εn)
∞
n=1 be a strictly decreasing sequence of positive scalars such that

∑∞
n=1 εn <∞. Let M , gM and b be as in the Proposition 2.2, a ∈ (0, b) and f0 a

measurable selection of F (t, x0) on [0, a].
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In view of Proposition 2.2, we can define inductively sequences {fn}
∞
n=1 ⊂

L1([0, a], E) and {zn}
∞
n=1 ⊂ S([0, a], E) (S([0, a], E) is the space of step functions

from [0, a] into E) such that

1) zn(t) ∈ K ∩B for all t ∈ [0, a];

2) fn(t) ∈ F (t, zn(t)) for almost all t ∈ [0, a], n ≥ 1;

3) ‖fn+1(t) − fn(t)‖ ≤ d(fn(t), F (t, zn+1(t))) + εn+1 for almost all t ∈ [0, a]
and n ≥ 1;

4) d(zn(t), z0 +
∫ t
0 fn(r) dr) ≤ εn for all t ∈ [0, a].

Observe that 2) and 3) imply

(11)
‖fn+1(t)− fn(t)‖ ≤ H

(

F (t, zn(t)), F (t, zn+1(t))
)

+ εn+1

≤ k(t) ‖zn(t)− zn+1(t)‖+ εn+1 .

Combining 4) and (11) yields

‖zn+1(t)− zn(t)‖ ≤
∥

∥

∥zn+1(t)− z0 −

∫ t

0
fn+1(r) dr

∥

∥

∥+

+
∥

∥

∥zn(t)− z0 −

∫ t

0
fn(r) dr

∥

∥

∥+

∫ t

0
‖fn+1(r)− fn(r)‖ dr

≤ εn + εn+1 +

∫ t

0
‖fn+1(r)− fn(r)‖ dr

≤ 2 εn +

∫ t

0
k(r) ‖zn+1(r)− zn(r)‖ dr + εn+1

≤ 3 εn +

∫ t

0
k(r) ‖zn+1(r)− zn(r)‖ dr .

It follows then from the Gronwall’s inequality (see e.g. [8, Proposition VI-9]) that

‖zn+1(t)− zn(t)‖ ≤ 3 εn e
L ,

where L =
∫ a
0 k(r) dr.

Therefore we have, for n < m:

‖zn(t)− zm(t)‖ ≤ 3 eL
m−1
∑

i=n

εi .

Thus the sequence {zn(·)}
∞
n=1 converges uniformly on [0, a] to a function x(·).

Since zn(t) ∈ K ∩ B for every t ∈ [0, a] and the set K is closed, it follows that
x(t) ∈ K ∩B for all t ∈ [0, 1].
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Observe that for every n ≥ 1 we have

‖fn+1(t)− fn(t)‖ ≤ H
(

F (t, zn+1(t)), F (t, zn(t))
)

+ εn+1

≤ k(t) ‖zn+1(t)− zn(t)‖+ εn+1

≤ εn

[

3 k(t) eL + 1
]

.

This implies (as above) that {fn(t)}
n
i=1 is a Cauchy sequence and fn(t) con-

verges to f(t).
Further, since ‖fn(t)‖ ≤ gM (t), by 4) and Lebesgue’s theorem we have

x(t) = lim zn(t) = lim
(

x0 +

∫ t

0
fn(r) dr

)

= x0 +

∫ t

0
f(r) dr .

Finally, observe that by 2),

d
(

f(t), F (t, x(t))
)

≤ ‖f(t)− fn(t)‖+H
(

F (t, zn(t)), F (t, x(t))
)

≤ ‖f(t)− fn(t)‖+ k(t) ‖zn(t)− x(t)‖

so that ẋ(t) = f(t) ∈ F (t, x(t)) a.e. in [0, a]. The proof is complete.
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