EXISTENCE THEOREMS FOR SOME ELLIPTIC SYSTEMS

Robert Dalmasso

Abstract: We investigate the existence of solutions of systems of semilinear elliptic equations. The proof makes use of the Leray-Schauder degree theory. We also study the corresponding linear problem.

1 - Introduction

In this paper we consider the following elliptic system

$$
\begin{cases}-\Delta u_{j}=f_{j}\left(x, u_{1}, \ldots, u_{m}\right), & j=1, \ldots, m \tag{1.1}\\ u_{j}=\psi_{j}, \quad j=1, \ldots, m & \text { in } \Omega \\ \text { on } \partial \Omega\end{cases}
$$

where Ω is a bounded domain in $\mathbb{R}^{n}(n \geq 1)$ of class $C^{2, \alpha}$ for some $\alpha \in(0,1)$, $m \geq 1$ is an integer and $f_{j}: \bar{\Omega} \times \mathbb{R}^{m} \rightarrow \mathbb{R}, j=1, \ldots, m$, are locally Hölder continuous functions with exponent α. When $\psi_{j} \in C^{2, \alpha}(\partial \Omega), j=1, \ldots, m$, we seek a solution $u=\left(u_{1}, \ldots, u_{m}\right) \in\left(C^{2, \alpha}(\bar{\Omega})\right)^{m}$.

Let $0<\mu_{1}<\mu_{2} \leq \ldots \leq \mu_{k} \leq \ldots$ be the eigenvalues of the operator $-\Delta$ on Ω with Dirichlet boundary conditions. We shall note φ_{1} the positive eigenfunction corresponding to μ_{1}.

Theorem 1. Suppose that there are constants $a_{j k} \geq 0$ and $c_{j} \geq 0, j, k=$ $1, \ldots, m$ such that

$$
\begin{equation*}
\left|f_{j}\left(x, u_{1}, \ldots, u_{m}\right)\right| \leq \sum_{k=1}^{m} a_{j k}\left|u_{k}\right|+c_{j} \tag{1.2}
\end{equation*}
$$

[^0]for $j=1, \ldots, m$ and $\left(x, u_{1}, \ldots, u_{m}\right) \in \bar{\Omega} \times \mathbb{R}^{m}$, with
\[

$$
\begin{equation*}
\mu_{1}>\rho(A) \tag{1.3}
\end{equation*}
$$

\]

where $\rho(A)$ denotes the spectral radius of $A=\left(a_{j k}\right)_{1 \leq j, k \leq m}$.
Then for any $\left(\psi_{1}, \ldots, \psi_{m}\right) \in\left(C^{2, \alpha}(\partial \Omega)\right)^{m}$, problem (1.1) has a solution $u=$ $\left(u_{1}, \ldots, u_{m}\right) \in\left(C^{2, \alpha}(\bar{\Omega})\right)^{m}$.

Remark 1. It will be clear from the proof that, at least in the case $n=1$, theorem 1 remains true for zero boundary conditions if (1.2) is replaced by

$$
u_{j} f_{j}\left(x, u_{1}, \ldots, u_{m}\right) \leq \sum_{k=1}^{m} a_{j k}\left|u_{j} u_{k}\right|+c_{j}\left|u_{j}\right|
$$

which in some instances may be a weaker growth condition; roughly speaking f_{j} may contain a term in u_{j} that is linearly bounded from above or below only, according to the sign of u_{j}.

In Section 4 we shall give an example showing that our condition is sharp.
When $n=1, m=2$ and $f_{1}\left(x, u_{1}, u_{2}\right)=-u_{2}$ problem (1.1) reduces to

$$
\left\{\begin{array}{l}
d^{4} u / d x^{4}=f\left(x, u, u^{\prime \prime}\right), \quad a<x<b, \tag{1.4}\\
u(a)=u_{a}, \quad u(b)=u_{b}, \quad u^{\prime \prime}(a)=\bar{u}_{a}, \quad u^{\prime \prime}(b)=\bar{u}_{b}
\end{array}\right.
$$

where $b-a<+\infty$ and $f \in C\left([a, b] \times \mathbb{R}^{2}\right)$.
Aftabizadeh [1] and Yang [7] roved the existence of a solution of (1.4) (with $a=0, b=1$) when

$$
|f(x, u, v)| \leq \alpha|u|+\beta|v|+\gamma,
$$

where $\alpha, \beta, \gamma \geq 0$ are such that $\alpha / \pi^{4}+\beta / \pi^{2}<1$.
When $n \geq 1$ and $f_{j}\left(x, u_{1}, \ldots, u_{m}\right)=-u_{j+1}$ for $j=1, \ldots, m-1$ (if $m \geq 2$), problem (1.1) reduces to

$$
\begin{cases}\Delta^{m} u=f\left(x, u, \Delta u, \ldots, \Delta^{m-1} u\right) & \text { in } \Omega \tag{1.5}\\ \Delta^{j} u=\psi_{j}, \quad j=0, \ldots, m-1 & \text { on } \partial \Omega\end{cases}
$$

where $f: \bar{\Omega} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$ is a locally Hölder continuous function with exponent α. Chen and Nee [4] proved the existence of a solution of (1.5) under the condition

$$
\left|f\left(x, u_{1}, \ldots, u_{m}\right)\right| \leq \sum_{k=1}^{m} a_{k}\left|u_{k}\right|+c
$$

where $a_{k} \geq 0, c \geq 0$ are such that

$$
\begin{equation*}
\sum_{k=1}^{m} \frac{a_{k}}{\mu_{1}^{m-k+1}}<1 \tag{1.6}
\end{equation*}
$$

We wish to point out that the condition of solvability in the above examples coincides with that given in theorem 1 (see remark 2).

Remark 2. For problem (1.5) the matrix A defined in theorem 1 is such that, when $m \geq 2, a_{j j+1}=1$ for $1 \leq j \leq m-1, a_{j k}=0$ for $k \neq j+1,1 \leq j \leq m-1$, $1 \leq k \leq m$ and $a_{m k}=a_{k}$ for $1 \leq k \leq m$. In Section 2 we shall show that condition (1.3) is equivalent to condition (1.6).

In both cases the proof makes use of the Leray-Schauder degree theory [2]. Therefore the underlying technique is the establishment of a priori estimates.

Note that we can assume that $\psi_{j}=0$ for $j=1, \ldots, m$. Indeed let $\chi_{j} \in C^{2, \alpha}(\bar{\Omega})$ be such that

$$
\begin{aligned}
& \Delta \chi_{j}=0, \quad j=1, \ldots, m \quad \text { in } \Omega \\
& \chi_{j}=\psi_{j}, \quad j=1, \ldots, m \quad \text { on } \quad \partial \Omega
\end{aligned}
$$

Define $v_{j}=u_{j}-\chi_{j}, j=1, \ldots, m$. Then problem (1.1) is equivalent to the following boundary value problem

$$
\begin{cases}-\Delta v_{j}=f_{j}\left(x, v_{1}+\chi_{1}, \ldots, v_{m}+\chi_{m}\right), \quad j=1, \ldots, m & \text { in } \Omega \\ v_{j}=0, \quad j=1, \ldots, m & \text { on } \partial \Omega\end{cases}
$$

and the functions

$$
g_{j}\left(x, v_{1}, \ldots, v_{m}\right)=f_{j}\left(x, v_{1}+\chi_{1}, \ldots, v_{m}+\chi_{m}\right), \quad j=1, \ldots, m
$$

still satisfy (1.2) with different c_{j}.
In Section 2, in order that the paper be self-contained, we provide preliminary results from the theory of nonnegative matrices. In Section 3 we prove our a priori bounds. Theorem 1 is proved in Section 4. Finally in Section 5 we study the corresponding linear problem.

2 - Preliminaries

In this section, in order that the paper be self-contained, we provide preliminary results from the theory of nonnegative matrices. We refer the reader to Berman and Plemmons [3] for proofs. We consider the proper cone

$$
\mathbf{R}_{+}^{m}=\left\{x=\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{m} ; x_{j} \geq 0, j=1, \ldots, m\right\}
$$

Definition 1. An $m \times m$ matrix M is called \mathbf{R}_{+}^{m}-monotone if

$$
M x \in \mathbb{R}_{+}^{m} \Rightarrow x \in \mathbb{R}_{+}^{m}
$$

The following theorems are parts of some results proved in [3] (theorem 1.3.2, p. 6 , theorem 1.3 .12 , p. 10 , corollary 2.1 .12 , p. 28 and theorems 5.2.3, 5.2.6, p. 113).

Theorem 2. Let N be an $m \times m$ nonnegative matrix (i.e. $N=\left(n_{j k}\right)_{1 \leq j, k \leq m}$ with $n_{j k} \geq 0$ for $\left.j, k=1, \ldots, m\right)$. Then $\rho(N)$ is an eigenvalue of N.

Theorem 3. Let $M=\alpha I-N$ where $\alpha \in \mathbb{R}$ and N is an $m \times m$ nonnegative matrix. If $M x \in \mathbb{R}_{+}^{m}$ for some $x \in \int \mathbb{R}_{+}^{m}$, then $\rho(N) \leq \alpha$.

Theorem 4. Let N be an $m \times m$ nonnegative matrix. If x is a positive (i.e. $x=\left(x_{j}\right)_{1 \leq j \leq m}$ with $x_{j}>0$ for $\left.j=1, \ldots, m\right)$ eigenvector of N then x corresponds to $\rho(N)$.

Theorem 5. An $m \times m$ matrix M is \mathbf{R}_{+}^{m}-monotone if and only if it is nonsingular and M^{-1} is nonnegative.

Theorem 6. Let $M=\alpha I-N$ where $\alpha \in \mathbb{R}$ and N is an $m \times m$ nonnegative matrix. Then the following are equivalent:
i) The matrix M is \mathbf{R}_{+}^{m}-monotone.
ii) $\rho(N)<\alpha$.

We conclude this section with the proof of the assertion of remark 2. We first note that condition (1.6) can be written $\operatorname{det}\left(\mu_{1} I-A\right)>0$. Then we use the following lemma.

Lemma 1. Let $N=\left(n_{j k}\right)_{1 \leq j, k \leq m}$ be a nonnegative matrix such that, when $m \geq 2, n_{j k}=0$ for $k \neq j+1,1 \leq j \leq m-1,1 \leq k \leq m$. If $\alpha>0$ the following are equivalent:
i) $\operatorname{det}(\alpha I-N)>0($ resp. $\operatorname{det}(\alpha I-N)=0)$.
ii) $\alpha>\rho(N)($ resp. $\alpha=\rho(N))$.

Proof: $\mathbf{i}) \Rightarrow \mathbf{i i})$: Since the lemma is obvious when $m=1$, we assume $m \geq 2$. Let $\lambda \in \mathbb{R}$. We have

$$
\operatorname{det}(\lambda I-N)=\lambda^{m}-\left\{n_{m m} \lambda^{m-1}+\sum_{k=1}^{m-1} n_{m k} n_{k k+1} \cdots n_{m-1 m} \lambda^{k-1}\right\}
$$

Suppose first that $n_{m-1 m}=0$. Then $\operatorname{det}(\lambda I-N)=\lambda^{m-1}\left(\lambda-n_{m m}\right)$. Clearly $\rho(N)=n_{m m}$ and since $\alpha>0$ the result follows.

Now if $n_{m-1 m}>0$ we claim that we can assume that $n_{j j+1}>0$ for $j=$ $1, \ldots, m-1$. Indded if $n_{j j+1}=0$ for some $j \in\{1, \ldots, m-2\}$ (thus necessarily $m \geq 3$), we define $h=\max \left\{j \in\{1, \ldots, m-2\} ; n_{j j+1}=0\right\}$. Then

$$
\operatorname{det}(\lambda I-N)=\lambda^{h} \operatorname{det}(\lambda I-Q),
$$

where $Q=\left(q_{j k}\right)_{1 \leq j, k \leq m-h}$ is an $(m-h) \times(m-h)$ nonnegative matrix such that $q_{j j+1}>0$ for $1 \leq j \leq m-h-1$ and $q_{j k}=0$ for $k \neq j+1,1 \leq j \leq m-h-1$, $1 \leq k \leq m-h$. Clearly $\rho(N)=\rho(Q)$. Since $\alpha>0, \operatorname{det}(\alpha I-N)>0$ (resp. $\operatorname{det}(\alpha I-N)=0)$ if and only if $\operatorname{det}(\alpha I-Q)>0($ resp. $\operatorname{det}(\alpha I-Q)=0)$. Thus our claim is proved. Now let $x_{m}>0$ and define the column vector $x=\left(x_{j}\right)_{1 \leq j \leq m}$ by

$$
x_{j}=\alpha^{j-m} n_{j j+1} \cdots n_{m-1 m} x_{m} \quad \text { for } j=1, \ldots, m-1 .
$$

Then $(\alpha I-N) x=y=\left(y_{j}\right)_{1 \leq j \leq m}$ where $y_{j}=0$ for $j=1, \ldots, m-1$ and $y_{m}=$ $\alpha^{1-m} x_{m} \operatorname{det}(\alpha I-N)$. Using theorem 3 we get $\rho(N) \leq \alpha$. Then the result follows with the help of theorem 2.
$\mathbf{i i}) \Rightarrow \mathbf{i}$: Since $\rho(N)$ is an eigenvalue of N, the result is clear.

3 - A priori bounds

We first introduce the following problems

$$
\begin{cases}-\Delta u_{j}=t f_{j}\left(x, u_{1}, \ldots, u_{m}\right), \quad j=1, \ldots, m & \text { in } \Omega \tag{3.1}\\ u_{j}=0, \quad j=1, \ldots, m & \text { on } \partial \Omega\end{cases}
$$

where $t \in[0,1]$ is the Leray-Schauder homotopy parameter.
Theorem 7. Under the assumptions of theorem 1, there exists a constant $M>0$ such that for any $t \in[0,1]$ and any solution $u=\left(u_{1}, \ldots, u_{m}\right) \in\left(C^{2, \alpha}(\bar{\Omega})\right)^{m}$ of $(3.1)_{t}$ we have

$$
\left\|u_{j}\right\|_{L^{\infty}(\Omega)} \leq M, \quad j=1, \ldots, m
$$

Proof: Multiplying the differential equation in $(3.1)_{t}$ by u_{j}, integrating over Ω and using (1.2) we obtain

$$
\begin{aligned}
\int_{\Omega}\left|\nabla u_{j}\right|^{2} d x & =t \int_{\Omega} u_{j} f_{j}\left(x, u_{1}, \ldots, u_{m}\right) d x \\
& \leq \sum_{k=1}^{m} a_{j k} \int_{\Omega}\left|u_{j} u_{k}\right| d x+c_{j} \int_{\Omega}\left|u_{j}\right| d x
\end{aligned}
$$

for $j=1, \ldots, m$. By first using the Schwarz inequality and then the Poincaré inequality we get

$$
\begin{aligned}
& \int_{\Omega}\left|\nabla u_{j}\right|^{2} d x \leq \sum_{k=1}^{m} a_{j k}\left(\int_{\Omega} u_{j}^{2} d x\right)^{1 / 2}\left(\int_{\Omega} u_{k}^{2} d x\right)^{1 / 2}+c_{j}|\Omega|^{1 / 2}\left(\int_{\Omega} u_{j}^{2} d x\right)^{1 / 2} \leq \\
& \quad \leq \sum_{k=1}^{m} \frac{a_{j k}}{\mu_{1}}\left(\int_{\Omega}\left|\nabla u_{j}\right|^{2} d x\right)^{1 / 2}\left(\int_{\Omega}\left|\nabla u_{k}\right|^{2} d x\right)^{1 / 2}+\frac{c_{j}}{\sqrt{\mu_{1}}}|\Omega|^{1 / 2}\left(\int_{\Omega}\left|\nabla u_{j}\right|^{2} d x\right)^{1 / 2}
\end{aligned}
$$

for $j=1, \ldots m$ from which we deduce

$$
\begin{equation*}
\left\|\nabla u_{j}\right\|_{L^{2}(\Omega)} \leq \sum_{k=1}^{m} \frac{a_{j k}}{\mu_{1}}\left\|\nabla u_{k}\right\|_{L^{2}(\Omega)}+\frac{c_{j}}{\sqrt{\mu_{1}}}|\Omega|^{1 / 2}, \quad j=1, \ldots, m \tag{3.2}
\end{equation*}
$$

Let x and b denote the column vectors

$$
x=\left(\left\|\nabla u_{j}\right\|_{L^{2}(\Omega)}\right)_{1 \leq j \leq m} \quad \text { and } \quad b=\left(\frac{c_{j}}{\sqrt{\mu_{1}}}|\Omega|^{1 / 2}\right)_{1 \leq j \leq m}
$$

(3.2) can be written

$$
b-\left(I-\mu_{1}^{-1} A\right) x \in \mathbb{R}_{+}^{m}
$$

(1.3) and theorem 6 imply that $I-\mu_{1}^{-1} A$ is \mathbf{R}_{+}^{m}-monotone. Hence using theorem 5 we obtain

$$
\begin{equation*}
\left(I-\mu_{1}^{-1} A\right)^{-1} b-x \in \mathbb{R}_{+}^{m} \tag{3.3}
\end{equation*}
$$

From (3.3) and the Poincaré inequality it follows that

$$
\begin{equation*}
\left\|u_{j}\right\|_{W^{1,2}(\Omega)} \leq C, \quad j=1, \ldots, m \tag{3.4}
\end{equation*}
$$

where C is a positive constant. Now for $1<p<+\infty$ we have the following estimates

$$
\begin{equation*}
\left\|u_{j}\right\|_{W^{2, p}(\Omega)} \leq C\left\|\Delta u_{j}\right\|_{L^{p}(\Omega)}, \quad j=1, \ldots, m \tag{3.5}
\end{equation*}
$$

([6], lemma 9.17 , p. 242) for some positive constant C. Moreover from the differential equations in $(3.1)_{t}$ and condition (1.2) we deduce

$$
\begin{equation*}
\left\|\Delta u_{j}\right\|_{L^{p}(\Omega)} \leq C \sum_{k=1}^{m}\left\|u_{k}\right\|_{L^{p}(\Omega)}, \quad j=1, \ldots, m \tag{3.6}
\end{equation*}
$$

for another positive constant C.
Now if $n=1$, (3.4) and the Sobolev imbedding theorem imply L^{∞} bounds.

If $n=2$, (3.4) and the Sobolev imbedding theorem imply that, for $1<p<$ $+\infty$, there exists $C>0$ such that

$$
\begin{equation*}
\left\|u_{j}\right\|_{L^{p}(\Omega)} \leq C, \quad j=1, \ldots, m \tag{3.7}
\end{equation*}
$$

Then using (3.5)-(3.7) and the Sobolev imbedding theorem we obtain the L^{∞} bounds.

Finally if $n \geq 3$, the conclusion follows from a classical bootstrapping procedure (see [2]) using (3.4)-(3.6) and the Sobolev imbedding theorem. The proof of the theorem is complete.

4 - Proof of theorem 1

We recall from Section 1 that it is sufficient to deal with zero boundary conditions.

We shall note $G(x, y)$ the Green's function of the operator $-\Delta$ on Ω with Dirichlet boundary conditions. Consider the function space $X=(C(\bar{\Omega}))^{m}$ endowed with the norm

$$
\|u\|=\max _{1 \leq j \leq m}\left(\left\|u_{j}\right\|_{L^{\infty}(\Omega)}\right) \quad \text { for } \quad u=\left(u_{1}, \ldots, u_{m}\right) \in X
$$

Then X is a Banach space. Regularity theory implies that solving $(3.1)_{t}$ is equivalent to finding a solution $u=\left(u_{1}, \ldots, u_{m}\right) \in X$ of the following system of integral equations

$$
u_{j}(x)=t \int_{\Omega} G(x, y) f_{j}\left(y, u_{1}(y), \ldots, u_{m}(y)\right) d y, \quad j=1, \ldots, m
$$

Now define a map $T_{t}: X \rightarrow X$ by $T_{t} u=v=\left(v_{1}, \ldots, v_{m}\right)$ where

$$
v_{j}(x)=t \int_{\Omega} G(x, y) f_{j}\left(y, u_{1}(y), \ldots, u_{m}(y)\right) d y, \quad j=1, \ldots, m
$$

It is well-known that T_{t} is continuous and compact for $t \in[0,1]$. Regularity theory implies that solving (1.1) (with $\psi_{j}=0, j=1, \ldots, m$) is equivalent to finding a fixed point of the map T_{1} in X. Let M be the constant appearing in theorem 7. Consider the ball B_{M} in X :

$$
B_{M}=\{u \in X ;\|u\|<M+1\} .
$$

Theorem 7 implies that T_{t} has no fixed point on ∂B_{M}. Let $I: X \rightarrow X$ be the identity map. By the homotopy invariance of the Leray-Schauder degree we have $\operatorname{deg}\left(I-T_{1}, B_{M}, 0\right)=\operatorname{deg}\left(I-T_{t}, B_{M}, 0\right)=\operatorname{deg}\left(I-T_{0}, B_{M}, 0\right)=\operatorname{deg}\left(I, B_{M}, 0\right)=1$.

Consequently, T_{1} has a fixed point in B_{M}. The theorem is proved.
Remark 3. If there exist constants $a_{j k} \geq 0, j, k=1, \ldots, m$, such that

$$
\left|f_{j}\left(x, u_{1}, \ldots, u_{m}\right)-f_{j}\left(x, v_{1}, \ldots, v_{m}\right)\right| \leq \sum_{k=1}^{m} a_{j k}\left|u_{k}-v_{k}\right|
$$

for $j=1, \ldots, m$ and $\left(x, u_{1}, \ldots, u_{m}\right),\left(x, v_{1}, \ldots, v_{m}\right) \in \bar{\Omega} \times \mathbb{R}^{m}$ with $A=\left(a_{j k}\right)_{1 \leq j, k \leq m}$ satisfying (1.3), then the solution of (1.1) is unique. The argument is similar to the proof of theorem 7 .

Example 1: Let

$$
f_{j}\left(x, u_{1}, \ldots, u_{m}\right)=\sum_{k=1}^{m} a_{j k} u_{k}
$$

for $j=1, \ldots, m$ and $\left(x, u_{1}, \ldots, u_{m}\right) \in \bar{\Omega} \times \mathbb{R}^{m}$ where $a_{j k} \geq 0$ are constants, $j, k=1, \ldots, m$. Let b denote the column vector

$$
b=\left(-\int_{\partial \Omega} \psi_{j} \frac{\partial \varphi_{1}}{\partial \nu} d s\right)_{1 \leq j \leq m}
$$

and $A=\left(a_{j k}\right)_{1 \leq j, k \leq m}$. Suppose that $\mu_{1}=\rho(A)$. By theorem $2 \operatorname{det}\left(\mu_{1} I-A\right)=0$. The Hopf boundary lemma ([6], lemma 3.4, p. 33) implies that $\frac{\partial \varphi_{1}}{\partial \nu}<0$ on $\partial \Omega$. Therefore we can choose $\psi_{j} \in C^{2, \alpha}(\partial \Omega), j=1, \ldots, m$, such that $b \notin R\left(\mu_{1} I-A\right)$. Then problem (1.1) has no solution. Indeed, suppose that problem (1.1) has a solution $u=\left(u_{1}, \ldots, u_{m}\right) \in\left(C^{2, \alpha}(\bar{\Omega})\right)^{m}$. Multiplying the differential equation in (1.1) by φ_{1} and using Green's formula we obtain

$$
\begin{aligned}
-\int_{\Omega} \varphi_{1} \Delta u_{j} d x & =-\int_{\Omega} u_{j} \Delta \varphi_{1} d x+\int_{\partial \Omega} \psi_{j} \frac{\partial \varphi_{1}}{\partial \nu} d s \\
& =\mu_{1} \int_{\Omega} u_{j} \varphi_{1} d x+\int_{\partial \Omega} \psi_{j} \frac{\partial \varphi_{1}}{\partial \nu} d s \\
& =\sum_{k=1}^{m} a_{j k} \int_{\Omega} u_{k} \varphi_{1} d x, \quad j=1, \ldots, m
\end{aligned}
$$

where ν is the unit outward normal to $\partial \Omega$. This yields

$$
\left(\mu_{1} I-A\right) x=b,
$$

where x denotes the column vector

$$
x=\left(\int_{\Omega} u_{j} \varphi_{1} d x\right)_{1 \leq j \leq m}
$$

and we reach a contradiction.

The above example shows that our condition is sharp.

5 - The linear problem

In this section we consider the following boundary value problem:

$$
\begin{align*}
-\delta u_{j} & =\sum_{k=1}^{m} a_{j k} u_{k}, \quad j=1, \ldots, m \text { in } \Omega, \tag{5.1}\\
u_{j} & =0, \quad j=1, \ldots, m \text { on } \partial \Omega \tag{5.2}
\end{align*}
$$

where $m \geq 1$ and $a_{j k} \in \mathbb{R}$ for $1 \leq j, k \leq m$. We define $A_{m}=\left(a_{j k}\right)_{1 \leq j, k \leq m}$. Below $u=\left(u_{1}, \ldots, u_{m}\right) \geq 0($ resp. $>0)$ means $u_{j} \geq 0\left(\right.$ resp. $\left.u_{j}>0\right)$ for $j=1, \ldots, m$.

Lemma 2. Let $u=\left(u_{1}, \ldots, u_{m}\right) \in\left(C^{2, \alpha}(\bar{\Omega})\right)^{m}$ be a nonnegative nontrivial solution of problem (5.1), (5.2). Then $\operatorname{det}\left(\mu_{1} I-A_{m}\right)=0$.

Proof: Arguing as in example 1 we get

$$
\left(\mu_{1} I-A_{m}\right) x=0
$$

where x is the column vector $x=\left(\int_{\Omega} u_{j} \varphi_{1} d x\right)_{1 \leq j \leq m}$. Since there exists $j \in$ $\{1, \ldots, m\}$ such that $\int_{\Omega} u_{j} \varphi_{1} d x \neq 0$, we have necessarily

$$
\operatorname{det}\left(\mu_{1} I-A_{m}\right)=0
$$

and the lemma is proved.
Lemma 3. Assume that $a_{j k} \geq 0$ for $j, k=1, \ldots, m$. Let $u=\left(u_{1}, \ldots, u_{m}\right) \in$ $\left(C^{2, \alpha}(\bar{\Omega})\right)^{m}$ be a positive solution of problem (5.1), (5.2). Then $\mu_{1}=\rho\left(A_{m}\right)$.

Proof: Indeed, using the above notations we still get $\left(\mu_{1} I-A_{m}\right) x=0$ and the result follows from theorem 4.

Remark 4. Assume that $m=2$ and that problem (5.1), (5.2) has a positive solution $u=\left(u_{1}, u_{2}\right) \in\left(C^{2, \alpha}(\bar{\Omega})\right)^{2}$. Then we have

$$
\begin{align*}
& \mu_{1}=a_{11}\left(\text { resp. } \mu_{1}=a_{22}\right) \quad \Longleftrightarrow \quad a_{12}=0 \quad\left(\text { resp. } a_{21}=0\right), \tag{5.3}\\
& \mu_{1}>a_{11}\left(\text { resp. } \mu_{1}>a_{22}\right) \quad \Longleftrightarrow \quad a_{12}>0 \quad\left(\text { resp. } a_{21}>0\right) . \tag{5.4}
\end{align*}
$$

Indeed, arguing as in example 1 we get

$$
\left(\mu_{1}-a_{11}\right) \int_{\Omega} u_{1} \varphi_{1} d x=a_{12} \int_{\Omega} u_{2} \varphi_{1} d x
$$

and

$$
\left(\mu_{1}-a_{22}\right) \int_{\Omega} u_{2} \varphi_{1} d x=a_{21} \int_{\Omega} u_{1} \varphi_{1} d x
$$

from which we deduce (5.3) and (5.4).
Now we give two examples.
Example 2: Assume $m=2$ and $\operatorname{det} A_{2} \notin\left\{\mu_{1} \mu_{k} ; k \geq 2\right\}$. Then problem (5.1), (5.2) has a positive solution $u=\left(u_{1}, u_{2}\right) \in\left(C^{2, \alpha}(\bar{\Omega})\right)^{2}$ if and only if

$$
\begin{equation*}
\operatorname{det}\left(\mu_{1} I-A_{2}\right)=0 \tag{5.5}
\end{equation*}
$$

and one of the following conditions holds:
i) $\mu_{1}=a_{11}, a_{12}=0$ and $\left(\mu_{1}-a_{22}\right) a_{21}>0$.

Then the solution is given by $u_{1}=C \varphi_{1}$ and $u_{2}=\frac{a_{21}}{\mu_{1}-a_{22}} C \varphi_{1}$ for some constant $C>0$.
ii) $\mu_{1}=a_{22}, a_{21}=0$ and $\left(\mu_{1}-a_{11}\right) a_{12}>0$.

Then the solution is given by $u_{1}=C \varphi_{1}$ and $u_{2}=\frac{\mu_{1}-a_{11}}{a_{12}} C \varphi$ for some constant $C>0$.
iii) $\mu_{1}=a_{11}=a_{22}, a_{12}=a_{21}=0$.

Then the solution is given by $u_{1}=C \varphi_{1}$ and $u_{2}=C^{\prime} \varphi_{1}$ for some constants $C, C^{\prime}>0$.
iv) $\left(\mu_{1}-a_{11}\right) a_{12}>0$ and $\left(\mu_{1}-a_{22}\right) a_{21}>0$.

Then the solution is given by $u_{1}=C \varphi_{1}$ and $u_{2}=\frac{a_{21}}{\mu_{1}-a_{22}} C \varphi_{1}=\frac{\mu_{1}-a_{11}}{a_{12}} C \varphi_{1}$ for some constant $C>0$.

Proof: Assume that problem (5.1), (5.2) has a positive solution $u=\left(u_{1}, u_{2}\right) \in$ $\left(C^{2, \alpha}(\bar{\Omega})\right)^{2}$. By lemma 2 condition (5.5) is satisfied.

Define $D(\lambda)=\operatorname{det}\left(\lambda I-A_{2}\right) . D$ is a polynomial of degree 2 . Since $D\left(\mu_{1}\right)=0$, the roots of D are real. We denote by μ the other root. Since $\mu \mu_{1}=\operatorname{det} A_{2}$, our assumption implies $\mu \neq \mu_{k}$ for all $k \geq 2$.

Now denote by φ_{j} the eigenfunction corresponding to μ_{j} (with $\varphi_{1}>0$ in $\Omega)$. These form a complete orthonormal set in $W_{0}^{1,2}(\Omega)$, hence total in $C^{2, \alpha}$. If $u=\left(u_{1}, u_{2}\right) \in\left(C^{2, \alpha}(\bar{\Omega})\right)^{2}$ is a solution of problem (5.1), (5.2) the corresponding Fourier coefficients $u_{1 j}$ and $u_{2 j}$ satisfy the linear system

$$
\left\{\begin{array}{l}
\left(\mu_{j}-a_{11}\right) u_{1 j}-a_{12} u_{2 j}=0 \tag{5.6}\\
-a_{21} u_{1 j}+\left(\mu_{j}-a_{22}\right) u_{2 j}=0
\end{array}\right.
$$

from which it immediately follows that $u_{1 j}=u_{2 j}=0$ for $j \geq 2$. Using (5.3) and (5.4) of remark 4 we easily verify that one of the conditions i)-iv) holds. The relation between u_{11} and u_{21} is easily checked in each case.

The converse is obvious.
Example 3: Assume $m=2$. If there exists $k \geq 2$ such that $\operatorname{det} A_{2}=\mu_{1} \mu_{k}$, then problem (5.1), (5.2) has a positive solution $u=\left(u_{1}, u_{2}\right) \in\left(C^{2, \alpha}(\bar{\Omega})\right)^{2}$ if and only if (5.5) is satisfied and one of the following conditions holds:
i) $\mu_{1}=a_{11}, a_{12}=0$ and $a_{21}<0$.

Then the solution is given by $u_{1}=C \varphi_{1}$ and $u_{2}=\frac{a_{21}}{\mu_{1}-\mu_{k}} C \varphi_{1}+v$ where v is an eigenfunction corresponding to μ_{k} and $C>0$ is a constant such that $u_{2}>0$ in Ω.
ii) $\mu_{1}=a_{22}, a_{21}=0$ and $a_{12}<0$.

Then the solution is given by $u_{2}=C \varphi_{1}$ and $u_{1}=\frac{a_{12}}{\mu_{1}-\mu_{k}} C \varphi_{1}+v$ where v is an eigenfunction corresponding to μ_{k} and $C>0$ is a constant such that $u_{1}>0$ in Ω.
iii) $\left(\mu_{1}-a_{11}\right) a_{12}>0$ and $\left(\mu_{1}-a_{22}\right) a_{21}>0$.

Then the solution is given by $u_{1}=\frac{\mu_{1}-a_{22}}{a_{21}} C \varphi_{1}+\frac{\mu_{k}-a_{22}}{a_{21}} v$ and $u_{2}=C \varphi_{1}+v$ where v is an eigenfunction corresponding to μ_{k} and $C^{21}>0$ is a constant such that $u_{1}>0$ and $u_{2}>0$ in Ω.

Proof: Assume that problem (5.1), (5.2) has a positive solution $u=\left(u_{1}, u_{2}\right) \in$ $\left(C^{2, \alpha}(\bar{\Omega})\right)^{2}$. As in example 2 (5.5) is satisfied. We keep the notations of the proof of example 2 . Our assumption implies that $\mu=\mu_{k}$ for some $k \geq 2$. Using the same argument we obtain (5.6) from which it immediately follows that $u_{1 j}=u_{2 j}=0$ except possibly for $j=1$ and the indices such that $\mu_{j}=\mu_{k}$. Using (5.3) and (5.4) of remark 4 we easily show that one of the conditions i)-iii) holds. The relations between the coefficients of the expansions of u_{1} and u_{2} in the eigenfunctions are easily checked according to the various possibilities i)-iii).

The converse is obvious.
Remark 5. Assume $a_{j k} \geq 0, j, k=1,2$, and $\mu_{1}=\rho\left(A_{2}\right)$.
If problem (5.1), (5.2) has a positive solution $u=\left(u_{1}, u_{2}\right) \in\left(C^{2, \alpha}(\bar{\Omega})\right)^{2}$ then $\operatorname{det} A_{2} \leq \mu_{1}^{2}$ since $\operatorname{det} A_{2}=\mu \mu_{1}$.

If $\operatorname{det} A_{2}=\mu_{1}^{2}$, let $a_{j j}=\mu_{1}$ for $j=1,2$ and $a_{12}=a_{21}=0$. Then iii) of example 2 gives the existence of infinitely many positive solutions.

If $\operatorname{det} A_{2}<\mu_{1}^{2}$, first let

$$
A_{2}=\left(\begin{array}{cc}
\mu_{1} & 0 \\
a_{21} & a_{22}
\end{array}\right) \quad \text { with } \mu_{1}>a_{22} \text { and } a_{21}>0
$$

or

$$
A_{2}=\left(\begin{array}{cc}
a_{11} & a_{12} \\
0 & \mu_{1}
\end{array}\right) \quad \text { with } \mu_{1}>a_{11} \text { and } a_{12}>0 .
$$

Then i) or ii) of example 2 gives the existence of infinitely many positive solutions. Now let

$$
A_{2}=\left(\begin{array}{cc}
\mu_{1}-\varepsilon_{1} & a_{12} \\
a_{21} & \mu_{1}-\varepsilon_{2}
\end{array}\right)
$$

with $0<\varepsilon_{j}<\mu_{1}$ for $j=1,2, a_{12}, a_{21}>0$ and $\varepsilon_{1} \varepsilon_{2}=a_{12} a_{21}$. Then iv) of example 2 gives the existence of infinitely many positive solutions.

Remark 6. If $a_{j k} \geq 0, j, k=1,2$, and $\mu_{1}>\rho\left(A_{2}\right)$ then the only solution of problem (5.1), (5.2) is the trivial solution (see remark 3). If $\mu_{1}=\rho\left(A_{2}\right)$, infinitely many positive solutions may exist by remark 5 .

The next result was proved in [5].
Theorem 8. Assume that $a_{j k}$ in (5.1) are such that

$$
\begin{aligned}
& a_{j j+1}=\lambda_{j+1}, \quad j=1, \ldots, m-1 \\
& a_{m 1}=\lambda_{1}
\end{aligned}
$$

and

$$
a_{j k}=0, \quad \text { otherwise }
$$

Then problem (5.1), (5.2) has a positive solution $u=\left(u_{1}, \ldots, u_{m}\right) \in\left(C^{2, \alpha}(\bar{\Omega})\right)^{m}$ if and only if

$$
\begin{equation*}
\lambda_{j}>0, \quad j=1, \ldots, m \quad \text { and } \quad \lambda_{1} \cdots \lambda_{m}=\mu_{1}^{m} \tag{5.7}
\end{equation*}
$$

The solution is given by $u_{j}=c_{j} \varphi_{1}$ where $c_{1}>0$ is an arbitrary constant and $c_{j}=c_{1}\left(\lambda_{2} \cdots \lambda_{j}\right)^{-1}\left(\lambda_{1} \cdot \lambda_{m}\right)^{(j-1) / m}$ for $j=2, \ldots, m$.

Remark 7. By lemma 1 condition (5.7) is equivalent to

$$
\lambda_{j}>0, \quad j=1, \ldots, m \quad \text { and } \quad \mu_{1}=\rho\left(A_{m}\right)
$$

Now with the notations of theorem 8 , if $\lambda_{j} \geq 0, j=1, \ldots, m$ and $\mu_{1}>\rho\left(A_{m}\right)$, then the only solution of problem $(5.1),(5.2)$ is the trivial solution (see remark 3). If $\lambda_{j}>0, j=1, \ldots, m$ and $\mu_{1}=\rho\left(A_{m}\right)$, theorem 8 shows that there exist infinitely many positive solutions.

ACKNOWLEDGEMENT - The author would like to thank the referee for his valuable remarks, notably his suggestion concerning the proof of examples 2 and 3: this advantageously replaces the author's original longer proof.

REFERENCES

[1] Aftabizadeh, A.R. - Existence and uniqueness theorems for fourth order boundary value problems, J. Math. Anal. Appl., 116 (1986), 415-426.
[2] Berger, M.S. - Nonlinearity and functional analysis, Academic Press, New York, 1977.
[3] Berman, A. and Plemmons, R.J. - Nonnegative matrices in the mathematical sciences, Academic Press, New York, 1979.
[4] Chen, M.P. and Nee, J. - An existence theorem for some high order elliptic equations, Nonlinear Anal., Theory Methods Appl., 19 (1992), 403-407.
[5] Dalmasso, R. - Positive solutions of nonlinear elliptic systems, Annales Polonici Mathematici, LVIII. 2 (1993), 201-212.
[6] Gilbarg, D. and Trudinger, N.S. - Elliptic partial differential equations of second order, Springer-Verlag, Second Edition, Berlin-heidelberg-New York, 1983.
[7] Yang, Y. - Fourth-order two-point boundary value problems, Proc. Amer. Math. Soc., 104 (1988), 175-180.

Robert Dalmasso,
Laboratoire LMC-IMAG, Equipe EDP, Tour IRMA, B.P. 53, F-38041 Grenoble Cedex 9 - FRANCE

[^0]: Received: February 12, 1993; Revised: April 1, 1994.
 1991 Mathematics Subject Classification: 35B45, 35J55.
 Keywords: a priori bounds, elliptic systems, Leray-Schauder degree.

