PORTUGALIAE MATHEMATICA Vol. 52 Fasc. 2 – 1995

MEASURES OF WEAK NONCOMPACTNESS IN BANACH SEQUENCE SPACES

JOZEF BANAS and ANTONIO MARTINÓN

Abstract: Based on a criterion for weak compactness in the ℓ^p product of the sequence of Banach spaces E_i , i = 1, 2, ..., we construct a measure of weak noncompactness in this space. It is shown that this measure is regular but not equivalent to the De Blasi measure of weak noncompactness provided the spaces E_i have the Schur property. Apart from this a formula for the De Blasi measure in the sequence space $c_0(E_i)$ is also derived.

1 – Introduction

The notion of a measure of weak noncompactness was introduces by De Blasi [5] and was subsequently used in numerous branches of functional analysis and the theory of differential and integral equations (cf. [1, 2, 3, 7, 8, 11], for instance).

In order to recall this notion denote by E a Banach space with the norm $\| \|$ and the zero element θ . Let $B(x_0, r)$ stand for the closed ball centered at x_0 and with radius r and let $B = B(\theta, 1)$.

Next, denote by Conv X the closed convex hull of the set $X, X \subset E$. Moreover, let M_E denote the family of all nonempty and bounded subsets of E and W_E its subfamily consisting of all relatively weakly compact sets.

The measure of weak noncompactness of De Blasi [5] is defined in the following way:

 $\beta(X) = \inf \left\{ \varepsilon > 0 \colon \text{there exists a set } Y \in W_E \text{ such that } X \subset Y + \varepsilon B_E \right\} \,,$

where $X \in M_E$. This function possesses several useful properties [5] (see also below). For example, $\beta(B_E) = 1$ whenever E is nonreflexive and $\beta(B_E) = 0$ otherwise.

There exists also an axiomatic approach in defining of measures of noncompactness [4]. Let us recollect this definition.

Received: December 11, 1992.

Definition. A function $\mu: M_E \to R_+ = [0, \infty)$ is said to be a measure of weak noncompactness in E if it satisfies the following conditions:

- (1) $\mu(X) = 0 \Leftrightarrow X \in W_E;$
- (2) $X \subset Y \Rightarrow \mu(X) \leq \mu(Y);$
- (3) $\mu(\text{Conv} X) = \mu(X);$
- (4) $\mu(X \cup Y) = \max\{\mu(X), \mu(Y)\};$
- (5) $\mu(X+Y) \le \mu(X) + \mu(Y);$
- (6) $\mu(cX) = |c| \mu(X), \ c \in R.$

Let us mention that in the paper [4] a measure of weak noncompactness in the above sense is called to be *regular*.

Notice that De Blasi measure β is a measure of weak noncompactness in this sense and has also some additional properties [5]. However, for any measure μ the following inequality holds [4]

(1)
$$\mu(X) \le \mu(B_E)\,\beta(X) \;.$$

Finally, let us recall [4] that each measure of weak noncompactness satisfies also the Cantor intersection condition.

2 – Main results

At the beginning let us establish some notation. Assume that $(E_i, || ||_i)$, i = 1, 2, ..., is a given sequence of Banach spaces. Fix a number $p, 1 \le p < \infty$ and consider the set of the sequences $x = (x_i)$ such that $x_i \in E_i$ for any i = 1, 2, ... and $\sum_{i=1}^{\infty} ||x_i||_i^p < \infty$. Denote this set by $\ell^p(E_1, E_2, ...)$ or shortly by $\ell^p(E_i)$. If we normed it by

$$||x|| = ||(x_i)|| = \left(\sum_{i=1}^{\infty} ||x_i||_i^p\right)^{1/p}$$

then it becomes a Banach space [10, 12].

Similarly, let $c_0(E_i)$ denote the space of all sequences $x = (x_i), x_i \in E_i$, with the property $||x_i||_i \to 0$ as $i \to \infty$ and endowed by the norm

$$||x|| = ||(x_i)|| = \max\{||x_i||_i \colon i = 1, 2, \ldots\}$$

Further, let e_k denote the canonical projection of one of the spaces $\ell^p(E_i)$, $c_0(E_i)$ or $\ell^p(E_1, E_2, \ldots, E_n)$ onto the space E_k , i.e. $e_k(x_1, x_2, \ldots) = x_k$. Observe that $e_k(B_p) = e_k(B_0) = B_{E_k}$, where $B_p = B_{\ell^p(E_i)}$ and $B_0 = B_{c_0(E_i)}$.

In what follows we shall need the following theorem.

Theorem 1. A subset X of the space $\ell^p(E_i)$, 1 , is relatively weakly compact if and only if

- (a) X is bounded;
- (b) the set $e_k(X)$ is relatively weakly compact in E_k for any k = 1, 2, ...

This theorem comes from [12], where the case $E_k = E$, k = 1, 2, ..., was investigated. Reapeting step by step the reasoning from [12] we can easily obtain the proof of Theorem 1.

In order to define measures of weak noncompactness in the space $\ell^p(E_i)$ let us assume that β_i is De Blasi measure in the space E_i , i = 1, 2, ... and let β_p denote De Blasi measure in $\ell^p(E_i)$. Further, for $X \in M_{\ell^p(E_i)}$ let us put

(2)
$$\mu(X) = \sup \left\{ \beta_n(e_n(X)) \colon n = 1, 2, \ldots \right\} \,.$$

Then we have the following theorem.

Theorem 2. The function μ is a measure of weak noncompactness in the space $\ell^p(E_i)$, $1 , such that <math>\mu(X) \leq \beta_p(X)$ for any $X \in M_{\ell^p(E_i)}$.

Proof: Notice first that when all the spaces E_i are reflexive then $\ell^p(E_i)$ is also reflexive [10], so in view of Theorem 1, we have that $\mu(X) = 0$ for any $X \in M_{\ell^p(E_i)}$.

Let us suppose that at least one of the space E_i is nonreflexive. Then taking into account the properties of the function β we can easily infer that the function μ satisfies all the conditions of our Definition (in fact, the condition (1) is a consequence of Theorem 1).

Finally, let us notice that $\beta_k(e_k(B_k)) = \beta_k(B_{E_k}) = 1$ at least for one natural number k. Thus we deduce that $\mu(B_p) = 1$ and by (1) we obtain that $\mu(X) \leq \beta_p(X)$. This complete the proof.

In the sequel we are going to show that the measure of weak noncompactness defined by (2) has not to be equivalent to De Blasi measure β_p .

First, let us recall that a Banach space E is said to have *Schur property* if weakly convergent sequences in E are norm convergent. For example, the classical space ℓ^1 has this property [6].

In what follows we shall need the following two lemmas.

Lemma 1. Let *E* be a Banach space having Schur property. Then a set $X \subset E$ is weakly compact if and only if *X* is compact.

Lemma 2. Let E_1, E_2, \ldots, E_n be Banach spaces with Schur property. Then the space $\ell^p(E_1, E_2, \ldots, E_n)$ has also Schur property for $1 \le p < \infty$.

We omit trivial proofs of the lemmas.

Starting from now on let us assume that $(E_i, || ||_i)$ is a sequence of Banach spaces being nonreflexive and such that every space E_i has Schur property. Then we have the following theorem.

Theorem 3. Under the above assumptions the measure of weak noncompactness μ in the space $\ell^p(E_i)$ defined by (2) is not equivalent to De Blasi measure β_p (1 \infty).

Proof: Suppose the contrary. Then there exists a constant c > 0 such that

(3)
$$c \beta_p(X) \le \mu(X)$$

for any $X \in M_{\ell^p(E_i)}$.

Now, consider the sequence (X_n) of subsets of $\ell^p(E_i)$ having the form

$$X_n = \left\{ x = (x_1, x_2, \dots, x_n, \theta, \theta, \dots) \colon x_1 \in B_{E_1}, \ \dots, \ x_n \in B_{E_n} \right\},\$$

for $n = 1, 2, \ldots$ Obviously we can write

$$X_n = B_{E_1} \times B_{E_2} \times \ldots \times B_{E_n} \times \{\theta\} \times \{\theta\} \times \ldots$$

which implies that we can treat $X_n \subset \ell^p(E_1, E_2, \ldots, E_n)$. Particularly we have that $e_i(X_n) = B_{E_i}$ $(i = 1, 2, \ldots, n)$ and consequently

$$\mu(X_n) = 1$$

for $n = 1, 2, \ldots$ Thus, in virtue of (3) we get

(4)
$$\beta_p(X_n) \le 1/c$$

for n = 1, 2, ...

Further, let us choose an integer n such that $n^{1/p} - (2/c) > 0$ and take $\varepsilon > 0$ such that $n^{1/p} - 2\left(\frac{1}{c} + \varepsilon\right) > 0$. By (4) we can find a relatively weakly compact set W_n in the space $\ell^p(E_i)$ such that

$$X_n \subset W_n + \left(\frac{1}{c} + \varepsilon\right) B_{\ell^p(E_i)}$$
.

In view of the remark made before, instead of the above inclusion we may write

(5)
$$X_n \subset W_n + \left(\frac{1}{c} + \varepsilon\right) B_{\ell^p(E_1, E_2, \dots, E_n)} ,$$

BANACH SEQUENCE SPACES

where W_n is treated as a relatively weakly compact set in the space $\ell^p(E_1, E_2, \ldots, E_n)$.

Now, fix arbitrarily $i, 1 \leq i \leq n$. In view of generalized version of Riesz lemma [9] we can select a sequence $(x_k^i) \subset B_{E_i}$ such that

(6)
$$||x_k^i - x_m^i|| > 1$$

for $k \neq m, k, m = 1, 2, ...$ and for every i = 1, 2, ..., n.

Next, consider the sequence $(y_k)_{k \in \mathbb{N}}$ of points from X_n of the form

$$y_n = (x_k^1, x_k^2, \dots, x_k^n, \theta, \theta, \dots)$$

 $k = 1, 2, \ldots$ Taking $k \neq m$ and keeping in mind (6) we derive

$$||y_k - y_m|| = ||y_k - y_m||_{\ell^p(E_1, E_2, \dots, E_n)} = \left(\sum_{i=1}^n ||x_k^i - x_m^i||_i^p\right)^{1/p} > n^{1/p}$$

On the other hand in view of (5) we can find $w_k \in W_k$ and $z_k \in B_{\ell^p(E_1, E_2, \dots, E_n)}$ (for any $k = 1, 2, \dots$) such that

$$y_k = w_k + \left(\frac{1}{c} + \varepsilon\right) z_k \; .$$

Hence, taking $k \neq m$ we obtain

$$\begin{split} \|w_{k} - w_{m}\|_{\ell^{p}(E_{1},...,E_{n})} &= \left\| (y_{k} - y_{m}) - \left(\frac{1}{c} + \varepsilon\right)(z_{k} - z_{m}) \right\|_{\ell^{p}(E_{1},...,E_{n})} \\ &\geq \|y_{k} - y_{m}\|_{\ell^{p}(E_{1},...,E_{n})} - \left(\frac{1}{c} + \varepsilon\right)\|z_{k} - z_{m}\|_{\ell^{p}(E_{1},...,E_{n})} \\ &> n^{1/p} - \left(\frac{1}{c} + \varepsilon\right)\|z_{k} - z_{m})\|_{\ell^{p}(E_{1},...,E_{n})} \;. \end{split}$$

Consequently

$$||w_k - w_m||_{\ell^p(E_1,...,E_n)} > n^{1/p} - 2\left(\frac{1}{c} + \varepsilon\right) > 0$$

for $k, m = 1, 2, ..., k \neq m$.

Thus we lead to a contradiction because in view of Lemmas 1 and 2 the set W_k is relatively compact in the space $\ell^p(E_1, E_2, \ldots, E_n)$. This complete the proof.

In the sequel we shall deal with a measure of weak noncompactness in the space $c_0(E_i)$. Similarly as before let β_k denote De Blasi measure in E_k (k = 1, 2, ...)

and β_0 stand for this measure in the space $c_0(E_i)$. For further purposes denote by d_k the operator acting from $c_0(E_i)$ into itself defined by

$$d_k(x) = d_k(x_1, x_2, \ldots) = (\theta, \theta, \ldots, \theta, x_k, x_{k+1}, \ldots) .$$

Finally, define for $X \in M_{c_0(E_i)}$:

$$a(X) = \sup \left\{ \beta_n(e_n(X)) \colon n = 1, 2, \dots \right\},$$

$$b(X) = \inf \left\{ \beta_0(d_n(X)) \colon n = 1, 2, \dots \right\},$$

$$\gamma(X) = \max \left\{ a(X), b(X) \right\}.$$

Then we have the following theorem.

Theorem 4. $\beta_0(X) = \gamma(X)$.

Proof: Let us take an arbitrary number $r > \gamma(X)$. Then there exists a positive integer n such that

$$\beta_0(d_n(X)) < r$$

which implies that we can choose a subset $W \in W_{c_0(E_i)}$ with the property

(7)
$$d_n(X) \subset W + rB_0 .$$

Without loss of generality we can assume that $W = d_n(W)$.

On the other hand $\beta_k(e_k(X)) < r$ for any k = 1, 2, ..., n-1 which allows us to deduce that there is $W_k = W_{E_k}$ such that

(8)
$$e_k(X) \subset W_k + rB_{E_k}$$

for $k = 1, 2, \ldots, n - 1$.

Now, keeping in mind (7) and (8) we infer that

$$X \subset \left((W_1 + rB_{E_1}) \times \dots \times (W_{n-1} + rB_{E_{n-1}}) \times \{\theta\} \times \dots \right) + W + rB_0$$

and consequently

$$x \subset (W_1 \times W_2 \times \cdots \times W_{n-1} \times \{\theta\} \times \cdots) + W + rB_0.$$

Hence, by the properties of De Blasi measure we have

 $\beta_0(X) \le r$

which means that

$$\beta_0(X) \le \gamma(X)$$
.

In order to show the converse inequality take $r > \beta_0(X)$. Then we can find a set $W \in W_{c_0(E_i)}$ such that $X \subset W + rB_0$. Hence we have

$$\beta_n(e_n(X)) \le \beta_n(e_n(W)) + r \,\beta_n(e_n(B_0)) \le r$$

for $n = 1, 2, \ldots$ Consequently

$$a(X) \le r$$
, $b(X) \le r$,

which gives the desired inequality and ends the proof. \blacksquare

Let us notice that $d_n(X) \supset d_k(X)$ for $n \leq k$ which implies that

$$b(X) = \lim_{n \to \infty} \beta_0(d_n(X))$$
.

Finally observe that from Theorem 4 we obtain the following criterion for weak compactness in the space $c_0(E_i)$.

Corollary 1. A subset X of the space $c_0(E_i)$ is relatively weakly compact if and only if

- (i) X is bounded,
- (ii) the set $e_k(X)$ is relatively weakly compact in E_k for any k = 1, 2, ...,and
- (iii) for any $\varepsilon > 0$ there exists a positive integer n_0 such that $\beta_0(d_n(X)) \le \varepsilon$ for $n \ge n_0$.

Corollary 2. Let X be a subset of the space $c_0(E_i)$ satisfying the conditions (i), (ii) of Corollary 1 and instead of (iii) the following one

(iv) $\lim_{n\to\infty} \left[\sup_{x\in X} \left[\max\{ \|x_k\|_k \colon k \ge n \} \right] \right] = 0.$

Then X is relatively weakly compact.

Indeed, notice that

$$\sup_{x \in X} \left[\max \left\{ \|x_k\|_k \colon k \ge n \right\} \right] = \|d_n(X)\| .$$

Thus in view of the inequality

$$\beta_0(d_n(X)) \le \|d_n(X)\|$$

we infer that X satisfies the condition (iii) of Corollary 1.

REFERENCES

- APPELL, J. and DE PASCALE E. Su alcuni parametri connesi con la misura di non compatteza di Hausdorff in spazi functioni misurabili, *Boll. Un. Mat. Ital.*, 6, 3–13 (1984), 497–515.
- [2] ASTALA, K. On measures of noncompactness and ideal variations in Banach spaces, Ann. Acad. Sci. Fenn. Ser. A.I. Math. Diss., 29 (1980).
- [3] ASTALA, K. and TYLLI, H.O. Seminorms related to weak compactness and to Tauberian operators (preprint).
- [4] BANAS, J. and RIVERO, J. On measures of weak noncompactness, Ann. Mat. Pura Appl., 151 (1988), 213–224.
- [5] DE BLASI, F.S. On a property of the unit sphere in a Banach space, Bull. Math. Soc. Sci. Math. R.S. Roumanie, 21 (1977), 259–262.
- [6] DIESTEL, J. Sequences and series in Banach spaces, Springer Verlag, 1984.
- [7] EMMANUELE, G. Measure of weak noncompactness and fixed point theorems, Bull. Math. Soc. Sci. Math. R.S. Roumanie, 25 (1981), 353–358.
- [8] GONZALEZ, M. and MARTINON, A. On the generalized Sadovskii functor, Rev. Acad. Canaria Cien., 1 (1990), 109–117.
- [9] KOTTMAN, C.A. Subsets of the unit ball that are separated by more than one, Studia Math., 53 (1975), 15–27.
- [10] KÖTHE, G. Topological vector spaces I, Springer Verlag, 1969.
- [11] LAKSHMIKANTHAM, V. and LEELA, S. Nonlinear differential equations in abstract spaces, Pergamon Press, 1981.
- [12] LEONARD, I.E. Banach sequence spaces, J. Math. Anal. Appl., 54 (1976), 245– 265.

Jozef Banas,

Department of Mathematics, Technical University of Rzeszów, 35-959 Rzeszów, W. Pola 2 – POLAND

and

Antonio Martinón, Department of Mathematical Analysis, University of La Laguna, 38271 La Laguna (Tenerife) – SPAIN