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ON SUBSPACES OF MEASURABLE REAL FUNCTIONS

László Zsilinszky

Abstract: Let (X,S, µ) be a measure space. Let Φ : IR → IR be a continuous

function. Topological properties of the space of all measurable real functions f such that

Φ ◦ f is Lebesgue-integrable are investigated in the space of measurable real functions

endowed with the topology of convergence in measure.

Introduction

Let (X,S, µ) be a measure space. Denote by M the space of all measurable
real functions on X. As usual the symbol Lp(µ) stands for the set of all functions
f ∈M for which

∫

X |f |
p dµ < +∞ (p ≥ 1).

It is shown in [4] that the Riemann-integrable functions on the interval [a, b]
(a, b ∈ IR) constitute a meager set in the space of all Lebesgue-integrable func-
tions on [a, b] furnished with the topology of mean convergence. Then a natural
question arises to establish the largeness of Lebesgue-integrable functions, or more
generally of Lp spaces in the spaceM with an appropriate topology.
Making allowance for this we could pursue the analogy further by examining

the class A(Φ) of all mesurable real functions f such that Φ ◦ f is Lebesgue-
integrable, where Φ: IR→ IR is an arbitrary but fixed continuous function.
In favour of this we need a proper topology onM. Let E(f, g; r) = {x ∈ X;

|f(x)− g(x)| > r}, where f, g ∈ M, r > 0. Define the pseudo-metric % onM as
follows ([1]):

%(f, g) = inf
{

r > 0; µ(E(f, g; r)) ≤ r
}

(f, g ∈M) .

Given fn, f ∈ M (n ∈ IN) we say that fn converges in measure to f if, for
each r > 0 lim

n→∞
µ(E(fn, f ; r)) = 0.
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It is known that the %-convergence is equivalent to the convergence in measure,
further (M, %) is a complete pseudo-metric space ([1], p.80).
Define the following sets:

Aα(Φ) =
{

f ∈M;

∫

X
|Φ ◦ f | dµ ≤ α

}

(α ≥ 0) ,

A(Φ) =
{

f ∈M;

∫

X
|Φ ◦ f | dµ < +∞

}

,

where Φ: IR→ IR is an arbitrary but fixed continuous function.
The symbol χ

A
stands for the characteristic function of A ⊂ X.

Main results

First we point out to which Borel class Aα(Φ) and A(Φ), respectively belong
(α ≥ 0). We have

Theorem 1. The set Aα(Φ) is closed in (M, %) for all α ≥ 0.

Proof: Let f ∈ M, fn ∈ Aα(Φ) and %(fn, f) → 0 (n → ∞). Then by
a well-known theorem of Riesz there exists a subsequence {fnk

}∞
k=1 of {fn}

∞
n=1

converging a.e. on X to f . Consequently |Φ ◦ fnk
| → |Φ ◦ f | a.e. on X, thus in

view of the Fatou Lemma
∫

X
|Φ ◦ f | dµ =

∫

X

(

lim
k→∞

|Φ ◦ fnk
|
)

dµ ≤ lim inf
k→∞

∫

X
|Φ ◦ fnk

| dµ ≤ α ,

so f ∈ Aα(Φ).

Corollary 1. The set A(Φ) is an Fσ-subset of (M, %).

Proof: It follows from Theorem 1, since A(Φ) =
⋃∞
n=1An(Φ).

Remark 1. In the sequel we will use the fact that A(Φ) is meager in (M, %)
if and only if M\Aα(Φ) is dense in M for all α > 0. Indeed, the sufficiency
follows from Theorem 1 (resp. Corollary 1). Conversely, (M, %) is a complete
pseudo-metric space and therefore a Baire space as well (cf. [3], p.19), i.e. every
nonempty open subset ofM is nonmeager in (M, %).

Now we are prepared to determine the category of A(Φ) inM.

Theorem 2. Suppose that

(1) for each ε > 0 there exists E ∈ S such that 0 < µ(E) < ε .
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Let Φ be unbounded. Then A(Φ) is meager in (M, %).

Proof: Let f ∈ Aα(Φ) (where α > 0), ε > 0, further 0 < µ(E) < ε for some
E ∈ S. Choose t0 ∈ IR such that

|Φ(t0)| >
1

µ(E)

(

α−

∫

X\E
|Φ ◦ f | dµ

)

.

Then for g = f · χ
X\E

+ t0 · χE ∈M we have

∫

X
|Φ ◦ g| dµ =

∫

X\E
|Φ ◦ f | dµ+ |Φ(t0)|µ(E) > α, thus g ∈M\Aα(Φ) .

On the other hand E(f, g; ε) ⊂ E, so %(f, g) < ε (see Remark 1).

Theorem 3. Let (X,S, µ) be a non-σ-finite measure space. Suppose that
either Φ is bounded or (1) does not hold.

Then A(Φ) is meager in (M, %) if and only if |Φ|−1(0,+∞) = {t ∈ IR;
|Φ(t)| > 0} is dense in IR.

Proof: Suppose that |Φ|−1(0,+∞) is dense in IR. Let α > 0 and f ∈
Aα(Φ). Then f can be considered as a uniform limit of a sequence of elementary
measurable functions ([2], p.86). Hence we can find an elementary measurable
function g =

∑∞
n=1 an χEn

(with X =
⋃∞
n=1En) in every ε-neighbourhood of f in

(M, %) (ε > 0) such that Φ(an) 6= 0 for all n ∈ IN.
Since (X,S, µ) is not σ-finite we can find m ∈ IN for which µ(Em) = +∞.

It follows that
∫

X
|Φ ◦ g| dµ ≥

∫

Em

|Φ ◦ g| dµ = |Φ(am)|µ(Em) = +∞ ,

hence g ∈M\Aα(Φ). Further see Remark 1.
Conversely, suppose that there exist δ > 0, t ∈ IR such that Φ(t′) ≡ 0, for

every t′ ∈ I = (t− δ, t+ δ). Define f(x) ≡ t, which is evidently in A(Φ). Choose
an arbitrary g ∈M from the δ-neighbourhood of f . Then we can find 0 < r0 < δ

such that E = E(f, g; r0) is of measure less than δ. Then t− r0 ≤ g(x) ≤ t+ r0,
consequently g(x) ∈ I, thus

(2)

∫

X
|Φ ◦ g| dµ =

∫

X\E
|Φ ◦ g| dµ+

∫

E
|Φ ◦ g| dµ =

∫

E
|Φ ◦ g| dµ = a .

If (1) does not hold then a = 0 for a suitably small δ, further if Φ is bounded
then a ≤ Kµ(E) ≤ Kr0 < +∞ for some K > 0. It is now clear from (2) that
under our assumptions

∫

X |Φ ◦ g| dµ < +∞, so g ∈ A(Φ). Accordingly A(Φ)
contains a nonempty open ball.
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Before we state the appropriate theorem for σ-finite spaces define the function

φ(c, ε) = max
t∈[c−ε,c+ε]

|Φ(t)| where c ∈ IR, ε > 0 .

Theorem 4. Let (X,S, µ) be a σ-finite measure space and {Xn}
∞
n=1 be a

measurable decomposition of X with µ(Xn) < +∞. Suppose that either Φ is
bounded or (1) does not hold. Then A(Φ) is meager in (M, %) if and only if

(3) ∀ ε > 0 ∀ cn ∈ IR (n ∈ IN) :
∞
∑

n=1

µ(Xn) · φ(cn, ε) = +∞ .

Proof: First suppose that (3) holds. Choose arbitrary α ≥ 0, ε > 0 and
f ∈ Aα(Φ).
Examine f on the finite measure space (Xn, S|Xn

, µ|Xn
) (n ∈ IN). There

exists a sequence of simple measurable functions which converges a.e. to f on
Xn, further the convergence a.e. implies convergence in measure on finite measure
spaces ([1], p.78). It means that for every n ∈ IN there exists a simple measurable

function gn =
∑k(n)

i=1 cn,i χXn,i
(where k(n) ∈ IN, cn,i ∈ IR, Xn,i ∈ S|Xn

) such that

µ(Xn ∩ E(f, gn;
ε
2)) ≤

ε
2n+1 .

Define the function g =
∑∞

n=1 gn ∈M. We have

µ
(

E(f, g; ε2)
)

=
∞
∑

n=1

µ
(

Xn ∩ E(f, gn;
ε
2)
)

≤
∞
∑

n=1

ε

2n+1
=
ε

2
, so %(f, g) ≤

ε

2
.

For every n ∈ IN let cn be that of the numbers cn,1, ..., cn,k(n) for which
φ(cn,i,

ε
2) is the least (1 ≤ i ≤ k(n)). Choose dn,i ∈ [cn,i −

ε
2 , cn,i +

ε
2 ] such that

|Φ(dn,i)| = φ(cn,i,
ε
2) and put h =

∑∞
n=1

∑k(n)
i=1 dn,i χXn,i

∈ M. Then %(h, g) ≤ ε
2 ,

thereby %(f, h) ≤ %(f, g) + %(g, h) ≤ ε.
On the other hand from (3) we have

∫

X
|Φ ◦ h| dµ =

∞
∑

n=1

∫

Xn

|Φ ◦ h| dµ =
∞
∑

n=1

k(n)
∑

i=1

φ(cn,i,
ε
2) · µ(Xn,i) ≥

≥
∞
∑

n=1

k(n)
∑

i=1

φ(cn,
ε
2) · µ(Xn,i) =

∞
∑

n=1

φ(cn,
ε
2) ·

(

k(n)
∑

i=1

µ(Xn,i)
)

=
∞
∑

n=1

φ(cn,
ε
2) · µ(Xn) = +∞ .
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It means that h ∈M\Aα(Φ) (see Remark 1).
Conversely, if contrary to (3)

∑∞
n=1 φ(cn, ε0) ≤ α for some α, ε0 > 0 and

cn ∈ IR (n ∈ IN), then f =
∑∞

n=1 cn · χXn
∈ Aα(Φ). Choose g ∈ M such that

%(f, g) < δ (0 < δ < ε0). One can find an 0 < r0 < δ, for which the measure of
E = E(f, g; r0) is less than δ.
We have

∫

X
|Φ ◦ g| dµ =

(

∞
∑

n=1

∫

Xn\E
|Φ ◦ g| dµ

)

+

∫

E
|Φ ◦ g| dµ

≤
(

∞
∑

n=1

∫

Xn\E
φ(cn, δ) dµ

)

+

∫

E
|Φ ◦ g| dµ

≤
(

∞
∑

n=1

φ(cn, ε0) · µ(Xn)
)

+

∫

E
|Φ ◦ g| dµ

≤ α+

∫

E
|Φ ◦ g| dµ .

Reasoning analoguous to that of at the end of the proof of Theorem 3 works.

Remark 2. Observe that Theorems 2-4 determine the category of A(Φ) in
(M, %) for every continuous Φ and measure space (X,S, µ), respectively. However
some of these theorems overlap, e.g. in one direction Theorem 3 holds for σ-finite
measure spaces as well (the necessity of the density of |Φ|−1(0,+∞) for A(Φ)
being meager), but in reverse it is false.
Indeed, let (X,S, µ) be an arbitrary σ-finite measure space. Let {Xn}

∞
n=1 be

a measurable decomposition of X such that µ(Xn) < +∞ for all n ∈ IN. Define
the sequence r0 = 1, rn =

1
2 min{rn−1,

1
2n·µ(Xn)} if µ(Xn) > 0 and rn =

1
2 rn−1 if

µ(Xn) = 0 (n ∈ IN). Let

Φ(t) =











1, for t ≤ 0,

rn, for t = n (n ∈ IN),

linear, elsewhere .

Then Φ is a nonincreasing, positive, bounded continuous function.
On the other hand setting cn =

2n+1
2 (n ∈ IN) we get φ(cn,

1
2) = rn, thus

∑∞
n=1 φ(cn,

1
2) · µ(Xn) ≤

∑∞
n=1

1
2n = 2. Consequently by Theorem 4 A(Φ) is

nonmeager in (M, %).

Corollary 2. Let p ≥ 1. Then Lp(µ) is nonmeager in (M, %) if and only if
µ is finite and bounded away from zero.

Proof: Suppose that µ is not bounded away from zero (i.e. (1) holds). Since
the function Φ(t) = |t|p (p > 0) is continuous and unbounded Theorem 2 yields
the desired result at once.
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Assume now the converse of (1) and consider a non-σ-finite measure space
(X,S, µ). Then Lp(µ) is meager in (M, %) by Theorem 3.
Suppose further that (X,S, µ) is σ-finite. Let {Xn}

∞
n=1 be a measurable de-

composition ofX with µ(Xn) < +∞ (n ∈ IN). It is easy to check that φ(c, ε) ≥ εp

for all ε > 0 and c ∈ IR.
Consequently we get for every cn ∈ IR (n ∈ IN) that

∞
∑

n=1

µ(Xn) · φ(cn, ε) ≥
∞
∑

n=1

µ(Xn) · ε
p = εp · µ(X) = +∞ ,

provided µ(X) = +∞. Then in virtue of Theorem 4 Lp(µ) is meager inM.
Finally if (X,S, µ) is a finite measure space then putting cn = 0 for all n ∈ IN

and ε = 1 we can see that (3) is not fulfilled, thus Theorem 4 completes the
proof.
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