PORTUGALIAE MATHEMATICA Vol. 52 Fasc. 1 – 1995

JACOBI ACTIONS OF $SO(2) \times \mathbb{R}^2$ AND $SU(2, \mathbb{C})$ ON TWO JACOBI MANIFOLDS

J.M. NUNES DA COSTA

Abstract: We take a sphere S of the dual space \mathcal{G}^* of $\mathcal{G} = \operatorname{so}(2) \times \mathbb{R}^2$ with the Jacobi manifold structure obtained by quotient by the homothety group of the Lie–Poisson structure in $\mathcal{G}^* \setminus \{0\}$ and we study the actions of two subgroups of $\operatorname{SO}(2) \times \mathbb{R}^2$ on S.

We show that the natural action of $SU(2, \mathbb{C})$ on the unitary 3-sphere of \mathbb{C}^2 with the Jacobi structure determined by its canonical contact structure is a Jacobi action that admits an unique Ad^{*}-equivariant momentum mapping.

1 – Introduction

The notions of Jacobi manifold and Jacobi conformal manifold were introduced by A. Lichnerowicz ([5]) in 1978. A. Kirillov ([3]) also studied these structures under the name of local Lie algebras, when defined on the space of the differentiable sections of a vector bundle with 1-dimensional fibres.

Let \mathcal{G}^* be the dual of the Lie algebra of a finite dimensional Lie group, with its Lie–Poisson structure ([6]), and take the quotient of $\mathcal{G}^* \setminus \{0\}$ by the homothety group. A. Lichnerowicz ([6]) showed that the Lie–Poisson structure defines on the quotient space (which can be identified with an unitary sphere of \mathcal{G}^*) a Jacobi structure.

Finally, let us recall that the notion of momentum mapping, introduced by J.-M. Souriau ([11]) and B. Kostant ([4]) in the symplectic manifold context, can be extended to the Jacobi manifolds (cf. [8]), when a *Jacobi action* or a *conformal Jacobi action* ([9]) of a Lie group on a Jacobi manifold takes place.

In Appendix we summarize some of the basic concepts useful for a better understanding of the paper.

Received: January 22, 1993; Revised: July 30, 1993.

2 – A Jacobi action of the Lie group $SO(2) \times \mathbb{R}^2$ on the unitary sphere of the dual of its Lie algebra

Let G be the Lie group of the euclidean displacements, that is, the semidirect product of SO(2) with \mathbb{R}^2 . The product of two elements (g, x) and (h, y) in $G = \mathrm{SO}(2) \times \mathbb{R}^2$ is given by

(1)
$$(g, x) \cdot (h, y) = (gh, gy + x)$$
.

We can write the elements (g, x) of G as 3×3 matrices of the form

$$\begin{pmatrix} \cos \alpha & -\sin \alpha & x_1 \\ \sin \alpha & \cos \alpha & x_2 \\ 0 & 0 & 1 \end{pmatrix} \equiv (g_\alpha, x) ,$$

where $\alpha \in \mathbf{R}$, $(x_1, x_2) \in \mathbf{R}^2$, the composition law (1) in G corresponding to the product of the two respective matrices.

The Lie group G acts on the plane \mathbb{R}^2 by an action ϕ given by

$$\phi \colon ((g_{\alpha}, x), y) \in G \times \mathbb{R}^2 \to (g_{\alpha}y + x) \in \mathbb{R}^2$$

which can be expressed in matricial form by the following product of matrices:

$$\begin{pmatrix} \cos \alpha & -\sin \alpha & x_1 \\ \sin \alpha & \cos \alpha & x_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} y_1 \cos \alpha - y_2 \sin \alpha + x_1 \\ y_1 \sin \alpha + y_2 \cos \alpha + x_2 \\ 1 \end{pmatrix} .$$

This action corresponds to an α -rotation of the point (y_1, y_2) about the origin followed by a translation by the vector of components (x_1, x_2) .

Let $\mathcal{G} \equiv \mathrm{so}(2) \times \mathbb{R}^2$ be the Lie algebra of G. An element (a, v) of \mathcal{G} can be written as

$$\begin{pmatrix} 0 & a & v_1 \\ -a & 0 & v_2 \\ 0 & 0 & 0 \end{pmatrix} \equiv (a, v) ,$$

where $a \in \mathbb{R}$ and $(v_1, v_2) \in \mathbb{R}^2$.

The set ${\mathcal B}$ of elements

$$B_1 = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad B_2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \text{and} \quad B_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

is a basis of $\mathcal{G} = \mathrm{so}(2) \times \mathbb{R}^2$. Let

$$\left\{\frac{\partial}{\partial B_1}, \frac{\partial}{\partial B_2}, \frac{\partial}{\partial B_3}\right\}$$

be the basis of \mathcal{G}^* , dual of \mathcal{B} . Once we have

 $[B_1, B_2] = -B_3$, $[B_1, B_3] = B_2$ and $[B_2, B_3] = 0$,

if we put

$$\Lambda = -B_3 \frac{\partial}{\partial B_1} \wedge \frac{\partial}{\partial B_2} + B_2 \frac{\partial}{\partial B_1} \wedge \frac{\partial}{\partial B_3}$$

and

$$Z = \sum_{i=1}^{3} B_i \frac{\partial}{\partial B_i} ,$$

the couple (Λ, Z) defines an homogeneous Lie–Poisson structure on \mathcal{G}^* . (Homogeneous means that $[\Lambda, Z] = -\Lambda$, [,] being the Schouten bracket ([10]); Z is called the *Liouville* vector field.)

From now on, we will identify $\mathcal{G}^* = (\mathrm{so}(2) \times \mathbb{R}^2)^*$ with the product $(\mathrm{so}(2))^* \times (\mathbb{R}^2)^*$. Thus, an arbitrary element of \mathcal{G}^* will be expressed by a couple (ξ, p) with $\xi \in (\mathrm{so}(2))^*$ and $p \in (\mathbb{R}^2)^*$.

Let us suppose that \mathcal{G}^* is endowed with the usual Euclidean norm. If $\eta = (\xi, p)$ is an element of \mathcal{G}^* with coordinates (η_1, η_2, η_3) in the basis $\{\frac{\partial}{\partial B_i}\}$, we define the norm of η , by putting

$$\|\eta\|^2 = \sum_{i=1}^3 (\eta_i)^2$$
.

Let S be the unitary sphere of \mathcal{G}^* ,

$$S = \left\{ \eta \in \mathcal{G}^* \colon \|\eta\|^2 = 1 \right\} \,,$$

and suppose that S is supplied with the Jacobi structure obtained by quotient of the Lie–Poisson structure of $\mathcal{G}_0^* = \mathcal{G}^* \setminus \{0\}$ by the homothety group. On the open subsets

$$U_i^+ = \left\{ (B_1, B_2, B_3) \in S \colon B_i > 0 \right\}$$

and

$$U_i^- = \{ (B_1, B_2, B_3) \in S \colon B_i < 0 \}, \quad i = 1, 2, 3$$

of S, we take the coordinate functions

$$(x_1 = B_1, \ \hat{x}_i = \hat{B}_i, \ x_3 = B_3), \ i = 1, 2, 3,$$

where " $\tilde{}$ means absence.

The Jacobi structure (C, E) of S is given, in the local charts taken above, in the following Table, where

$$\varepsilon = \begin{cases} +1, & \text{on } U_i^+, \\ -1, & \text{on } U_i^-. \end{cases}$$

$$\begin{pmatrix} U_1^{\pm}, (x_2, x_3) \end{pmatrix} \xrightarrow{E = -\varepsilon x_3 \sqrt{1 - (x_2)^2 - (x_3)^2} \frac{\partial}{\partial x_2} + \varepsilon x_2 \sqrt{1 - (x_2)^2 - (x_3)^2} \frac{\partial}{\partial x_3}}{C = -\varepsilon \sqrt{1 - (x_1)^2 - (x_3)^2} \left((x_2)^2 + (x_3)^2 \right) \frac{\partial}{\partial x_2} \wedge \frac{\partial}{\partial x_3}}{C = \varepsilon x_1 \sqrt{1 - (x_1)^2 - (x_3)^2} \frac{\partial}{\partial x_3}}{C = \varepsilon \sqrt{1 - (x_1)^2 - (x_2)^2} \left(1 - (x_1)^2 \right) \frac{\partial}{\partial x_1} \wedge \frac{\partial}{\partial x_3}}{C = \varepsilon \sqrt{1 - (x_1)^2 - (x_2)^2} \left(1 - (x_1)^2 \right) \frac{\partial}{\partial x_2}} \\ \begin{pmatrix} U_3^{\pm}, (x_1, x_2) \end{pmatrix} \xrightarrow{E = -\varepsilon x_1 \sqrt{1 - (x_1)^2 - (x_2)^2} \frac{\partial}{\partial x_2}}{C = \varepsilon \sqrt{1 - (x_1)^2 - (x_2)^2} \left((x_1)^2 - 1 \right) \frac{\partial}{\partial x_1} \wedge \frac{\partial}{\partial x_2}}{C = \varepsilon \sqrt{1 - (x_1)^2 - (x_2)^2} \left((x_1)^2 - 1 \right) \frac{\partial}{\partial x_1} \wedge \frac{\partial}{\partial x_2}}$$

V. Guillemin and S. Sternberg ([2]) showed that the coadjoint action Ad^* of G on the dual \mathcal{G}^* of its Lie algebra is given by

(2)
$$\operatorname{Ad}_{(g_{\alpha},x)}^{*}(\xi,p) = \left(\xi + (g_{\alpha}p) \otimes x, g_{\alpha}p\right),$$

for every $(g_{\alpha}, x) \in G$ and $(\xi, p) \in \mathcal{G}^*$, where \otimes is a mapping from $(\mathbb{R}^2)^* \times \mathbb{R}^2$ to $(so(2))^*$,

$$(p,x) \in (\mathbb{R}^2)^* \times \mathbb{R}^2 \rightarrow p \otimes x \in (\mathrm{so}(2))^*$$

such that

$$\langle p\otimes x,a\rangle = \langle p,ax\rangle \ ,$$

for all $a \in so(2)$.

The restriction to S of the coadjoint action of G on \mathcal{G}^* doesn't preserve the sphere S. However, we can take the quotient coadjoint action ([6]) $\overline{\text{Ad}}$ of G on S which is given, for every $(g_{\alpha}, x) \in G$, by

$$\pi \circ \operatorname{Ad}_{(g_{\alpha},x)}^{*} = \overline{\operatorname{Ad}}_{(g_{\alpha},x)} \circ \pi ,$$

where $\pi: \mathcal{G}_0^* \to S$ is the canonical projection of \mathcal{G}_0^* on the sphere S, this one being identified with the quotient of \mathcal{G}_0^* by the homothety group.

Let

$$H = \left\{ (g_{\alpha}, 0), \ g_{\alpha} \in \mathrm{SO}(2) \right\}$$

be the 1-dimensional Lie subgroup of G corresponding to the plane rotations about the origin and whose elements can be written on the form

$$\begin{pmatrix} \cos \alpha & -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0\\ 0 & 0 & 1 \end{pmatrix} \equiv (g_{\alpha}, 0) \,, \quad \alpha \in \mathbf{\mathbb{R}} \,.$$

From (2), we may conclude that the restriction Ad^{*H} to the Lie subgroup H, of the coadjoint action of G on \mathcal{G}^* is given by

$$\operatorname{Ad}_{(g_{\alpha},0)}^{*H}(\xi,p) = (\xi,g_{\alpha}p) ,$$

with $(\xi, p) \in (so(2))^* \times (\mathbb{R}^2)^*$ and $(g_\alpha, 0) \in H$. As the Ad^{*H} action preserves the sphere S (in fact if $(\xi, p) \in S$ then $(\xi, g_\alpha p) \in$ S, since $\|(\xi, p)\| = \|(\xi, q_{\alpha}p)\|$, the restriction to the subgroup H of the quotient action $\overline{\mathrm{Ad}}$ of G on S, coincides with the restriction to S of the Ad^{*H} action,

$$\operatorname{Ad}^{*H} = \overline{\operatorname{Ad}}_{|H} \colon H \times S \to S$$

Proposition. The restriction to the subgroup H of the quotient coadjoint action of G on S is a Jacobi action.

Proof: The Lie algebra of *H* being generated by the element

$$B_1 = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

of the basis \mathcal{B} of \mathcal{G} , the Ad^{*H} action is a Jacobi action of H on S if

$$[(B_1)_S, E] = 0$$
 and $[(B_1)_S, C] = 0$,

where $(B_1)_S$ is the fundamental vector field associated with B_1 ([9]) and in the last equality [,] is the Schouten bracket ([10]). But, if X_{x_1} is the hamiltonian vector field ([7]) associated with $x_1 \in C^{\infty}(S, \mathbb{R})$, we have

$$(B_1)_S = X_{x_1} ,$$

because B_1 , as a function from \mathcal{G}^* to \mathbb{R} , is homogeneous with respect to the Liouville vector field and projects into S, its projection being the function x_1 . We have then

$$\left[(B_1)_S, E \right] = \left[X_{x_1}, E \right] = X_{-(E.x_1)}$$

and

$$[(B_1)_S, C] = [X_{x_1}, C] = -(E.x_1) C .$$

If we look at the expression of the vector field E in the local charts of S on the preceding Table, we can see that

$$E.x_1 = 0 ,$$

in all cases. Thus, we have

$$\left[(B_1)_S, E\right] = \left[(B_1)_S, C\right] = 0$$

and the $\mathrm{Ad}^{*H}\equiv\overline{\mathrm{Ad}}_{|H}$ action is a Jacobi action of H on S. \blacksquare

If instead of H we take the 2-dimensional subgroup H^1 of G that corresponds to the plane translations and whose elements are of the form

$$\begin{pmatrix} 1 & 0 & x_1 \\ 0 & 1 & x_2 \\ 0 & 0 & 1 \end{pmatrix} ,$$

where $(x_1, x_2) \in \mathbb{R}^2$, the restriction to H^1 of the quotient coadjoint action of G on the sphere S is a conformal Jacobi action. In fact, the Lie algebra of H^1 being generated by the elements

$$B_2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \text{and} \quad B_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

of the basis \mathcal{B} of \mathcal{G} , we have

$$\begin{cases} \left[(B_2)_S, E \right] = \left[X_{x_2}, E \right] = X_{-(E,x_2)} \\ \left[(B_2)_S, C \right] = \left[X_{x_2}, C \right] = -(E,x_2) \end{cases}$$

and also

$$\begin{bmatrix} (B_3)_S, E \end{bmatrix} = \begin{bmatrix} X_{x_3}, E \end{bmatrix} = X_{-(E.x_3)}$$
$$\begin{bmatrix} (B_3)_S, C \end{bmatrix} = \begin{bmatrix} X_{x_3}, C \end{bmatrix} = -(E.x_3)$$

Thus, the action $\overline{\mathrm{Ad}}_{|H^1}$ is a conformal Jacobi action of H^1 on the Jacobi manifold S.

3 – A Jacobi action of $\mathrm{SU}(2,\mathbb{C})$ on the unitary 3-sphere of \mathbb{C}^2

Let (z_1, z_2) be the canonical coordinates on \mathbb{C}^2 . We take \mathbb{C}^2 with the following hermitian product

$$((z_1, z_2) \mid (z'_1, z'_2)) = z_1 \overline{z}'_1 + z_2 \overline{z}'_2.$$

By means of this hermitian product, we can define a norm in \mathbb{C}^2 by putting

$$||(z_1, z_2)||^2 = ((z_1, z_2) | (z_1, z_2)) = z_1 \overline{z}_1 + z_2 \overline{z}_2.$$

Let

$$S^{3} = \left\{ (z_{1}, z_{2}) \in \mathbb{C}^{2} \colon z_{1} \overline{z}_{1} + z_{2} \overline{z}_{2} = 1 \right\}$$

be the unitary sphere of \mathbb{C}^2 and let α be the 1-form in \mathbb{C}^2 given by

$$\alpha = \operatorname{Re}\left[\frac{1}{i}\left(z_1 \, d\overline{z}_1 + z_2 \, d\overline{z}_2\right)\right] \,.$$

The restriction of α to S^3 defines a contact structure on the sphere ([11]).

If we identify the space \mathbb{C}^2 with \mathbb{R}^4 , making the correspondence between the couple of complexes $(z_1 = x_1 + ix_3, z_2 = x_2 + ix_4)$ and the real quadruple (x_1, x_2, x_3, x_4) , the 1-form α express as

$$\alpha = -x_3 \, dx_1 - x_4 \, dx_2 + x_1 \, dx_3 + x_2 \, dx_4$$

Since every contact manifold is a Jacobi manifold ([5]), we can take the sphere S^3 as a Jacobi manifold whose structure is given by

$$E = -x_3 \frac{\partial}{\partial x_1} - x_4 \frac{\partial}{\partial x_2} + x_1 \frac{\partial}{\partial x_3} + x_2 \frac{\partial}{\partial x_4} ,$$

$$C = \frac{1}{2} (x_1 x_4 - x_2 x_3) \left(\frac{\partial}{\partial x_1} \wedge \frac{\partial}{\partial x_2} + \frac{\partial}{\partial x_3} \wedge \frac{\partial}{\partial x_4} \right)$$

$$(3) \qquad -\frac{1}{2} (x_1 x_2 + x_3 x_4) \left(\frac{\partial}{\partial x_1} \wedge \frac{\partial}{\partial x_4} + \frac{\partial}{\partial x_2} \wedge \frac{\partial}{\partial x_3} \right)$$

$$-\frac{1}{2} \left((x_1)^2 + (x_3)^2 - 1 \right) \left(\frac{\partial}{\partial x_1} \wedge \frac{\partial}{\partial x_3} \right)$$

$$-\frac{1}{2} \left((x_2)^2 + (x_4)^2 - 1 \right) \left(\frac{\partial}{\partial x_2} \wedge \frac{\partial}{\partial x_4} \right) .$$

Let's take the Lie group $SU(2, \mathbb{C})$ — which is a Lie subgroup of $GL(2, \mathbb{C})$ of dimension (real) 3 — and its Lie algebra $su(2, \mathbb{C})$. According to its definition, $SU(2, \mathbb{C})$ preserves the norm in \mathbb{C}^2 and acts on S^3 by the natural action

$$(A, (z_1, z_2)) \in \mathrm{SU}(2, \mathbb{C}) \times S^3 \to A. \binom{z_1}{z_2} \in S^3.$$

The elements

$$X_1 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$
, $X_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ and $X_3 = \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix}$,

that verify

$$[X_1, X_2] = -2X_3$$
, $[X_1, X_3] = -2X_2$ and $[X_2, X_3] = -2X_1$,

set up a basis of $su(2, \mathbb{C})$. Taking in account the preceding identification of \mathbb{C}^2 with \mathbb{R}^4 , we can write these elements on the following form:

(4)
$$\begin{cases} X_1 = -x_4 \frac{\partial}{\partial x_1} - x_3 \frac{\partial}{\partial x_2} + x_2 \frac{\partial}{\partial x_3} + x_1 \frac{\partial}{\partial x_4}, \\ X_2 = x_2 \frac{\partial}{\partial x_1} - x_1 \frac{\partial}{\partial x_2} + x_4 \frac{\partial}{\partial x_3} - x_3 \frac{\partial}{\partial x_4}, \\ X_3 = x_3 \frac{\partial}{\partial x_1} - x_4 \frac{\partial}{\partial x_2} - x_1 \frac{\partial}{\partial x_3} + x_2 \frac{\partial}{\partial x_4}. \end{cases}$$

Proposition. The natural action of $SU(2, \mathbb{C})$ on the sphere (S^3, C, E) is a Jacobi action.

Proof: The set $\{X_1, X_2, X_3\}$ being a basis of $su(2, \mathbb{C})$, we only must show that

$$[(X_i)_{S^3}, E] = [(X_i)_{S^3}, C] = 0, \text{ for } i = 1, 2, 3,$$

where $(X_i)_{S^3}$ is the fundamental vector field associated with X_i , with respect to the action of SU(2, \mathbb{C}) on S^3 . But, this action being the natural action, we have, for i = 1, 2, 3,

$$(X_i)_{S^3} = -X_i \; .$$

From (3) and (4), we can easily prove that

$$[X_i, E] = [X_i, C] = 0, \quad i = 1, 2, 3.$$

The action of $SU(2, \mathbb{C})$ on S^3 admits a momentum mapping that we're going to evaluate. Let A be an arbitrary element of $SU(2, \mathbb{C})$. Then A is a matrix of the form

$$A = \begin{pmatrix} a+ib & c+id \\ -c+id & a-ib \end{pmatrix} ,$$

where $(a, b, c, d) \in \mathbb{R}^4$ and $a^2 + b^2 + c^2 + d^2 = 1$.

Let ξ be an element of $\operatorname{su}^*(2, \mathbb{C})$ of coordinates (ξ_1, ξ_2, ξ_3) on the dual basis of $\{X_1, X_2, X_3\}$. Then, for every $X \in \operatorname{su}(2, \mathbb{C})$, we have

$$\langle \operatorname{Ad}_{A}^{*} \xi, X \rangle = \langle \xi, \operatorname{Ad}_{A^{-1}}(X) \rangle = \langle \xi, A^{-1}XA \rangle = \langle \xi, (\overline{A})^{\mathrm{T}}XA \rangle$$

We also have, for the elements X_1 , X_2 and X_3 of the su $(2, \mathbb{C})$ basis,

$$\begin{cases} \langle \operatorname{Ad}_{A}^{*} \xi, X_{1} \rangle = \left\langle \xi, (a^{2} - b^{2} - c^{2} + d^{2}) X_{1} + 2(ab + cd) X_{2} + 2(ac - bd) X_{3} \right\rangle, \\ \langle \operatorname{Ad}_{A}^{*} \xi, X_{2} \rangle = \left\langle \xi, 2(cd - ab) X_{1} + (a^{2} - b^{2} + c^{2} - d^{2}) X_{2} + 2(-ad - bc) X_{3} \right\rangle, \\ \langle \operatorname{Ad}_{A}^{*} \xi, X_{3} \rangle = \left\langle \xi, 2(-ac - bd) X_{1} + 2(ad - bc) X_{2} + (a^{2} + b^{2} - c^{2} - d^{2}) X_{3} \right\rangle. \end{cases}$$

So,

$$\operatorname{Ad}_{A}^{*}\xi = \begin{pmatrix} \xi_{1}(a^{2}-b^{2}-c^{2}+d^{2})+2\xi_{2}(ab+cd)+2\xi_{3}(ac-bd)\\ 2\xi_{1}(cd-ab)+\xi_{2}(a^{2}-b^{2}+c^{2}-d^{2})+2\xi_{3}(-ad-bc)\\ 2\xi_{1}(-ac-bd)+2\xi_{2}(ad-bc)+\xi_{3}(a^{2}+b^{2}-c^{2}-d^{2}) \end{pmatrix}.$$

Proposition. Let $J: S^3 \to su^*(2, \mathbb{C})$ be the mapping given by

$$\begin{cases} \langle J, X_1 \rangle \left(x_1 + ix_3, x_2 + ix_4 \right) = 2(-x_1x_2 - x_3x_4), \\ \langle J, X_2 \rangle \left(x_1 + ix_3, x_2 + ix_4 \right) = 2(-x_1x_4 + x_2x_3), \\ \langle J, X_3 \rangle \left(x_1 + ix_3, x_2 + ix_4 \right) = (x_1)^2 - (x_2)^2 + (x_3)^2 - (x_4)^2 \end{cases},$$

where X_1 , X_2 and X_3 are the elements of the su $(2, \mathbb{C})$ basis defined above. Then J is the unique Ad^{*}-equivariant momentum mapping of the natural Jacobi action of SU $(2, \mathbb{C})$ on S^3 .

Proof: If we calculate the hamiltonian vector fields $X_{\langle J, X_i \rangle}$ (i = 1, 2, 3) corresponding to the functions $\langle J, X_i \rangle$, we obtain

$$X_{\langle J, X_i \rangle} = -X_i$$
.

But, as we have already remarked, $(X_i)_{S^3} = -X_i$. The mapping J is then a momentum mapping of the action of $SU(2, \mathbb{C})$ on S^3 .

Let
$$A = \begin{pmatrix} a+ib & c+id \\ -c+id & a-ib \end{pmatrix} \in SU(2, \mathbb{C})$$
 and $z_1 = x_1 + ix_3, z_2 = x_2 + ix_4 \in S^3$,

be arbitrary elements. Then, we have

$$\begin{split} J\left(A, \begin{pmatrix} z_1\\ z_2 \end{pmatrix}\right) &= J\left(\begin{pmatrix} (ax_1 - bx_3 + cx_2 - dx_4) + i(ax_3 + bx_1 + cx_4 + dx_2)\\ (-cx_1 - dx_3 + ax_2 + bx_4) + i(-cx_3 + dx_1 - bx_2 + ax_4) \end{pmatrix} \\ &= \begin{pmatrix} -2(ax_1 - bx_3 + cx_2 - dx_4) (-cx_1 - dx_3 + ax_2 + bx_4) - (-2(ax_1 - bx_3 + cx_2 - dx_4)) (-cx_3 + dx_1 - bx_2 + ax_4) + (-2(ax_1 - bx_3 + cx_2 - dx_4)) (-cx_3 + dx_1 - bx_2 + ax_4) + (-2(ax_1 - bx_3 + cx_2 - dx_4)) (-cx_3 + dx_1 - bx_2 + ax_4) + (-2(ax_1 - bx_3 + cx_2 - dx_4)) (-cx_3 + dx_1 - bx_2 + ax_4) + (-2(ax_1 - bx_3 + cx_2 - dx_4)) (-cx_3 + dx_1 - bx_2 + ax_4) + (-2(ax_1 - bx_3 + cx_2 - dx_4)) (-cx_3 + dx_1 - bx_2 + ax_4) + (-2(ax_1 - bx_3 + cx_2 - dx_4)) (-cx_3 + dx_1 - bx_2 + ax_4) + (-2(ax_1 - bx_3 + cx_2 - dx_4))^2 - (-cx_1 - dx_3 + ax_2 + bx_4)^2 + (ax_3 + bx_1 + cx_4 + dx_2)^2 - (-cx_3 + dx_1 - bx_2 + ax_4)^2 / (-2(x_1x_2 + x_3x_4)) \\ &= \operatorname{Ad}_A^* \begin{pmatrix} -2(x_1x_2 + x_3x_4) \\ -2(x_1x_4 - x_2x_3) \\ (x_1)^2 - (x_2)^2 + (x_3)^2 - (x_4)^2 \end{pmatrix} \\ &= \operatorname{Ad}_A^* \left(J(x_1 + ix_3, x_2 + ix_4)\right). \end{split}$$

So, J is an Ad^{*}-equivariant momentum mapping.

Finally remark that, as $su(2, \mathbb{C})$ equals its derived algebra, if an Ad^{*}-equivariant momentum mapping exists, it is unique.

APPENDIX

In what follows, M is a differentiable connected finite dimensional manifold.

I) Let A (resp. B) be a p-times (resp. q-times) contravariant skew-symmetric tensor field on M. The Schouten bracket ([10]) of A and B is a (p+q-1)-times contravariant skew-symmetric tensor field on M, denoted by [A, B], such that for any closed (p+q-1)-form β ,

$$i([A,B])\,\beta = (-1)^{(p+1)q}\,i(A)\,di(B)\,\beta + (-1)^p\,i(B)\,di(A)\,\beta \ ,$$

where i is the interior product.

Some of the properties of the Schouten bracket are:

- i) If p = 1, $[A, B] = \mathcal{L}(A)B$ is the Lie derivative of B with respect to A;
- ii) $[A, B] = (-1)^{pq} [B, A];$

iii) If C is an r-contravariant skew-symmetric tensor field,

$$S(-1)^{pq}\Big[[B,C],A\Big]=0 \ ,$$

where S means sum after circular permutation;

iv) $[A, B \wedge C] = [A, B] \wedge C + (-1)^{(p+1)q} B \wedge [A, C].$

II) Let C be a two times contravariant skew-symmetric tensor field on M and E a vector field on M. For any couple (f, h) of functions on M, we set

$$\{f,h\} = C(df,dh) + f(E.h) - h(E.f)$$

and define a bilinear and skew-symmetric internal law on $C^{\infty}(M, \mathbb{R})$. This law satisfies the Jacobi identity (i.e., $S\{\{f, h\}, g\} = 0$) if and only if

$$[C, C] = 2E \wedge C$$
 and $[E, C] = 0$ ([5]),

the bracket [,] being the Schouten bracket. In this case, we say that $\{, \}$ is a Jacobi bracket and (M, C, E) is a Jacobi manifold. The space $C^{\infty}(M, \mathbb{R})$ with a Jacobi bracket is a local Lie algebra. If E = 0, the Jacobi manifold is a Poisson manifold.

If (M, C, E) is a Jacobi manifold, there exists a vector bundle morphism

$$\#(): (TM)^* \to TM$$

that is given, for all α and β in the same fiber of $(TM)^*$, by

$$\langle \beta, {}^{\#}\alpha \rangle = C(\alpha, \beta) \; .$$

If $f \in C^{\infty}(M, \mathbb{R})$, we call $X_f = {}^{\#}df + fE$ the hamiltonian vector field associated with f([7]).

Let (M, C, E) be a Jacobi manifold and $a \in C^{\infty}(M, \mathbb{R})$ a differentiable function that never vanishes. For all f and h elements of $C^{\infty}(M, \mathbb{R})$, we set

$$\{f,h\}^a = \frac{1}{a} \{af,ah\}$$

The bracket $\{ \ , \ \}^a$ is a Jacobi bracket and defines on M a new Jacobi structure (C^a, E^a) , with

$$C^a = a C$$
 and $E^a = {}^{\#}da + aE$.

We say that the structure (C^a, E^a) is *a*-conformal to (C, E). The equivalence class of all Jacobi structures on M, conformal to a given structure is called a conformal Jacobi structure on M.

Let (M_1, C_1, E_1) and (M_2, C_2, E_2) be two Jacobi manifolds. A differentiable mapping $\phi: M_1 \to M_2$ is called a *Jacobi morphism* if

$$\{f,h\}_{M_2}\circ\phi=\{f\circ\phi,h\circ\phi\}_{M_1},$$

for all $f, h \in C^{\infty}(M_2, \mathbb{R})$. We call ϕ an *a*-conformal Jacobi morphism if there exists a function $a \in C^{\infty}(M_1, \mathbb{R})$ that never vanishes, such that ϕ is a Jacobi morphism of (M_1, C_1^a, E_1^a) into (M_2, C_2, E_2) .

A vector field X on a Jacobi manifold (M, C, E) is an infinitesimal Jacobi automorphism (resp. infinitesimal conformal Jacobi automorphism) if and only if [X, C] = 0 and [X, E] = 0 (resp. if and only if there exists a function $a \in C^{\infty}(M, \mathbb{R})$ such that [X, C] = aC and [X, E] = #da + aE).

III) Let (M, C, E) be a Jacobi manifold and G a Lie group acting on the left on M, by an action ϕ . Suppose that for each $g \in G$ there exists a function $a_g \in C^{\infty}(M, \mathbb{R})$ that never vanishes and such that the mapping

$$\phi_g \colon x \in M \to \phi(g, x) \in M$$

is an a_g -conformal Jacobi morphism. Then the action ϕ is called a *conformal Jacobi action*. When, for all $g \in G$, the function $a_g \in C^{\infty}(M, \mathbb{R})$ is constant and equals 1, the action ϕ is called a *Jacobi action*. In this case, for any $g \in G$, the mapping ϕ_g is a Jacobi morphism.

Given an element X of the Lie algebra \mathcal{G} of G, the fundamental vector field associated with X for the action ϕ ([9]), is the vector field X_M on M, such that, for all $x \in M$,

$$X_M(x) = \frac{d}{dt} \Big(\phi(\exp(-tX), x) \Big)_{|t=0} \; .$$

If G is a connected Lie group, the action ϕ of G on M is a Jacobi action (resp. conformal Jacobi action) if and only if for all $X \in \mathcal{G}$, the fundamental vector field X_M associated with X is an infinitesimal Jacobi automorphism (resp. infinitesimal Jacobi conformal automorphism).

IV) Let G be a finite dimensional Lie group and \mathcal{G} its Lie algebra. On the dual \mathcal{G}^* of \mathcal{G} we can define a Poisson structure, called the *Lie–Poisson structure* ([6]), by setting for all $f, h \in C^{\infty}(\mathcal{G}^*, \mathbb{R})$ and $\xi \in \mathcal{G}^*$,

$$\{f,h\}(\xi) = \left\langle \xi, \left[df(\xi), dh(\xi)\right] \right\rangle$$

with [,] the Lie bracket on $\mathcal{G}, \langle , \rangle$ the duality product of \mathcal{G} and \mathcal{G}^* and where we identify the elements of \mathcal{G} with linear mappings of \mathcal{G}^* into \mathbb{R} .

If Z is the Liouville vector field on \mathcal{G}^* and Λ is the Lie–Poisson tensor field on \mathcal{G}^* , one can show ([6]) that

$$[\Lambda, Z] = -\Lambda ,$$

i.e., $(\mathcal{G}^*, \Lambda, Z)$ is an homogeneous Lie–Poisson structure.

REFERENCES

- GUÉDIRA, F. et LICHNEROWICZ, A. Géométrie des algèbres de Lie de Kirillov, J. Math. Pures et Appl., 63 (1984), 407–484.
- [2] GUILLEMIN, V. and STERNBERG, S. Symplectic techniques in physics, Cambridge University Press, 1984.
- [3] KIRILLOV, A. Local Lie algebras, Russian Math. Surveys, 31(4) (1976), 55–75.
- [4] KOSTANT, B. Quantization and representation theory. Part I: prequantization, in "Lectures in Modern Analysis and Applications III", Lecture Notes in Mathematics, 170, 87–210, Springer Verlag, Berlin, 1970.
- [5] LICHNEROWICZ, A. Les variétés de Jacobi et leurs algèbres de Lie associées, J. Math. Pures et Appl., 57 (1978), 453–488.
- [6] LICHNEROWICZ, A. Réprésentation coadjointe quotient et espaces homogènes de contact ou localement conformément symplectiques, J. Math. Pures et Appl., 65 (1986), 193–224.
- [7] MARLE, C.M. Quelques propriétés des variétés de Jacobi, in "Géométrie Symplectique et Mécanique" (J.-P. Dufour, ed.), Séminaire sud-rhodanien de géométrie, Travaux en cours, Hermann, Paris, 1985.
- [8] MIKAMI, K. Local Lie algebra structure and momentum mapping, J. Math. Soc. Japan, 39 (1987), 233–246.
- [9] NUNES DA COSTA, J.M. Actions de groupes de Lie sur des variétés et des fibrés de Jacobi et réduction, thèse de Doctorat, Paris, 1991.
- [10] SCHOUTEN, J. On differential operators of first order in tensor calculus, Convegno di Geom. Diff. Italia, Ed. Cremonese, Roma, 1953.
- [11] SOURIAU, J.-M. Structure des systèmes dynamiques, Dunod, Paris, 1969.

Joana Margarida Nunes da Costa, Departamento de Matemática, Apartado 3008, 3000 Coimbra – PORTUGAL