JACOBI ACTIONS OF $\operatorname{SO}(2) \times \mathbb{R}^{2}$ AND $\mathrm{SU}(2, \mathbb{C})$ ON TWO JACOBI MANIFOLDS

J.M. Nunes da Costa

Abstract

We take a sphere S of the dual space \mathcal{G}^{*} of $\mathcal{G}=\operatorname{so}(2) \times \mathbb{R}^{2}$ with the Jacobi manifold structure obtained by quotient by the homothety group of the LiePoisson structure in $\mathcal{G}^{*} \backslash\{0\}$ and we study the actions of two subgroups of $\mathrm{SO}(2) \times \mathbb{R}^{2}$ on S.

We show that the natural action of $\mathrm{SU}(2, \mathbb{C})$ on the unitary 3 -sphere of \mathbb{T}^{2} with the Jacobi structure determined by its canonical contact structure is a Jacobi action that admits an unique $A d^{*}$-equivariant momentum mapping.

1 - Introduction

The notions of Jacobi manifold and Jacobi conformal manifold were introduced by A. Lichnerowicz ([5]) in 1978. A. Kirillov ([3]) also studied these structures under the name of local Lie algebras, when defined on the space of the differentiable sections of a vector bundle with 1-dimensional fibres.

Let \mathcal{G}^{*} be the dual of the Lie algebra of a finite dimensional Lie group, with its Lie-Poisson structure $([6])$, and take the quotient of $\mathcal{G}^{*} \backslash\{0\}$ by the homothety group. A. Lichnerowicz ([6]) showed that the Lie-Poisson structure defines on the quotient space (which can be identified with an unitary sphere of \mathcal{G}^{*}) a Jacobi structure.

Finally, let us recall that the notion of momentum mapping, introduced by J.-M. Souriau ([11]) and B. Kostant ([4]) in the symplectic manifold context, can be extended to the Jacobi manifolds (cf. [8]), when a Jacobi action or a conformal Jacobi action ([9]) of a Lie group on a Jacobi manifold takes place.

In Appendix we summarize some of the basic concepts useful for a better understanding of the paper.

[^0]
2 - A Jacobi action of the Lie group $S O(2) \times \mathbb{R}^{2}$ on the unitary sphere of the dual of its Lie algebra

Let G be the Lie group of the euclidean displacements, that is, the semidirect product of $\mathrm{SO}(2)$ with \mathbb{R}^{2}. The product of two elements (g, x) and (h, y) in $G=\mathrm{SO}(2) \times \mathbb{R}^{2}$ is given by

$$
\begin{equation*}
(g, x) \cdot(h, y)=(g h, g y+x) \tag{1}
\end{equation*}
$$

We can write the elements (g, x) of G as 3×3 matrices of the form

$$
\left(\begin{array}{ccc}
\cos \alpha & -\sin \alpha & x_{1} \\
\sin \alpha & \cos \alpha & x_{2} \\
0 & 0 & 1
\end{array}\right) \equiv\left(g_{\alpha}, x\right)
$$

where $\alpha \in \mathbb{R},\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$, the composition law (1) in G corresponding to the product of the two respective matrices.

The Lie group G acts on the plane \mathbb{R}^{2} by an action ϕ given by

$$
\phi:\left(\left(g_{\alpha}, x\right), y\right) \in G \times \mathbb{R}^{2} \rightarrow\left(g_{\alpha} y+x\right) \in \mathbb{R}^{2}
$$

which can be expressed in matricial form by the following product of matrices:

$$
\left(\begin{array}{ccc}
\cos \alpha & -\sin \alpha & x_{1} \\
\sin \alpha & \cos \alpha & x_{2} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
y_{1} \\
y_{2} \\
1
\end{array}\right)=\left(\begin{array}{c}
y_{1} \cos \alpha-y_{2} \sin \alpha+x_{1} \\
y_{1} \sin \alpha+y_{2} \cos \alpha+x_{2} \\
1
\end{array}\right)
$$

This action corresponds to an α-rotation of the point $\left(y_{1}, y_{2}\right)$ about the origin followed by a translation by the vector of components $\left(x_{1}, x_{2}\right)$.

Let $\mathcal{G} \equiv \operatorname{so}(2) \times \mathbb{R}^{2}$ be the Lie algebra of G. An element (a, v) of \mathcal{G} can be written as

$$
\left(\begin{array}{ccc}
0 & a & v_{1} \\
-a & 0 & v_{2} \\
0 & 0 & 0
\end{array}\right) \equiv(a, v)
$$

where $a \in \mathbb{R}$ and $\left(v_{1}, v_{2}\right) \in \mathbb{R}^{2}$.
The set \mathcal{B} of elements

$$
B_{1}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad B_{2}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \text { and } \quad B_{3}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

is a basis of $\mathcal{G}=\operatorname{so}(2) \times \mathbb{R}^{2}$. Let

$$
\left\{\frac{\partial}{\partial B_{1}}, \frac{\partial}{\partial B_{2}}, \frac{\partial}{\partial B_{3}}\right\}
$$

be the basis of \mathcal{G}^{*}, dual of \mathcal{B}. Once we have

$$
\left[B_{1}, B_{2}\right]=-B_{3}, \quad\left[B_{1}, B_{3}\right]=B_{2} \quad \text { and } \quad\left[B_{2}, B_{3}\right]=0
$$

if we put

$$
\Lambda=-B_{3} \frac{\partial}{\partial B_{1}} \wedge \frac{\partial}{\partial B_{2}}+B_{2} \frac{\partial}{\partial B_{1}} \wedge \frac{\partial}{\partial B_{3}}
$$

and

$$
Z=\sum_{i=1}^{3} B_{i} \frac{\partial}{\partial B_{i}}
$$

the couple (Λ, Z) defines an homogeneous Lie-Poisson structure on \mathcal{G}^{*}. (Homogeneous means that $[\Lambda, Z]=-\Lambda,[$,$] being the Schouten bracket ([10]); Z$ is called the Liouville vector field.)

From now on, we will identify $\mathcal{G}^{*}=\left(\operatorname{so}(2) \times \mathbb{R}^{2}\right)^{*}$ with the product $(\operatorname{so}(2))^{*} \times$ $\left(\mathbb{R}^{2}\right)^{*}$. Thus, an arbitrary element of \mathcal{G}^{*} will be expressed by a couple (ξ, p) with $\xi \in(\operatorname{so}(2))^{*}$ and $p \in\left(\mathbb{R}^{2}\right)^{*}$.

Let us suppose that \mathcal{G}^{*} is endowed with the usual Euclidean norm. If $\eta=(\xi, p)$ is an element of \mathcal{G}^{*} with coordinates $\left(\eta_{1}, \eta_{2}, \eta_{3}\right)$ in the basis $\left\{\frac{\partial}{\partial B_{i}}\right\}$, we define the norm of η, by putting

$$
\|\eta\|^{2}=\sum_{i=1}^{3}\left(\eta_{i}\right)^{2} .
$$

Let S be the unitary sphere of \mathcal{G}^{*},

$$
S=\left\{\eta \in \mathcal{G}^{*}:\|\eta\|^{2}=1\right\}
$$

and suppose that S is supplied with the Jacobi structure obtained by quotient of the Lie-Poisson structure of $\mathcal{G}_{0}^{*}=\mathcal{G}^{*} \backslash\{0\}$ by the homothety group. On the open subsets

$$
U_{i}^{+}=\left\{\left(B_{1}, B_{2}, B_{3}\right) \in S: B_{i}>0\right\}
$$

and

$$
U_{i}^{-}=\left\{\left(B_{1}, B_{2}, B_{3}\right) \in S: B_{i}<0\right\}, \quad i=1,2,3
$$

of S, we take the coordinate functions

$$
\left(x_{1}=B_{1}, \quad \widehat{x}_{i}=\widehat{B}_{i}, \quad x_{3}=B_{3}\right), \quad i=1,2,3,
$$

where "" means absence.
The Jacobi structure (C, E) of S is given, in the local charts taken above, in the following Table, where

$$
\varepsilon= \begin{cases}+1, & \text { on } U_{i}^{+} \\ -1, & \text { on } U_{i}^{-}\end{cases}
$$

$\left(U_{1}^{ \pm},\left(x_{2}, x_{3}\right)\right)$	$\begin{gathered} E=-\varepsilon x_{3} \sqrt{1-\left(x_{2}\right)^{2}-\left(x_{3}\right)^{2}} \frac{\partial}{\partial x_{2}}+\varepsilon x_{2} \sqrt{1-\left(x_{2}\right)^{2}-\left(x_{3}\right)^{2}} \frac{\partial}{\partial x_{3}} \\ C=-\varepsilon \sqrt{1-\left(x_{1}\right)^{2}-\left(x_{3}\right)^{2}}\left(\left(x_{2}\right)^{2}+\left(x_{3}\right)^{2}\right) \frac{\partial}{\partial x_{2}} \wedge \frac{\partial}{\partial x_{3}} \end{gathered}$
$\left(U_{2}^{ \pm},\left(x_{1}, x_{3}\right)\right)$	$\begin{gathered} E=\varepsilon x_{1} \sqrt{1-\left(x_{1}\right)^{2}-\left(x_{3}\right)^{2}} \frac{\partial}{\partial x_{3}} \\ C=\varepsilon \sqrt{1-\left(x_{1}\right)^{2}-\left(x_{2}\right)^{2}}\left(1-\left(x_{1}\right)^{2}\right) \frac{\partial}{\partial x_{1}} \wedge \frac{\partial}{\partial x_{3}} \end{gathered}$
$\left(U_{3}^{ \pm},\left(x_{1}, x_{2}\right)\right)$	$\begin{gathered} E=-\varepsilon x_{1} \sqrt{1-\left(x_{1}\right)^{2}-\left(x_{2}\right)^{2}} \frac{\partial}{\partial x_{2}} \\ C=\varepsilon \sqrt{1-\left(x_{1}\right)^{2}-\left(x_{2}\right)^{2}}\left(\left(x_{1}\right)^{2}-1\right) \frac{\partial}{\partial x_{1}} \wedge \frac{\partial}{\partial x_{2}} \end{gathered}$

V. Guillemin and S. Sternberg ([2]) showed that the coadjoint action Ad* of G on the dual \mathcal{G}^{*} of its Lie algebra is given by

$$
\begin{equation*}
\operatorname{Ad}_{\left(g_{\alpha}, x\right)}^{*}(\xi, p)=\left(\xi+\left(g_{\alpha} p\right) \otimes x, g_{\alpha} p\right) \tag{2}
\end{equation*}
$$

for every $\left(g_{\alpha}, x\right) \in G$ and $(\xi, p) \in \mathcal{G}^{*}$, where \otimes is a mapping from $\left(\mathbb{R}^{2}\right)^{*} \times \mathbb{R}^{2}$ to (so(2))*,

$$
(p, x) \in\left(\mathbb{R}^{2}\right)^{*} \times \mathbb{R}^{2} \rightarrow p \otimes x \in(\mathrm{so}(2))^{*},
$$

such that

$$
\langle p \otimes x, a\rangle=\langle p, a x\rangle,
$$

for all $a \in \operatorname{so}(2)$.
The restriction to S of the coadjoint action of G on \mathcal{G}^{*} doesn't preserve the sphere S. However, we can take the quotient coadjoint action ([6]) $\overline{\mathrm{Ad}}$ of G on S which is given, for every $\left(g_{\alpha}, x\right) \in G$, by

$$
\pi \circ \operatorname{Ad}_{\left(g_{\alpha}, x\right)}^{*}=\overline{\operatorname{Ad}}_{\left(g_{\alpha}, x\right)} \circ \pi
$$

where $\pi: \mathcal{G}_{0}^{*} \rightarrow S$ is the canonical projection of \mathcal{G}_{0}^{*} on the sphere S, this one being identified with the quotient of \mathcal{G}_{0}^{*} by the homothety group.

Let

$$
H=\left\{\left(g_{\alpha}, 0\right), g_{\alpha} \in \mathrm{SO}(2)\right\}
$$

be the 1-dimensional Lie subgroup of G corresponding to the plane rotations about the origin and whose elements can be written on the form

$$
\left(\begin{array}{ccc}
\cos \alpha & -\sin \alpha & 0 \\
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right) \equiv\left(g_{\alpha}, 0\right), \quad \alpha \in \mathbb{R}
$$

From (2), we may conclude that the restriction $\mathrm{Ad}^{* H}$ to the Lie subgroup H, of the coadjoint action of G on \mathcal{G}^{*} is given by

$$
\operatorname{Ad}_{\left(g_{\alpha}, 0\right)}^{* H}(\xi, p)=\left(\xi, g_{\alpha} p\right)
$$

with $(\xi, p) \in(\operatorname{so}(2))^{*} \times\left(\mathbb{R}^{2}\right)^{*}$ and $\left(g_{\alpha}, 0\right) \in H$.
As the $\mathrm{Ad}^{* H}$ action preserves the sphere S (in fact if $(\xi, p) \in S$ then $\left(\xi, g_{\alpha} p\right) \in$ S, since $\left.\|(\xi, p)\|=\left\|\left(\xi, g_{\alpha} p\right)\right\|\right)$, the restriction to the subgroup H of the quotient action $\overline{\mathrm{Ad}}$ of G on S, coincides with the restriction to S of the $\mathrm{Ad}^{* H}$ action,

$$
\operatorname{Ad}^{* H}=\overline{\operatorname{Ad}}_{\mid H}: H \times S \rightarrow S
$$

Proposition. The restriction to the subgroup H of the quotient coadjoint action of G on S is a Jacobi action.

Proof: The Lie algebra of H being generated by the element

$$
B_{1}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

of the basis \mathcal{B} of \mathcal{G}, the $\mathrm{Ad}^{* H}$ action is a Jacobi action of H on S if

$$
\left[\left(B_{1}\right)_{S}, E\right]=0 \quad \text { and } \quad\left[\left(B_{1}\right)_{S}, C\right]=0
$$

where $\left(B_{1}\right)_{S}$ is the fundamental vector field associated with $B_{1}([9])$ and in the last equality [,] is the Schouten bracket ([10]). But, if $X_{x_{1}}$ is the hamiltonian vector field ([7]) associated with $x_{1} \in C^{\infty}(S, \mathbb{R})$, we have

$$
\left(B_{1}\right)_{S}=X_{x_{1}},
$$

because B_{1}, as a function from \mathcal{G}^{*} to \mathbb{R}, is homogeneous with respect to the Liouville vector field and projects into S, its projection being the function x_{1}. We have then

$$
\left[\left(B_{1}\right)_{S}, E\right]=\left[X_{x_{1}}, E\right]=X_{-\left(E . x_{1}\right)}
$$

and

$$
\left[\left(B_{1}\right)_{S}, C\right]=\left[X_{x_{1}}, C\right]=-\left(E . x_{1}\right) C
$$

If we look at the expression of the vector field E in the local charts of S on the preceding Table, we can see that

$$
E . x_{1}=0
$$

in all cases. Thus, we have

$$
\left[\left(B_{1}\right)_{S}, E\right]=\left[\left(B_{1}\right)_{S}, C\right]=0
$$

and the $\mathrm{Ad}^{* H} \equiv \overline{\operatorname{Ad}}_{\mid H}$ action is a Jacobi action of H on S.
If instead of H we take the 2-dimensional subgroup H^{1} of G that corresponds to the plane translations and whose elements are of the form

$$
\left(\begin{array}{ccc}
1 & 0 & x_{1} \\
0 & 1 & x_{2} \\
0 & 0 & 1
\end{array}\right)
$$

where $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$, the restriction to H^{1} of the quotient coadjoint action of G on the sphere S is a conformal Jacobi action. In fact, the Lie algebra of H^{1} being generated by the elements

$$
B_{2}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \text { and } \quad B_{3}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

of the basis \mathcal{B} of \mathcal{G}, we have

$$
\left\{\begin{array}{l}
{\left[\left(B_{2}\right)_{S}, E\right]=\left[X_{x_{2}}, E\right]=X_{-\left(E \cdot x_{2}\right)}} \\
{\left[\left(B_{2}\right)_{S}, C\right]=\left[X_{x_{2}}, C\right]=-\left(E \cdot x_{2}\right)}
\end{array}\right.
$$

and also

$$
\left\{\begin{array}{l}
{\left[\left(B_{3}\right)_{S}, E\right]=\left[X_{x_{3}}, E\right]=X_{-\left(E . x_{3}\right)}} \\
{\left[\left(B_{3}\right)_{S}, C\right]=\left[X_{x_{3}}, C\right]=-\left(E . x_{3}\right)}
\end{array}\right.
$$

Thus, the action $\overline{\operatorname{Ad}}_{\mid H^{1}}$ is a conformal Jacobi action of H^{1} on the Jacobi manifold S.

3 - A Jacobi action of $\operatorname{SU}(2, \mathbb{C})$ on the unitary 3 -sphere of \mathbb{C}^{2}
Let $\left(z_{1}, z_{2}\right)$ be the canonical coordinates on \mathbb{T}^{2}. We take \mathbb{C}^{2} with the following hermitian product

$$
\left(\left(z_{1}, z_{2}\right) \mid\left(z_{1}^{\prime}, z_{2}^{\prime}\right)\right)=z_{1} \bar{z}_{1}^{\prime}+z_{2} \bar{z}_{2}^{\prime}
$$

By means of this hermitian product, we can define a norm in \mathbb{C}^{2} by putting

$$
\left\|\left(z_{1}, z_{2}\right)\right\|^{2}=\left(\left(z_{1}, z_{2}\right) \mid\left(z_{1}, z_{2}\right)\right)=z_{1} \bar{z}_{1}+z_{2} \bar{z}_{2}
$$

Let

$$
S^{3}=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}: z_{1} \bar{z}_{1}+z_{2} \bar{z}_{2}=1\right\}
$$

be the unitary sphere of \mathbb{T}^{2} and let α be the 1-form in \mathbb{T}^{2} given by

$$
\alpha=\operatorname{Re}\left[\frac{1}{i}\left(z_{1} d \bar{z}_{1}+z_{2} d \bar{z}_{2}\right)\right]
$$

The restriction of α to S^{3} defines a contact structure on the sphere ([11]).
If we identify the space \mathbb{C}^{2} with \mathbb{R}^{4}, making the correspondence between the couple of complexes $\left(z_{1}=x_{1}+i x_{3}, z_{2}=x_{2}+i x_{4}\right)$ and the real quadruple $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$, the 1 -form α express as

$$
\alpha=-x_{3} d x_{1}-x_{4} d x_{2}+x_{1} d x_{3}+x_{2} d x_{4}
$$

Since every contact manifold is a Jacobi manifold ([5]), we can take the sphere S^{3} as a Jacobi manifold whose structure is given by

$$
\begin{align*}
E= & -x_{3} \frac{\partial}{\partial x_{1}}-x_{4} \frac{\partial}{\partial x_{2}}+x_{1} \frac{\partial}{\partial x_{3}}+x_{2} \frac{\partial}{\partial x_{4}} \\
C= & \frac{1}{2}\left(x_{1} x_{4}-x_{2} x_{3}\right)\left(\frac{\partial}{\partial x_{1}} \wedge \frac{\partial}{\partial x_{2}}+\frac{\partial}{\partial x_{3}} \wedge \frac{\partial}{\partial x_{4}}\right) \\
& -\frac{1}{2}\left(x_{1} x_{2}+x_{3} x_{4}\right)\left(\frac{\partial}{\partial x_{1}} \wedge \frac{\partial}{\partial x_{4}}+\frac{\partial}{\partial x_{2}} \wedge \frac{\partial}{\partial x_{3}}\right) \tag{3}\\
& -\frac{1}{2}\left(\left(x_{1}\right)^{2}+\left(x_{3}\right)^{2}-1\right)\left(\frac{\partial}{\partial x_{1}} \wedge \frac{\partial}{\partial x_{3}}\right) \\
& -\frac{1}{2}\left(\left(x_{2}\right)^{2}+\left(x_{4}\right)^{2}-1\right)\left(\frac{\partial}{\partial x_{2}} \wedge \frac{\partial}{\partial x_{4}}\right)
\end{align*}
$$

Let's take the Lie group $\operatorname{SU}(2, \mathbb{C})$ - which is a Lie subgroup of GL $(2, \mathbb{C})$ of dimension (real) $3-$ and its Lie algebra $\operatorname{su}(2, \mathbb{C})$. According to its definition, $\mathrm{SU}(2, \mathbb{C})$ preserves the norm in \mathbb{T}^{2} and acts on S^{3} by the natural action

$$
\left(A,\left(z_{1}, z_{2}\right)\right) \in \mathrm{SU}(2, \mathbb{C}) \times S^{3} \rightarrow A \cdot\binom{z_{1}}{z_{2}} \in S^{3}
$$

The elements

$$
X_{1}=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right), \quad X_{2}=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right) \quad \text { and } \quad X_{3}=\left(\begin{array}{rr}
-i & 0 \\
0 & i
\end{array}\right)
$$

that verify

$$
\left[X_{1}, X_{2}\right]=-2 X_{3}, \quad\left[X_{1}, X_{3}\right]=-2 X_{2} \quad \text { and } \quad\left[X_{2}, X_{3}\right]=-2 X_{1}
$$

set up a basis of $\operatorname{su}(2, \mathbb{C})$. Taking in account the preceding identification of \mathbb{C}^{2} with \mathbb{R}^{4}, we can write these elements on the following form:

$$
\left\{\begin{array}{l}
X_{1}=-x_{4} \frac{\partial}{\partial x_{1}}-x_{3} \frac{\partial}{\partial x_{2}}+x_{2} \frac{\partial}{\partial x_{3}}+x_{1} \frac{\partial}{\partial x_{4}} \tag{4}\\
X_{2}=x_{2} \frac{\partial}{\partial x_{1}}-x_{1} \frac{\partial}{\partial x_{2}}+x_{4} \frac{\partial}{\partial x_{3}}-x_{3} \frac{\partial}{\partial x_{4}} \\
X_{3}=x_{3} \frac{\partial}{\partial x_{1}}-x_{4} \frac{\partial}{\partial x_{2}}-x_{1} \frac{\partial}{\partial x_{3}}+x_{2} \frac{\partial}{\partial x_{4}}
\end{array}\right.
$$

Proposition. The natural action of $\mathrm{SU}(2, \mathbb{C})$ on the sphere $\left(S^{3}, C, E\right)$ is a Jacobi action.

Proof: The set $\left\{X_{1}, X_{2}, X_{3}\right\}$ being a basis of $\operatorname{su}(2, \mathbb{C})$, we only must show that

$$
\left[\left(X_{i}\right)_{S^{3}}, E\right]=\left[\left(X_{i}\right)_{S^{3}}, C\right]=0, \quad \text { for } \quad i=1,2,3
$$

where $\left(X_{i}\right)_{S^{3}}$ is the fundamental vector field associated with X_{i}, with respect to the action of $\mathrm{SU}(2, \mathbb{C})$ on S^{3}. But, this action being the natural action, we have, for $i=1,2,3$,

$$
\left(X_{i}\right)_{S^{3}}=-X_{i}
$$

From (3) and (4), we can easily prove that

$$
\left[X_{i}, E\right]=\left[X_{i}, C\right]=0, \quad i=1,2,3
$$

The action of $\mathrm{SU}(2, \mathbb{C})$ on S^{3} admits a momentum mapping that we're going to evaluate. Let A be an arbitrary element of $\mathrm{SU}(2, \mathbb{C})$. Then A is a matrix of the form

$$
A=\left(\begin{array}{rr}
a+i b & c+i d \\
-c+i d & a-i b
\end{array}\right)
$$

where $(a, b, c, d) \in \mathbb{R}^{4}$ and $a^{2}+b^{2}+c^{2}+d^{2}=1$.

Let ξ be an element of $\mathrm{su}^{*}(2, \mathbb{C})$ of coordinates $\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$ on the dual basis of $\left\{X_{1}, X_{2}, X_{3}\right\}$. Then, for every $X \in \operatorname{su}(2, \mathbb{C})$, we have

$$
\left\langle\operatorname{Ad}_{A}^{*} \xi, X\right\rangle=\left\langle\xi, \operatorname{Ad}_{A^{-1}}(X)\right\rangle=\left\langle\xi, A^{-1} X A\right\rangle=\left\langle\xi,(\bar{A})^{\mathrm{T}} X A\right\rangle .
$$

We also have, for the elements X_{1}, X_{2} and X_{3} of the $\operatorname{su}(2, \mathbb{C})$ basis,

$$
\left\{\begin{array}{l}
\left\langle\operatorname{Ad}_{A}^{*} \xi, X_{1}\right\rangle=\left\langle\xi,\left(a^{2}-b^{2}-c^{2}+d^{2}\right) X_{1}+2(a b+c d) X_{2}+2(a c-b d) X_{3}\right\rangle \\
\left\langle\operatorname{Ad}_{A}^{*} \xi, X_{2}\right\rangle=\left\langle\xi, 2(c d-a b) X_{1}+\left(a^{2}-b^{2}+c^{2}-d^{2}\right) X_{2}+2(-a d-b c) X_{3}\right\rangle \\
\left\langle\operatorname{Ad}_{A}^{*} \xi, X_{3}\right\rangle=\left\langle\xi, 2(-a c-b d) X_{1}+2(a d-b c) X_{2}+\left(a^{2}+b^{2}-c^{2}-d^{2}\right) X_{3}\right\rangle
\end{array}\right.
$$

So,

$$
\operatorname{Ad}_{A}^{*} \xi=\left(\begin{array}{c}
\xi_{1}\left(a^{2}-b^{2}-c^{2}+d^{2}\right)+2 \xi_{2}(a b+c d)+2 \xi_{3}(a c-b d) \\
2 \xi_{1}(c d-a b)+\xi_{2}\left(a^{2}-b^{2}+c^{2}-d^{2}\right)+2 \xi_{3}(-a d-b c) \\
2 \xi_{1}(-a c-b d)+2 \xi_{2}(a d-b c)+\xi_{3}\left(a^{2}+b^{2}-c^{2}-d^{2}\right)
\end{array}\right) .
$$

Proposition. Let $J: S^{3} \rightarrow \mathrm{su}^{*}(2, \mathbb{C})$ be the mapping given by

$$
\left\{\begin{array}{l}
\left\langle J, X_{1}\right\rangle\left(x_{1}+i x_{3}, x_{2}+i x_{4}\right)=2\left(-x_{1} x_{2}-x_{3} x_{4}\right), \\
\left\langle J, X_{2}\right\rangle\left(x_{1}+i x_{3}, x_{2}+i x_{4}\right)=2\left(-x_{1} x_{4}+x_{2} x_{3}\right), \\
\left\langle J, X_{3}\right\rangle\left(x_{1}+i x_{3}, x_{2}+i x_{4}\right)=\left(x_{1}\right)^{2}-\left(x_{2}\right)^{2}+\left(x_{3}\right)^{2}-\left(x_{4}\right)^{2}
\end{array}\right.
$$

where X_{1}, X_{2} and X_{3} are the elements of the $\operatorname{su}(2, \mathbb{C})$ basis defined above. Then J is the unique Ad^{*}-equivariant momentum mapping of the natural Jacobi action of $\operatorname{SU}(2, \mathbb{C})$ on S^{3}.

Proof: If we calculate the hamiltonian vector fields $X_{\left\langle J, X_{i}\right\rangle}(i=1,2,3)$ corresponding to the functions $\left\langle J, X_{i}\right\rangle$, we obtain

$$
X_{\left\langle J, X_{i}\right\rangle}=-X_{i} .
$$

But, as we have already remarked, $\left(X_{i}\right)_{S^{3}}=-X_{i}$. The mapping J is then a momentum mapping of the action of $\operatorname{SU}(2, \mathbb{C})$ on S^{3}.

Let $A=\left(\begin{array}{rr}a+i b & c+i d \\ -c+i d & a-i b\end{array}\right) \in \mathrm{SU}(2, \mathbb{C})$ and $z_{1}=x_{1}+i x_{3}, z_{2}=x_{2}+i x_{4} \in S^{3}$,
be arbitrary elements. Then, we have

$$
\begin{aligned}
J\left(A \cdot\binom{z_{1}}{z_{2}}\right)= & J\binom{\left(a x_{1}-b x_{3}+c x_{2}-d x_{4}\right)+i\left(a x_{3}+b x_{1}+c x_{4}+d x_{2}\right)}{\left(-c x_{1}-d x_{3}+a x_{2}+b x_{4}\right)+i\left(-c x_{3}+d x_{1}-b x_{2}+a x_{4}\right)} \\
= & \left(\begin{array}{c}
-2\left(a x_{1}-b x_{3}+c x_{2}-d x_{4}\right)\left(-c x_{1}-d x_{3}+a x_{2}+b x_{4}\right)- \\
-2\left(a x_{3}+b x_{1}+c x_{4}+d x_{2}\right)\left(-c x_{3}+d x_{1}-b x_{2}+a x_{4}\right) \\
-2\left(a x_{1}-b x_{3}+c x_{2}-d x_{4}\right)\left(-c x_{3}+d x_{1}-b x_{2}+a x_{4}\right)+ \\
+2\left(-c x_{1}-d x_{3}+a x_{2}+b x_{4}\right)\left(a x_{3}+b x_{1}+c x_{4}+d x_{2}\right) \\
\left(a x_{1}-b x_{3}+c x_{2}-d x_{4}\right)^{2}-\left(-c x_{1}-d x_{3}+a x_{2}+b x_{4}\right)^{2}+ \\
\\
+\left(a x_{3}+b x_{1}+c x_{4}+d x_{2}\right)^{2}-\left(-c x_{3}+d x_{1}-b x_{2}+a x_{4}\right)^{2}
\end{array}\right) \\
= & \operatorname{Ad}_{A}^{*}\left(\begin{array}{c}
-2\left(x_{1} x_{2}+x_{3} x_{4}\right) \\
-2\left(x_{1} x_{4}-x_{2} x_{3}\right) \\
\left(x_{1}\right)^{2}-\left(x_{2}\right)^{2}+\left(x_{3}\right)^{2}-\left(x_{4}\right)^{2}
\end{array}\right) \\
= & \operatorname{Ad}_{A}^{*}\left(J\left(x_{1}+i x_{3}, x_{2}+i x_{4}\right)\right) .
\end{aligned}
$$

So, J is an Ad^{*}-equivariant momentum mapping.
Finally remark that, as $\operatorname{su}(2, \mathbb{C})$ equals its derived algebra, if an Ad^{*}-equivariant momentum mapping exists, it is unique.

APPENDIX

In what follows, M is a differentiable connected finite dimensional manifold.
I) Let A (resp. B) be a p-times (resp. q-times) contravariant skew-symmetric tensor field on M. The Schouten bracket ([10]) of A and B is a $(p+q-1)$-times contravariant skew-symmetric tensor field on M, denoted by $[A, B]$, such that for any closed $(p+q-1)$-form β,

$$
i([A, B]) \beta=(-1)^{(p+1) q} i(A) d i(B) \beta+(-1)^{p} i(B) d i(A) \beta
$$

where i is the interior product.
Some of the properties of the Schouten bracket are:
i) If $p=1,[A, B]=\mathcal{L}(A) B$ is the Lie derivative of B with respect to A;
ii) $[A, B]=(-1)^{p q}[B, A]$;
iii) If C is an r-contravariant skew-symmetric tensor field,

$$
S(-1)^{p q}[[B, C], A]=0
$$

where S means sum after circular permutation;
iv) $[A, B \wedge C]=[A, B] \wedge C+(-1)^{(p+1) q} B \wedge[A, C]$.
II) Let C be a two times contravariant skew-symmetric tensor field on M and E a vector field on M. For any couple (f, h) of functions on M, we set

$$
\{f, h\}=C(d f, d h)+f(E . h)-h(E . f)
$$

and define a bilinear and skew-symmetric internal law on $C^{\infty}(M, \mathbb{R})$. This law satisfies the Jacobi identity (i.e., $S\{\{f, h\}, g\}=0$) if and only if

$$
[C, C]=2 E \wedge C \quad \text { and } \quad[E, C]=0 \quad([5]),
$$

the bracket [,] being the Schouten bracket. In this case, we say that $\{$,$\} is a$ Jacobi bracket and (M, C, E) is a Jacobi manifold. The space $C^{\infty}(M, \mathbb{R})$ with a Jacobi bracket is a local Lie algebra. If $E=0$, the Jacobi manifold is a Poisson manifold.

If (M, C, E) is a Jacobi manifold, there exists a vector bundle morphism

$$
\#():(T M)^{*} \rightarrow T M
$$

that is given, for all α and β in the same fiber of $(T M)^{*}$, by

$$
\left\langle\beta,{ }^{\#} \alpha\right\rangle=C(\alpha, \beta) .
$$

If $f \in C^{\infty}(M, \mathbb{R})$, we call $X_{f}={ }^{\#} d f+f E$ the hamiltonian vector field associated with $f([7])$.

Let (M, C, E) be a Jacobi manifold and $a \in C^{\infty}(M, \mathbb{R})$ a differentiable function that never vanishes. For all f and h elements of $C^{\infty}(M, \mathbb{R})$, we set

$$
\{f, h\}^{a}=\frac{1}{a}\{a f, a h\} .
$$

The bracket $\{,\}^{a}$ is a Jacobi bracket and defines on M a new Jacobi structure $\left(C^{a}, E^{a}\right)$, with

$$
C^{a}=a C \quad \text { and } \quad E^{a}={ }^{\#} d a+a E
$$

We say that the structure $\left(C^{a}, E^{a}\right)$ is a-conformal to (C, E). The equivalence class of all Jacobi structures on M, conformal to a given structure is called a conformal Jacobi structure on M.

Let (M_{1}, C_{1}, E_{1}) and (M_{2}, C_{2}, E_{2}) be two Jacobi manifolds. A differentiable mapping $\phi: M_{1} \rightarrow M_{2}$ is called a Jacobi morphism if

$$
\{f, h\}_{M_{2}} \circ \phi=\{f \circ \phi, h \circ \phi\}_{M_{1}},
$$

for all $f, h \in C^{\infty}\left(M_{2}, \mathbf{R}\right)$. We call ϕ an a-conformal Jacobi morphism if there exists a function $a \in C^{\infty}\left(M_{1}, \mathbf{R}\right)$ that never vanishes, such that ϕ is a Jacobi morphism of $\left(M_{1}, C_{1}^{a}, E_{1}^{a}\right)$ into $\left(M_{2}, C_{2}, E_{2}\right)$.

A vector field X on a Jacobi manifold (M, C, E) is an infinitesimal Jacobi automorphism (resp. infinitesimal conformal Jacobi automorphism) if and only if $[X, C]=0$ and $[X, E]=0$ (resp. if and only if there exists a function $a \in$ $C^{\infty}(M, \mathbb{R})$ such that $[X, C]=a C$ and $\left.[X, E]=\# d a+a E\right)$.
III) Let (M, C, E) be a Jacobi manifold and G a Lie group acting on the left on M, by an action ϕ. Suppose that for each $g \in G$ there exists a function $a_{g} \in C^{\infty}(M, \mathbb{R})$ that never vanishes and such that the mapping

$$
\phi_{g}: x \in M \rightarrow \phi(g, x) \in M
$$

is an a_{g}-conformal Jacobi morphism. Then the action ϕ is called a conformal Jacobi action. When, for all $g \in G$, the function $a_{g} \in C^{\infty}(M, \mathbb{R})$ is constant and equals 1 , the action ϕ is called a Jacobi action. In this case, for any $g \in G$, the mapping ϕ_{g} is a Jacobi morphism.

Given an element X of the Lie algebra \mathcal{G} of G, the fundamental vector field associated with X for the action $\phi([9])$, is the vector field X_{M} on M, such that, for all $x \in M$,

$$
X_{M}(x)=\frac{d}{d t}(\phi(\exp (-t X), x))_{\mid t=0}
$$

If G is a connected Lie group, the action ϕ of G on M is a Jacobi action (resp. conformal Jacobi action) if and only if for all $X \in \mathcal{G}$, the fundamental vector field X_{M} associated with X is an infinitesimal Jacobi automorphism (resp. infinitesimal Jacobi conformal automorphism).
IV) Let G be a finite dimensional Lie group and \mathcal{G} its Lie algebra. On the dual \mathcal{G}^{*} of \mathcal{G} we can define a Poisson structure, called the Lie-Poisson structure ([6]), by setting for all $f, h \in C^{\infty}\left(\mathcal{G}^{*}, \mathbf{R}\right)$ and $\xi \in \mathcal{G}^{*}$,

$$
\{f, h\}(\xi)=\langle\xi,[d f(\xi), d h(\xi)]\rangle
$$

with [,] the Lie bracket on \mathcal{G},\langle,$\rangle the duality product of \mathcal{G}$ and \mathcal{G}^{*} and where we identify the elements of \mathcal{G} with linear mappings of \mathcal{G}^{*} into \mathbb{R}.

If Z is the Liouville vector field on \mathcal{G}^{*} and Λ is the Lie-Poisson tensor field on \mathcal{G}^{*}, one can show ([6]) that

$$
[\Lambda, Z]=-\Lambda
$$

i.e., $\left(\mathcal{G}^{*}, \Lambda, Z\right)$ is an homogeneous Lie-Poisson structure.

REFERENCES

[1] Guédira, F. et Lichnerowicz, A. - Géométrie des algèbres de Lie de Kirillov, J. Math. Pures et Appl., 63 (1984), 407-484.
[2] Guillemin, V. and Sternberg, S. - Symplectic techniques in physics, Cambridge University Press, 1984.
[3] Kirillov, A. - Local Lie algebras, Russian Math. Surveys, 31(4) (1976), 55-75.
[4] Kostant, B. - Quantization and representation theory. Part I: prequantization, in "Lectures in Modern Analysis and Applications III", Lecture Notes in Mathematics, 170, 87-210, Springer Verlag, Berlin, 1970.
[5] Lichnerowicz, A. - Les variétés de Jacobi et leurs algèbres de Lie associées, J. Math. Pures et Appl., 57 (1978), 453-488.
[6] Lichnerowicz, A. - Réprésentation coadjointe quotient et espaces homogènes de contact ou localement conformément symplectiques, J. Math. Pures et Appl., 65 (1986), 193-224.
[7] Marle, C.M. - Quelques propriétés des variétés de Jacobi, in "Géométrie Symplectique et Mécanique" (J.-P. Dufour, ed.), Séminaire sud-rhodanien de géométrie, Travaux en cours, Hermann, Paris, 1985.
[8] Mikami, K. - Local Lie algebra structure and momentum mapping, J. Math. Soc. Japan, 39 (1987), 233-246.
[9] Nunes da Costa, J.M. - Actions de groupes de Lie sur des variétés et des fibrés de Jacobi et réduction, thèse de Doctorat, Paris, 1991.
[10] Schouten, J. - On differential operators of first order in tensor calculus, Convegno di Geom. Diff. Italia, Ed. Cremonese, Roma, 1953.
[11] Souriau, J.-M. - Structure des systèmes dynamiques, Dunod, Paris, 1969.

Joana Margarida Nunes da Costa,
Departamento de Matemática, Apartado 3008, 3000 Coimbra - PORTUGAL

[^0]: Received: January 22, 1993; Revised: July 30, 1993.

