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Abstract: Let E be a separable complex Fréchet space with the bounded approx-

imation property, or a complex DFN-space and P(E) be the complex projective space

induced from E. Then we solve affirmatively the Levi problem in a Riemann domain

over the projective space P(E). By using this result, we give the infinite dimensional

version of the indicator theorem of entire functions of exponential type on Cn.

1 – Introduction

Let E be a locally convex space, here always assumed to be complex and
Hausdorff. Let f be an entire function of exponential type on E. Then the
indicator If of the entire function f is the function on E with values in [−∞,∞)
defined by

If (z) = lim sup
z′→z

lim sup
t→∞

1

t
log |f(tz′)|

for every z ∈ E. The indicator has the following properties:

(1) If is plurisubharmonic.

(2) If is positively homogeneous of order 1, that is, If (tz) = tIf (z) for every
positive number t and every z ∈ E.

Conversely when given a plurisubharmonic function p on E which is positively
homogeneous of order 1, we consider the problem to ask whether or not there
exists an entire function f of exponential type on E with If = p. Kiselman
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[18], Lelong [19] and Martineau [22] solved affirmatively this problem in case the
dimension of E is finite. Their results are called the indicator theorem of entire
functions of exponential type on Cn.

This paper is concerned with the Levi problem in infinite dimensional projec-
tive spaces and with the indicator theorem of entire functions of exponential type
in infinite dimensional spaces. The main theorems of this paper are the following
two theorems.

Theorem 1. Let E be a separable Fréchet space with the bounded ap-
proximation property or a DFN-space and (ω, ϕ) be a Riemann domain over the
complex projective space P(E) induced from E. Assume that ω is not homeo-
morphic to P(E) through ϕ. Then the following statements (1), (2), (3), (4) and
(5) are equivalent. Moreover if ω is an open subset of P(E), the statements (1),
(2), (3), (4), (5) and (6) are equivalent:

(1) ω is pseudoconvex;

(2) For any finite dimensional subspace F of E, ϕ−1(P(F )) is a Stein mani-
fold;

(3) ω is a domain of holomorphy;

(4) ω is a domain of holomorphy and holomorphically separated;

(5) ω is a domain of existence;

(6) There exists a non-constant holomorphic function f on ω such that, for ev-
ery connected open neighbourhood V of an arbitrary point on the bound-
ary of ω, each component of ω ∩ V contains zero of f of arbitrarily high
order.

Theorem 2. Let E be a separable Fréchet space with the bounded approx-
imation property or a DFN-space, and p be a plurisubharmonic function in E
which is positively homogeneous of order 1. Then there exists an entire function
f of exponential type on E such that

p(z) = lim sup
z′→z

lim sup
t→∞

1

t
log |f(tz′)|

for every z ∈ E.

Corollary 3. If E is a nuclear Fréchet space with the bounded approximation
property or a DFN-space, there exists an analytic functional µ on the strong dual
space E′ of the space E such that

p(z) = lim sup
z′→z

lim sup
t→∞

1

t
log |µ(exp(tz′))|
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for every z ∈ E.

The proof of Theorem 2 is based on the characterization of pseudoconvex
domains of the projective space P(E) in Theorem 1. This method of the proof
was first given by Kiselman [18] in case E = Cn.

The Levi problem was first solved by Oka [35] in C2. Moreover Oka [36]
extended his result to Riemann domains overCn. At the same time, Bremermann
[3] and Norguet [32] solved this problem in Cn. The Levi problem in infinite
dimensional spaces is also the important object of study in infinite dimensional
complex analysis, and has been solved affirmatively in various infinite dimensional
spaces (cf. Aurich [1], Colomeau and Mujica [5], Dineen [6], [8, Appendix 1],
Dineen, Noverraz and Schottenloher [9], Grumann [11], Grumann and Kiselman
[12], Hervier [14], Hirchowitz [15], Matos [23], Mujica [25], [27], Noverraz [33],
[34], Pomes [39], Popa [40], Schottenloher [41]). Josefson [16] gave an example
of a non-separable Banach space in which the Levi problem is negative. Fujita
[10], Kiselman [18] and Takeuchi [42] extended the result of the Levi problem in
Riemann domains over Cn to those over the complex projective space P(Cn+1)
of dimension n. Kajiwara [17] and Nishihara [31] investigated the Levi problem
in Riemann domains over infinite dimensional projective spaces. In case E is
a topological vector space with the finite open topology, Kajiwara [17] solved
affirmatively the Levi problem in the projective spaceP(E). In case E is a Banach
space with a Schauder basis, Nishihara [31] solved affirmatively this problem in
Riemann domains over the projective spaces P(E). Therefore Theorem 1 is the
extension of Nishihara [31].

2 – Notations and preliminaries

Let E be a locally convex spaces and cs(E) be the set of all nontrivial contin-
uous seminorms on E.

A Hausdorff space M is called a complex manifold modeled on the space E
if there exists a family F = {(Ui, ϕi); i ∈ I} of pairs (Ui, ϕi) of open sets Ui of
M and homeomorphisms ϕi of open sets Ui onto open sets of E satisfying the
following conditions.

(1) For any i, j ∈ I with Ui ∩ Uj 6= ∅, the mappings ϕi ◦ ϕ
−1
j : ϕj(Ui ∩ Uj)→

ϕi(Ui ∩ Uj) between open sets in E are holomorphic.

(2)
⋃

i∈I

Ui = M .

F is called the atlas of M , and an element of F is called a chart of M .
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Let M and N be complex manifolds with atlases {(Ui, ϕi); i ∈ I} and
{(U ′α, ϕ

′
α); α ∈ A} respectively. Then a mapping f : M → N is said to be

holomorphic if, for any i ∈ I and any α ∈ A with f(Ui) ∩ U ′α 6= ∅, the mapping
ϕ′α ◦ f ◦ ϕ−1i is holomorphic when it is defined. Particularly, if N = C, f is
called a holomorphic function on M . We denote by H(M) the vector space of
all holomorphic functions in M . A function p : M → [−∞,∞) is said to be
plurisubharmonic if for each i ∈ I, the function f ◦ϕ−1i is plurisubharmonic. We
denote by Ps(M) the set of all plurisubharmonic functions on M . We can define
a submanifold of the complex manifold M , a product manifold of M and another
complex manifold, a holomorphic fibre bundle over M , a holomorphic principal
bundle over M and a holomorphic vector bundle over M by the same way as in
case the dimension of M is finite. If there exists a local biholomorphic mapping ϕ
of a complex manifold ω into the complex manifold M , (ω, ϕ) is called a Riemann
domain over M . A section of ω is a continuous mapping σ : A→ ω, with A ⊂M ,
such that ϕ ◦ σ = id on A.

Let (ω, ϕ) and (ω′, ϕ′) be a Riemann domain over a complex manifold M . If
a holomorphic mapping λ of ω into ω′ satisfies ϕ = ϕ′ ◦λ, the mapping λ is called
a morphism of (ω, ϕ) into (ω′, ϕ′). Let (ω, ϕ) be a Riemann domain over M , and
let F ⊂ H(ω). If (ω′, ϕ′) is a Riemann domain over M , then a morphism λ of
(ω, ϕ) into (ω′, ϕ′) is said to be an F-extension of ω if for each f ∈ F there exists
a unique f ′ ∈ H(ω′) such that f ′ ◦ λ = f . A morphism λ of (ω, ϕ) into (ω′, ϕ′) is
said to be a holomorphic extension of ω if λ is an H(ω)-extension of ω. ω is said
to be an F-domain of holomorphy if each F-extension of ω is an isomorphism.
ω is said to be a domain of holomorphy if ω is an H(ω)-domain of holomorphy.
ω is said to be a domain of existence if there exists f ∈ H(ω) such that ω is an
{f}-domain of holomorphy. Let (ω, ϕ) be a Riemann domain over the complex
manifold M and let F ⊂ H(ω). A morphism λ : ω → ω′ is called an F-envelope
of holomorphy of ω if:

(a) λ is F-extension of ω;

(b) If µ : ω → ω′′ is an F-extension of ω, then there exists a morphism
ν : ω′′ → ω′ such that ν ◦ µ = λ.

By the same was as Mujica [27, Theorem 56.4] we can prove the following
theorem.

Theorem 2.1. Let (ω, ϕ) be a Riemann domain over a complex manifold
M and let F ⊂ H(ω). Then there exists the F-envelope of holomorphy of ω and
the existence of it is unique up to isomorphism.

For F ⊂ H(ω), we denote by EF (ω) the F-envelope of holomorphy of a
Riemann domain ω. Then we can prove the following proposition.
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Proposition 2.2. Let (ω, ϕ) be a Riemann domain over a complex manifold
and F ⊂ H(ω).

(1) Let λ : ω → ω′ be an F-extension of ω. Then ω′ = EF (ω) if and only if
ω′ is an F-domain of holomorphy.

(2) ω = EF (ω) if and only if ω is an F-domain of holomorphy.

Let M be a complex manifold and S be a subset of M . For a complex valued
function f and for a real valued function R on M , we write

|f |S = sup
{
|f(x)|; x ∈ S

}
, R(S) = inf

{
R(x); x ∈ S

}
.

For F ⊂ H(M) we write

ŜF =
{
y ∈M ; |f(y)| ≤ |f |S for all f ∈ F

}
.

Likewise, for S ⊂M and F ⊂ PS(M) we set

ŜF =
{
y ∈M ; f(y) ≤ sup

x∈S
f(x) for all f ∈ F

}
.

Let (ω, ϕ) be a Riemann domain over M . Let F ⊂ H(ω), ω is said to be
F-separated if for each pair (x, y) of points of ω satisfying x 6= y there exists a
holomorphic function h ∈ F such that h(x) 6= h(y). ω is said to be holomorphi-
cally separated if ω is H(ω)-separated. ω is said to be F-fibre separated if for
each pair (x, y) of points of ω, satisfying x 6= y and ϕ(x) = ϕ(y), there exists a
holomorphic function h ∈ F such that h(x) 6= h(y).

We shall collected some properties of Riemann domains over a locally convex
space, for which we have use afterwards.

Let E be a locally convex space and (Ω,Φ) be a Riemann domain over E. For
S ⊂ Ω and for a convex balanced neighbourhood V of 0 in E we write S+V ⊂ Ω
if for each x ∈ S there exists a section σ : Φ(x) + V → Ω such that σ ◦Φ(x) = x.

We define the distance functions dαΩ : Ω → [0,+∞], for α ∈ cs(E), and
δΩ : Ω× E → (0,+∞], as follows:

dαΩ(x)=sup
({

r>0; there is a section σ : Bα
E(Φ(x), r)→Ω with σ◦Φ(x)=x

}
∪{0}

)

and

δΩ(x, a)=sup
{
r>0; there is a section σ : DE(Φ(x), a, r)→Ω with σ ◦ Φ(x)=x

}

where for ξ, a ∈ E and r > 0 we write

Bα
E(ξ, r) =

{
ξ + b; b ∈ E, α(b) < r

}
,

DE(ξ, a, r) =
{
ξ + λa; λ ∈ C, |λ| < r

}
.
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If dαΩ(x) > 0 then for each r ∈ (0, dαΩ(x)] there is a unique set Bα
Ω(x, r) ⊂ Ω

containing x such that Φ : Bα
Ω(x, r) → Bα

E(Φ(x), r) is a bijection. Likewise, for
each x ∈ Ω, a ∈ E and r ∈ (0, δΩ(x, a)] there is a unique set DΩ(x, a, r) ⊂ Ω
containing x such that ϕ : DΩ(x, a, r)→ DE(ϕ(x), a, r) is bijection. The function
dαΩ is continuous, and the function δΩ is lower semicontinuous. The domain Ω is
said to be pseudoconvex if the function − log δΩ is plurisubharmonic on Ω × E.
The following proposition is on Noverraz [34].

Proposition 2.3. For a Riemann domain (Ω,Φ) over a locally convex space
E, the following conditions are equivalent:

(a) Ω is pseudoconvex;

(b) dαΩ(X̂Ps(Ω)) = dαΩ(X) for every X ⊂ Ω and α ∈ cs(E);

(c) For each compact setK of Ω there exists α ∈ cs(E) such that dα
Ω(K̂Ps(Ω)) >

0;

(d) Φ−1(F ) is a Stein Manifold for each finite dimensional linear subspace F
of E.

Let E be a Fréchet space. A sequence (en) in the Fréchet space E is said to
be a Schauder basis if every x ∈ E admits a unique representation as a series x =∑∞

n=1 ξn(x) en where the series converges in the ordinary sense for the topology
of E. Let En be the linear span of the set {e1, e2, ..., en} and let Tn : E → En be
the canonical projection. Then it follows from the open mapping theorem that
the sequence (Tn) is equicontinuous and converges to the identity uniformly on
compact sets, and that the space E has a fundamental sequence of continuous
seminorms αj which satisfy the conditions αj = supn αj ◦ Tn.

3 – Riemann domains with C∗-action

In this section we investigate properties of Riemann domains with C∗-action
over locally convex spaces. Results in this section are useful to investigate some
properties of Riemann domains over projective spaces.

A Riemann domain (Ω,Φ) over a locally convex space E is said to be with
C∗-action if (Ω,Φ) satisfies the following conditions.

(1) C∗ acts freely on Ω on the left: (λ, x) ∈ C∗ × Ω→ λ · x ∈ Ω.

(2) The action (λ, x) ∈ C∗ × Ω→ λ · x ∈ Ω is holomorphic.

(3) Φ(λ · x) = λΦ(x) for every (λ, x) ∈ C∗ × Ω.
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Let S be a subset of Ω or E. We set

(3.1) λ · S =
{
λ · x; x ∈ S

}
.

Then we can prove the following lemma.

Lemma 3.1. Let E be a locally convex space and (Ω,Φ) be a Riemann
domain with C∗-action over E. Then we have

dαΩ(λ · x) = |λ| d
α
Ω(x) ,(3.2)

δΩ(λ · x, a) = |λ| δΩ(x, a) = δΩ(x, λ
−1 · a) ,(3.3)

for any (λ, x) ∈ C∗ × Ω, a ∈ E and α ∈ cs(E).

Proof: We shall show first the equality (3.3). Since the second equality of
(3.3) is trivial, we shall show only the first equality of (3.3). Let (x, a) be a point
of Ω × E. Let r be a real number with 0 < r < δΩ(x, a). There exists a section
σ : DE(Φ(x), a, r) → Ω with σ ◦ Φ(x) = x. For each λ ∈ C∗, a mapping z ∈
σ(DE(Φ(x), a, r)) → λ · z ∈ Ω is a biholomorphic mapping of σ(DE(Φ(x), a, r))
onto λ · σ(DE(Φ(x), a, r)). Since λ · DE(Φ(x), a, r) = DE(Φ(λ · x), a, |λ| r) and
Φ(λ·σ(DE(Φ(x), a, r))) = λ·DE(Φ(x), a, r), a mapping ξ ∈ DE(Φ(λ·x), a, |λ| r)→
λ·σ(λ−1ξ) is a section of Ω and satisfies λ·σ(λ−1ξ) = λ·x if ξ = Φ(λ·x). Therefore
we have

(3.4) δΩ(λ · x, a) ≥ |λ| δΩ(x, a) .

Since x, a and λ are given arbitrarily, by (3.4) we have

δΩ(λ · x, a) = |λ| |λ
−1| δΩ(λ · x, a)

≤ |λ| δΩ(λ
−1 λ · x, a)

= |λ| δΩ(x, a) .

Thus we obtain the equality (3.3).
The equality (3.2) is obtained from (3.3) and from the equality dα

Ω(x) =
inf{δΩ(x, a); α(a) = 1}. This completes the proof.

Let E be a Fréchet space with a Schauder basis (en) and (Ω,Φ) be a pseudo-
convex Riemann domain with C∗-action over E.

If U is any open subset of Ω, then we consider the functions ηn
U (x) : U →

[0,+∞] defined by

(3.5) ηnU (x) = inf
k≥n

δU
(
x, Tk ◦ Φ(x)− Φ(x)

)
.
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These functions were introduced by Schottenloher [41], who proved that they are
strictly positive and lower semicontinuous on U . Thus the functions − log ηn

U are
plurisubharmonic on U whenever U is pseudoconvex. We set

An =
{
x ∈ Ω; ηnΩ(x) > 1

}
,

τn(x) = (Φ|Dx)
−1 ◦ Tn ◦ Φ(x) (x ∈ An) ,

where Dx = DΩ(x, Tn ◦ Φ(x) − Φ(x), ηnΩ(x)). Then the following lemma can be
verified.

Lemma 3.2. We set Ωn = Φ−1(En) for every n. Then there exist a sequence
of open sets An ⊂ Ω and a sequence of holomorphic mappings τn : An → Ωn with
the following properties:

(a) Ω =
⋃∞

n=1An, An ⊂ An+1 and Ωn ⊂ An for every n;

(b) τn = id on Ωn, Φ ◦ τn = Tn ◦ Φ on An and τn ◦ τn+1 = τn+1 ◦ τn = τn on
An for every n;

(c) For each compact subset K of Ω and a balanced open neighbourhood V of
0 in E with K+V ⊂ Ω there exists a positive integer n such that K ⊂ An

and τk(x) ∈ x+ V for every x ∈ K and k ≥ n;

(d) K̂Ps(Ω) ⊂ An for every compact subset K of An;

(e) λ ·An = An for every λ ∈ C∗ with |λ| = 1.

Proof: The proof of statement (a), (b), (c) and (d) is in Schottenloher [41].
The statement (e) follows from (3.3) and (3.5).

Lemma 3.3. Assume that the Fréchet space E has a continuous norm and
that Ω is connected. Let (αn) be a fundamental sequence of continuous norms
on E with αn+1 ≥ 2αn and αn = supk αn ◦ Tk for every n. Let (An) and (τn)
be two sequences satisfying the conditions in Lemma 3.2. Then there are two
sequences of open sets Cn ⊂ Bn ⊂ An and a sequence (Vn) of balanced convex
open neighbourhoods of 0 in E with the following properties:

(a) Ω =
⋃∞

n=1Bn =
⋃∞

n=1 Cn, Bn ⊂ Bn+1 and Cn + Vn ⊂ Cn+1 for every n;

(b) Bn ∩ Ωk ⊂⊂ An ∩ Ωk for every n and k;

(c) τk(Cn) ⊂ Bn ∩ Ωk whenever k > n;

(d) The set (Bn ∩ Ωk )̂H(Ωk) is relatively compact in An ∩ Ωk for every n and
k;

(e) dαnΩ (Bn) ≥ 1 for every n;
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(f) sup{α1(Φ(x)); x ∈ Bn} ≤ n for every n;

(g) λ ·Bn = Bn, λ · Cn = Cn for every λ ∈ C∗ with |λ| = 1.

Proof: By Mujica [26, Lemma 2.6] and by an examination of the proof of
Mujica [26, Lemma 2.6] there exist two sequences of open sets Cn ⊂ Bn ⊂ An and
a sequence Vn of balanced convex open neighbourhoods of 0 in E satisfying the
statements (a), (b), (c), (d), (e) and (f). We replace newly two sets

⋃
|λ|=1 λ ·Bn

and
⋃
|λ|=1 λ · Cn by Bn and Cn respectively for each n. Then the two sets Bn

and Cn are open sets of Ω and satisfy the required conditions. This completes
the proof.

A holomorphic function f in Ω is said to be C∗-invariant if

f(λ · x) = f(x)

for every (λ, x) ∈ C∗ × Ω. For each f ∈ H(Ω), we set

(3.6) f̃(x) =
1

2π

∫ 2π

0
f(eiθ · x) dθ

for every x ∈ Ω. Then f̃ is holomorphic on Ω. For each x, a function λ→ f̃(λ ·x)
(λ ∈ C∗) is holomorphic and constant on |λ| = 1. Therefore by the identity
theorem, the function λ→ f̃(λ · x) (λ ∈ C∗) is constant. Thus the function f̃ is
C∗-invariant.

Lemma 3.4. With the conditions and the notion of Lemma 3.3, for each
C∗-invariant function fn ∈ H(Ωn) and for each ε > 0 there exists C∗-invariant
function f ∈ H(Ω) such that

(a) f = fn on Ωn;

(b) |f − fn ◦ τn|Cn ≤ ε;

(c) |f |Cj < +∞ for every j.

Proof: By Mujica [23, Lemma 2.7], there exists a holomorphic function f
satisfying the conditions (a), (b) and (c). Then the function f may not be C∗-
invariant. Let f̃ be a C∗-invariant holomorphic function on Ωn defined by (3.6).
Then it is easy to show that the function f̃ satisfies the conditions (a), (b) and
(c). This completes the proof.

The following lemma is on Dineen [7].

Lemma 3.5. Let E be a Fréchet space with a Schauder basis. Let α be a
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continuous seminorm on E satisfying the condition

(3.7) α(x) = sup
m≥1

α
( m∑

n=1

ξn(x) en
)

for every x ∈ E. If we set

Zα =
{
n ∈ IN; α(en) = 0

}
,

Eα =
{
x ∈ E; ξn(x) = 0 for every n ∈ Zα

}
,(3.8)

then Eα has a Schauder basis and a continuous norm, and E is the topological
direct sum of Eα and α−1(0).

Let (Ω,Φ) be a Riemann domain with C∗-action over E and A be a subset of
Ω or of E. Then we set

C∗ ·A =
{
ξ · x; ξ ∈ C∗, x ∈ A

}
.

Lemma 3.6. Let (Ω,Φ) be a connected pseudoconvex Riemann domain with
C∗-action over a Fréchet space E which has a Schauder basis. Let x0 ∈ Ω and let
α be a continuous seminorm on E satisfying the condition (3.7) in Lemma 3.5 and
dαΩ(x0) > 0. Let πα : E → Eα be the canonical projection and Ωα = Φ−1(Eα).
Then:

(a) There is a holomorphic mapping σα : Ω → Ωα such that σα = id on Ωα,
Φ ◦ σα = πα ◦Φ on Ω and σα(λ · x) = λ · σα(x) for every (λ, x) ∈ C∗ ×Ω;

(b) Let U be any connected pseudoconvex open subset of Ω such that
dαU (y0) > 0 for some y0 ∈ U . Then U = σ−1α (U ∩ Ωα) and f ◦ σα = f on
U for every f ∈ H(U) which is bounded on an α-neighbourhood of y0;

(c) For x, y ∈ Ω we have x = y if and only if Φ(x) = Φ(y) and σα(x) = σα(y);

(d) For each a ∈ E and t ∈ Ωα with πα(a) = Φ(t) there is a unique x ∈ Ω
such that Φ(x) = a and σα(x) = t;

(e) A net (xi) in Ω converges in Ω if and only if (Φ(xi)) converges in E and
(σα(xi)) converges in Ωα.

Proof: Any other things except for the equality σα(λ · x) = λ · σα(x) for
every (λ, x) ∈ C∗×Ω were proved in Mujica [26, Lemma 3.2]. Therefore we shall
show only this equality. Let (λ, x) be any element of C∗ × Ω. We set z = σα(x)
and w = σα(λ · x), and then we have only to show the equality λ · z = w. We
remark Φ(λ · z) = Φ(w). Since Φ(ξ · z) = ξΦ(z) for every ξ ∈ C∗, a mapping
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σ of C∗ · {Φ(z)} into Ω defined by σ(ξΦ(z)) = σα(ξ · x) for every ξ ∈ C∗ and a
mapping σ′ : ξ ·Φ(z) ∈ C∗ · {Φ(z)} → ξ · z are sections of Ω with σ ◦Φ(z) = z and
σ′ ◦ Φ(z) = z respectively. Therefore it follows from the uniqueness of existence
of a section of Ω that ξ · z = σα(ξ · x) for every ξ ∈ C∗. Especially we have
λ · z = σα(λ · x) = w. This completes the proof.

We define a holomorphic mapping Φ̃ of the product manifold Ωα × α−1(0) of
Ωα and α−1(0) into E by Φ̃(x, ξ) = Φ(x)+ξ for every (x, ξ) ∈ Ωα×α−1(0). Then
(Ωα×α−1(0), Φ̃) is a Riemann domain over E. Moreover (Ωα×α−1(0), Φ̃) is with
C∗-action:

C∗ × (Ωα × α−1(0)) ∈ (λ, (x, ξ))→ (λ · x, λ · ξ) ∈ Ωα × α−1(0) .

We define a morphism µ of Ω into Ωα×α−1(0) by µ(x) = (σα(x),Φ(x)−πα ·Φ(x))
for every x ∈ Ω. Then we have µ(λ · x) = λ · µ(x) for every (λ, x) ∈ C∗ × Ω and
µ is an isomorphism. Thus we have the following Lemma 3.7.

Lemma 3.7. Let (Ω,Φ) be a connected pseudoconvex Riemann domain
with C∗-action over a Fréchet space E which has a Schauder basis. With the
conditions and the notations of Lemma 3.6, (Ω,Φ) is identified with the Riemann
domain (Ωα × α−1(0), Φ̃) with C∗-action over E = Eα ⊕ α−1(0).

4 – Riemann domains over projective spaces

Let E be a locally convex space. Let z and z′ be points in E − {0}. z and
z′ are said to be equivalent if there exists λ ∈ C∗ such that z′ = λz. We denote
by P(E) the quotient space of E − {0} by this equivalent relation. Then P(E)
is a Hausdorff space. The Hausdorff space P(E) is called the complex projective
space introduced from E. We denote by q the quotient map of E−{0} onto P(E).
For any ξ ∈ E − {0}, we denote by [ξ] the equivalent class of ξ (i.e., q(ξ) = [ξ]).
Let E′ be the complex vector space of all continuous linear functional on E. We
set

(4.1) SE =
{
(f, a) ∈ E′ × E; f(a) 6= 0

}
.

For each f ∈ E ′ − {0}, we define a hyperplane E(f) of E and open subset
U(f) of P(E) by

E(f) =
{
ξ ∈ E; f(ξ) = 0

}
,(4.2)

U(f) =
{
[ξ] ∈ P(E); f(ξ) 6= 0

}
,(4.3)
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respectively. For every (f, a) ∈ SE , we define a homeomorphism ϕ(f,a) of U(f)
onto E(f) by

(4.4) ϕ(f,a)([ξ]) =
1

f(ξ)
ξ −

1

f(a)
a

for every [ξ] ∈ U(f). Then the family {U(f), ϕ(f,a)}(f,a)∈SE defines the complex
structure of the projective space P(E).

Let (ω, ϕ) be a Riemann domain over the complex projective space P(E)
induced from E. We consider the fibre product Ω of ω and E − {0} defined by

(4.5) Ω =
{
(z, w) ∈ ω × (E − {0}); ϕ(z) = q(w)

}
.

We denote by Φ and Q projections of the fibre product Ω into E − {0} and ω
respectively. Then (Ω,Φ) is a Riemann domain over E. For each (z, w) ∈ Ω and
for each λ ∈ C∗, we set

(4.6) λ · (z, w) = (z, λw) .

Then points λ · (z, w) of ω × (E − {0}) belongs to Ω for all (z, w) ∈ Ω and all
λ ∈ C∗. The mapping (λ, x) ∈ C∗ × Ω → λ · x is holomorphic. By this action,
(Ω,Φ) is the Riemann domain with C∗-action over E. The Riemann domain
(Ω,Φ) with C∗-action over E is called the Riemann domain associated with the
Riemann domain (ω, ϕ). The Riemann domain ω is the quotient space of Ω by
this C∗-action and Q is the quotient map of Ω onto ω. Ω is the total space of a
holomorphic principal bundle over ω with the complex multiplicative group C∗.
We have the following commutative diagram:

(4.7)

Ω
Q

ω

Φ ϕ

E−{0}
q

P(E) .-

-

? ?

Let E be a locally convex space and (ω, ϕ) be a Riemann domain over the
projective space P(E). Then the Riemann domain ω is said to be pseudoconvex
if for each (f, a) ∈ SE the Riemann domain (ϕ−1(U(f)), ϕ(f,a) ◦ ϕ|ϕ−1(U(f)))
over E(f) is pseudoconvex.

Let F be a closed linear subspace of E. we set

ΩF = Φ−1(F ) ,(4.8)

ωF = ϕ−1(P(F )) .(4.9)
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ΩF is a holomorphic principal bundle over ωF with the complex multiplicative
group C∗.

Let (Ω,Φ) be a Riemann domain over a locally convex space E. Let a and b
be points of Ω. By a line segment [a, b] in Ω we mean a set in Ω containing the
points a and b and homeomorphic under Φ to the line segment [Φ(a),Φ(b)] in E.
By a polygonal line [x0, x1, ..., xn] in Ω we mean a finite union of line segments
of the form [xj−1, xj ] with j = 1, ..., n.

Remark 4.1. Let x and y be two points which belong to a connected
component of Ω. Since there exists a polygonal line [x0, x1, ..., xn] with x0 = x
and with xn = y, there exists a finite dimensional linear subspace F of E such
that the set {x, y} is contained in a connected component of the set Φ−1(F ).

Lemma 4.2. Let E be a locally convex space and (ω, ϕ) be a Riemann
domain over the complex projective space P(E). Assume that ω is not home-
omorphic to P(E) through ϕ. Then for any finite dimensional linear subspace
F of E and for any connected component VF of ωF , there exists a finite dimen-
sional linear subspace G of E and a connected component VG of ωG = ϕ−1(P(G))
satisfying the following conditions:

(1) VF is a closed complex submanifold of VG;

(2) VG is not homeomorphism to P(G) through ϕ.

Proof: By Remark 4.1 and the commutative diagram (4.7), there exist a
finite dimensional linear subspace F0 of E and a connected component VF0

of
ωF0

such that VF0
is not homeomorphic to P(F0) through ϕ. We take a point z

of VF and a point w of VF0
. By Remark 4.1 and by the commutative diagram

(4.7), there exist a finite dimensional subspace F1 and a connected component
VF1

of ωF1
such that VF1

contains the set {z, w}. Let G be the complex vector
space spanned by all elements of the union F ∪ F0 ∪ F1. Then both P(F ) and
P(F0) are closed complex submanifolds of P(G). We denote by VG the connected
component of ωG containing the set {z, w}. Since (VG, ϕ|VG) is a Riemann domain
over P(G), both VF and VF0

are closed complex submanifolds of VG. Then VG

satisfies the required conditions (1) and (2). This completes the proof.

Lemma 4.3. In addition to the assumption of Lemma 4.2, we assume that
ω is pseudoconvex. Then, for any finite dimensional linear subspace F of E, ωF

is a Stein manifold. Moreover Ω is pseudoconvex.

Proof: Let F be a finite dimensional linear subspace of E. Let VF be
any component of ωF . By Lemma 4.2 there exists a finite dimensional linear
subspace G of E and a component VG of ωG satisfying the conditions (1) and
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(2) in Lemma 4.2. Since ω is pseudoconvex, VG is also pseudoconvex. By Fujita
[10], Kiselman [18] and Takeuchi [42], the pseudoconvex Riemann domain VG

over the projective space P(G) is a Stein manifold. Since VF is a closed complex
submanifold of the Stein manifold VG, VF is also a Stein manifold. Therefore ωF

is a Stein manifold.

For every finite dimensional linear subspace F of E, ΩF is the total space
of a holomorphic principal bundle over the Stein manifold ωF with the complex
multiplicative group C∗. Therefore by Matsushima and Morimoto [24] ΩF is a
Stein manifold. Thus it follows from Proposition 2.3 that Ω is pseudoconvex.
This completes the proof.

Proposition 4.4. With the assumption of Lemma 4.2 the following state-
ments are equivalent.

(1) ω is pseudoconvex;

(2) ωF is a Stein manifold for every finite dimensional linear subspace F of
E;

(3) Ω is pseudoconvex.

Proof: It follows from Lemma 4.3 that (1) implies (2). An examination of
the proof of Lemma 4.3 shows that (2) implies (3).

We shall show that (3) implies (1). For any (f, a) ∈ SE in (4.1), we have only
to prove that the Riemann domain (ϕ−1(U(f)), ϕ(f,a) ◦ ϕ|ϕ−1(U(f))) over the
vector space E(f) is pseudoconvex. Let L be a finite dimensional linear subspace
of E(f). Then by Proposition 2.3 we have only to show that ϕ−1 ◦ ϕ−1(f,a)(L) is

a Stein manifold. We set F = L ⊕ 〈a〉 where 〈a〉 is the linear span of the set
{a}. Since f = 0 on L, ϕ−1(f,a)(L) = q(L + a). By the assumption ΩF is a Stein
manifold. Since ΩF is the total space of a holomorphic principal bundle over
the complex manifold ωF with the complex multiplicative group C∗ and since
C∗ is the complexification of the compact group {eiθ; θ ∈ R}, it follows from
Matsushima and Morimoto [24] that ωF is also a Stein manifold. Since L+ a is
an affine subspace of the finite dimensional space F , the set ϕ−1 ◦ ϕ−1(f,a)(L) =

ϕ−1(q(L + a)) is a closed submanifold of the Stein manifold ωF . Therefore the
complex manifold ϕ−1 ◦ϕ−1(f,a)(L) is a Stein manifold. This completes the proof.

After this we assume that Riemann domains (ω, ϕ) over the projective space
P(E) are not homeomorphic to P(E) through ϕ.

Let E be a locally convex space, and let α and β be nontrivial continuous
seminorms on E with α ≤ β. We set

P(E)α =
{
[x] ∈ P(E); α(x) 6= 0

}
.
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We define a pseudodistance ρα,βE on the open set P(E)α by

(4.10) ρα,βE ([x], [y]) = inf

{
β

(
eiθ

x

α(x)
− eiθ

′ y

α(y)

)
; θ, θ′ ∈ R

}

for every [x], [y] ∈ P(E)α. Let (ω, ϕ) be a Riemann domain over P(E) with
ϕ(ω) ⊂ P(E)α, that is, (ω, ϕ) be a Riemann domain over the complex manifold
P(E)α. Let a be a point of P(E)α and r be a positive number, we denote by

BP (E)(a, r; ρ
α,β
E ) the open ball {b ∈ P(E)α; ρ

α,β
E (a, b) < r} with respect to the

pseudodistance ρα,βE with center a and with radius r. We define the boundary
distance function ∆α,β

ω : ω → [0,∞) for any α, β ∈ cs(E) with β ≥ α by

∆α,β
ω (x)=sup

{
r; there is a section σ : BP (E)(ϕ(x), r; ρ

α,β
E )→ω with σ◦ϕ(x)=x

}
.

If ∆α,β
ω (x) > 0, then for each r ∈ (0,∆α,β

ω (x)] there exists a unique subset

Bω(x, r; ρ
α,β
E ) of ω containing x such that a mapping ϕ : Bω(x, r; ρ

α,β
E ) →

Bα,β
P (E)(ϕ(x), r; ρ

α,β
E ) is bijective.

Lemma 4.5. Let E be a locally convex space and (ω, ϕ) be a connected
pseudoconvex Riemann domain. Then if a continuous seminorm α on E satisfies
dαΩ(a) > 0 for some points a of Ω, we have δΩ(·, ·) = ∞ on Ω × α−1(0) and
ϕ(ω) ⊂ P(E)α.

Proof: Since dαΩ is continuous, there exists an open neighbourhood N(a)
such that dαΩ > 0 on N(a). For any v ∈ α−1(0) and any x ∈ N(a), we have
δ(x, v) = ∞. Since ω is pseudoconvex, it follows from Proposition 4.4 that
δΩ(·, ·) =∞ on Ω× α−1(0). Thus for any x ∈ Ω, there exists a section σ of Ω on
Φ(x) + α−1(0). Therefore the set Φ(x) + α−1(0) is contained in E − {0}. Thus
Φ(x) is not contained in α−1(0). Thus α(Φ(x)) 6= 0 for every x ∈ Ω. It follows
from the commutative diagram (4.7) that ϕ(ω) ⊂ P(E)α. This completes the
proof.

Lemma 4.6. Let E be a locally convex space. Let (ω, ϕ) be a Riemann
domain over the projective space P(E). Let S be a subset of ω. Then the
mapping ϕ|S : S → P(E) is injective if and only if the mapping Φ|Q−1(S) :
Q−1(S)→ E − {0} is injective.

Proof: Assume that the mapping ϕ|S is injective. Let a and b be any different
points of Q−1(S). If Q(a) 6= Q(b), it follows from the commutative diagram (4.7)
and from the injectivity of ϕ|S that Φ(a) 6= Φ(b). If Q(a) = Q(b), there exist
different points w1 and w2 of E − {0} such that a = (Q(a), w1), b = (Q(b), w2).
Since w1 = Φ(a) and w2 = Φ(b), Φ(a) 6= Φ(b). Therefore Φ|Q−1(S) is injective.
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Assume that the mapping Φ|Q−1(S) is injective. Let a and b be differ-
ent points of S. Then there exist points w1 and w2 of E − {0} such that
(a,w1), (b, w2) ∈ Q−1(S). Then (a, λ ·w1), (b, λ

′ ·w2) ∈ Q−1(S) for any λ, λ′ ∈ C∗.
Since (a, λ · w1) 6= (b, λ′ · w2) for any λ, λ′ ∈ C∗ and Φ|Q−1(S) is injective,
λ ·w1 6= λ′ ·w2 for any λ, λ′ ∈ C∗. Therefore q(w1) 6= q(w2). Thus it follows from
q ◦ Φ = ϕ ◦ Q that ϕ(a) 6= ϕ(b). Therefore ϕ|S is injective. This completes the
proof.

For a subset S of Ω, we set

V (S) = Q−1 ◦Q(S) .

Lemma 4.7. Let a be a point of Ω. Let α be a continuous seminorm on E
with dαΩ(a) > 0. For every positive number r with 0 < r < dαΩ(a), the mapping
Φ|V (Bα

Ω(a, r)) : V (Bα
Ω(a, r))→ E − {0} is injective.

Proof: Let (z1, w1) and (z2, w2) be different points of V (Bα
Ω(a, r)) ⊂ ω ×

(E − {0}). We have only to show that w1 6= w2. We assume that w1 = w2.
Since (z1, w1) 6= (z2, w2), we have z1 6= z2. Since ϕ(z1) = q(w1) = q(w2) =
ϕ(z2), both z1 and z2 belong to ϕ−1(ϕ(z1)). Since both (z1, w1) and (z2, w2)
belong to V (Bα

Ω(a, r)), there exists complex number λ1, λ2 ∈ C
∗ such that (z1, λ1 ·

w1), (z2, λ2 ·w2) ∈ Bα
Ω(a, r). Since Φ|Bα

Ω(a, r) is injective, λ1 ·w1 6= λ2 ·w2. Since
Bα

E(Φ(a), r) is convex, the line segment [λ1·w1, λ2·w2] is contained in Bα
E(Φ(a), r).

The set {(z1, (1 − t)λ1 · w1 + tλ2 · w2); t ∈ [0, 1]} is homeomorphically mapped
by Φ onto [λ1 · w1, λ2 · w2]. Since (z1, λ1 · w1) ∈ Bα

Ω(a, r) and [λ1 · w1, λ2 · w2] ⊂
Bα

E(Φ(a), r), it is valid that (z1, λ2·w2) ∈ Bα
Ω(a, r). Then we have Φ((z1, λ2·w2)) =

Φ((z2, λ2 · w2)). Since Φ|Bα
Ω(a, r) is injective, it follows that z1 = z2. This is a

contradiction. This completes the proof.

We obtain the following Lemma 4.8 from Lemma 4.6 and 4.7.

Lemma 4.8.With the assumption of Lemma 4.7. The mapping ϕ|Q(Bα
Ω(a, r))

is injective.

Lemma 4.9. We assume that there exists a nontrivial continuous seminorm
α on E such that ϕ(ω) ⊂ P(E)α. Let a a point of Ω. Let β be a continuous

seminorm on E with β ≥ α and with dβΩ(a) > 0. For every positive number r

with 0 < r < dβΩ(a), the open set ϕ◦Q(Bβ
Ω(a, r)) contains the open set BP (E)(ϕ◦

Q(a), r/α(Φ(a)); ρα,βE ).

Proof: Let u be a point of BP (E)(ϕ ◦ Q(a), r/α(Φ(a)); ρα,βE ). Then there
exist a point w of E−{0} with α(w) = 1 and a real number θ such that u = q(w)
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and

β

(
eiθ w −

Φ(a)

α(Φ(a))

)
<

r

α(Φ(a))
.

This implies that β(eiθ α(Φ(a))w − Φ(a)) < r. Therefore eiθ α(Φ(a))w belongs

to Bβ
E(Φ(a), r). Since the mapping Φ : Bβ

Ω(a, r) → E − {0} is injective, there

is a unique point z of ω such that (z, eiθα(Φ(a))w) belongs to Bβ
Ω(a, r). Then

we have ϕ ◦ Q(z, eiθα(Φ(a))w) ∈ ϕ ◦ Q(Bβ
Ω(a, r)) and ϕ ◦ Q(z, eiθα(Φ(a))w) =

q ◦ Φ(z, eiθα(Φ(a))w) = q(eiθα(Φ(a))w) = q(w) = u. Therefore we have u ∈

ϕ ◦Q(Bβ
Ω(a, r)). This completes the proof.

Therefore from Lemma 4.8 and 4.9 we obtain the following Lemma 4.10 which
plays the important role in section 6.

Lemma 4.10. Let a be a point of Ω with dβΩ(a) ≥ r > 0. Then we have

∆α,β
ω (Q(a)) ≥

r

α(Φ(a))
.

We end this section by proving the following Proposition 4.11.

Proposition 4.11. Let E be a locally convex space, (ω, ϕ) be the pro-
jective space P(E) and F ⊂ H(ω). If ω is an F-domain of holomorphy, ω is
pseudoconvex.

Proof: Let a be any point of E − {0} and f be any continuous linear
functional of E with f(a) 6= 0. For the open set U(f) defined by (4.3), we set

(4.11) ωf = ϕ−1(U(f)) .

We have only to show that the Riemann domain (ωf , ϕ(f,a) ◦ϕ|ωf ) over E(f)
is pseudoconvex. We set

F ′ =
{
h|ωf ; h ∈ F

}
∪
{
g/f ; g ∈ E′

}
.

Then ωf is an F ′-domain of holomorphy. Thus by Noverraz [32], ωf is pseudo-
convex.

5 – Cartan–Thullen type theorem

Let E be a locally convex space and (ω, ϕ) be a Riemann domain over the
projective space P(E).
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An increasing sequence U = (Uj)
∞
j=1 of open subset of ω is called a regular

cover of ω if ω =
⋃∞

j=1 Uj and if there exists an increasing sequence (αj)
∞
j=1 of

continuous seminorms on E such that

ϕ(ω) ⊂ P(E)α1
, ∆

α1,αj
Uj+1

(Uj) > 0

for every j. We denote by H∞(U) the Fréchet algebra

H∞(U) =
{
f ∈ H(ω); |f |Uj <∞ for avery j

}

endowed with the topology generated by the norms f → |f |Uj .
Let E be a locally convex space, (Ω,Φ) be a Riemann domain and f be a

holomorphic function on Ω. For any point a of Ω, there exist continuous n-
homogeneous polynomials Pn : E → C and a balanced convex open neighbour-
hood V of 0 in E such that a+ V ⊂ Ω and

f(a+ x) =
∞∑

n=0

Pn(x)

uniformly for x ∈ V . We denote by o(f, a) the smallest integer n such that Pn

are not identically zero in E. We write o(f, a) = ∞ if Pn are identically zero in
E for all n. We call o(f, a) the order of zero of f at a. If functions f and g are
holomorphic in a neighbourhood of a point a in E, o(fg, a) = o(f, a) + o(g, a). f
is identically zero in a neighbourhood of a if and only if o(f, a) =∞.

Let E be a metrizable locally convex space and (αj)
∞
j=1 be a fundamental

sequence of continuous seminorms on E. We set

ρ
{αj}
E (x, y) =

∞∑

j=1

2−j ρ
α1,αj
E (x, y)

1 + ρ
α1,αj
E (x, y)

for every x, y ∈ P(E)α1
. Then ρ

{αj}
E is a continuous distance of P(E)α1

which

defines the same topology as the initial topology of P(E)α1
. We denote by ∆

{αj}
ω

the boundary distance function of ω with respect to the distance ρ
{αj}
E and by

B
{αj}
ω (x, r) the open neighbourhood of x in ω which is homeomorphic to the open

set {z ∈ P(E)α1
; ρ
{αj}
E (ϕ(x), z) < r} through ϕ for r with r ≤ ∆

{αj}
ω (x). we set

B
{αj}
ω (x) = B

{αj}
ω (x,∆

{αj}
ω (x)) .

Theorem 5.1. Let E be a separable metrizable locally convex space and
(ω, ϕ) be a connected Riemann domain over the projective space P(E). Assume
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that there exist a regular cover U = (Ui)
∞
i=1 of ω and an increasing sequence

(αj)
∞
j=1 of continuous seminorms on E such that δΩ(·, ·) =∞ on Ω×α−11 (0), that

ω is a H∞(U)-fibre separated and that ∆
α1,αj
ω (Ûj H(ω)) > 0 for every j. Then ω

is a domain of existence.

Proof: We remark that it follows from an examination of the proof of
Lemma 4.5 that δ(·, ·) = ∞ on Ω × α−11 (0) implies ϕ(ω) ⊂ P(E)α1

. Since the
projective space P(E) is separable, there exists a countable dense subset D of
P(E). we set A = ϕ−1(D). Let (xk) be a sequence in A with the property
that each point of A appears in the sequence (xk) infinitely many times. We set

Vk = Ûk H(ω) for each k ≥ 1. By the assumption, we have ∆
{αj}
ω (Ûk H(ω)) > 0.

Thus B
{αj}
ω (x) is not contained in Vk for each x ∈ ω and k ≥ 1. After replacing

a sequence (Vk) by subsequence, if necessary, we can find a sequence (yk) in ω

such that yk ∈ B
{αj}
ω (xk), yk /∈ Vk and yk ∈ Vk+1 for every k ≥ 1. Hence we can

inductively find a sequence (fk) in H(ω) such that

|fk|Vk < 2−k and fk(yk) = 1

for every k ≥ 1. Since
∑∞

k=1
k
2k

is convergent, the infinite product

∞∏

k=1

(1− fk)
k

converges uniformly on Vk for each k and there it defines a function f ∈ H(ω)
which is not identically zero in ω. We set N(f) = {x ∈ ω; f(x) = 0} and
A′ = A\N(f). Then A′ is a countable dense subset of ω. We set B = {(x, y) ∈
A′ × A′; ϕ(x) = ϕ(y) and x 6= y}. B is a countable subset of ω × ω. Since ω
is H∞(U)-fibre separated, the set Sx,y = {g ∈ H∞(U); Re g(x) 6= Re g(y)} is
nonvoid for each (x, y) ∈ B. The set Sx,y is open in H∞(U). We claim the set
Sx,y is dense in H∞(U). Indeed, given f ∈ H∞(U) with f /∈ Sx,y, choose g ∈ Sx,y

and set gn = f + (1/n) g. Then gn ∈ Sx,y for every n and the sequence (gn)
converges to f in H∞(U). Since H∞(U) is a Baire space, the set S =

⋂
{Sx,y;

(x, y) ∈ B} is dense in H∞(U). Thus there exists a function g ∈ H∞(U) such
that Re g(x) 6= Re g(y) for every (x, y) ∈ B. Since the set of quotient

(
log |f(x)| − log |f(y)|

)

Re
(
g(x)− g(y)

)

with (x, y) ∈ B is countable, there exists θ ∈ (0, 1) such that log |f(x)| −
log |f(y)| 6= θRe(g(x)− g(y)) for every (x, y) ∈ B. We set

h(x) = f(x) exp(−θ g(x))
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for every x ∈ ω. Then we have h(x) 6= h(y) for every (x, y) ∈ B.
We shall show that ω is the domain of existence of h. Let λ : ω → ω̃ be an

{h}-envelope of holomorphy of ω and let h̃ ∈ H(ω̃) with h̃ ◦ λ = h. We denote
by ϕ̃ the projection of the Riemann domain ω̃ into P(E). We remark that by
Proposition 2.2 and Lemma 4.11 ω̃ is pseudoconvex. To prove that λ is injective,
we assume that there exist distinct points a and b of ω such that λ(a) = λ(b).
Then there exist an open neighbourhood U(a) of a and an open neighbourhood
U(b) of b with U(a) ∩ U(b) = ∅ such that λ|U(a), λ|U(b), ϕ|U(a) and ϕ|U(b)
are homeomorphisms and that λ(U(a)) = λ(U(b)). Then we have λ(x) = λ(y) if
(x, y) ∈ U(a)×U(b) and ϕ(x) = ϕ(y). Thus we have h(x) = h̃◦λ(x) = h̃◦λ(y) =
h(y) if (x, y) ∈ U(a) × U(b) and ϕ(x) = ϕ(y). We set W = ϕ(U(a)) = ϕ(U(b)),
S1 = ϕ(U(a) ∩N(f)) and S2 = ϕ(U(b) ∩N(f)). The set S1 ∪ S2 is an analytic
subset of the open set W of P(E). Therefore W\(S1∪S2) is a dense open subset
of W . Therefore we have D ∩ (W\(S1 ∪S2)) 6= ∅. Hence there exists a point p of
W such that p /∈ S1 ∪ S2, p ∈ D. Then there exists a point (x, y) ∈ U(a)× U(b)
with ϕ(x) = ϕ(y) = p. Since p /∈ S1 ∪ S2, {x, y} ∩ N(f) = ∅. Therefore (x, y)
belongs to B. Thus we have h(x) 6= h(y). On the other hand since ϕ(x) = ϕ(y)
and (x, y) ∈ U(a) × U(b), h(x) = h(y). This is a contradiction. Therefore λ is
injective.

To prove that λ is surjective, we assume that ω̃ 6= λ(ω). Then there exists
a point z0 ∈ (ω̃\λ(ω)) ∩ λ(ω) 6= ∅ where λ(ω) is the topological closure of λ(ω)
in ω̃. Since ω̃ is pseudoconvex, it follows from an examination of the proof of
Lemma 4.5 that ϕ̃(ω̃) ⊂ P(E)α1

. We set a = ϕ̃(z0). There exists a continuous
linear functional µ on E such that µ(a) 6= 0. Then ϕ̃−1(U(µ)) is an open subset of
ω̃ and contains the subset {z0} of ω̃ where U(µ) is in (4.3). (ϕ̃−1(U(µ)), ϕ(µ,a)◦ϕ̃)
is a Riemann domain over the locally convex space E(µ) where E(µ) and ϕ(µ,a)
are in (4.3) and in (4.4) respectively. There exists an open neighbourhood V of
0 in E(µ) such that there exists a section s of the Riemann domain ϕ̃−1(U(µ))
on V . Then h̃ ◦ s is holomorphic in V . For any x ∈ V there exists a sequence
of n-homogeneous polynomials P n

x : E → C and a convex balanced open neigh-
bourhood U of 0 in E such that x+ U ⊂ V and

h̃ ◦ s(ξ) = h̃ ◦ s(x) +
∞∑

n=1

Pn
x (ξ)

uniformly for ξ ∈ U . Then P n
x (ξ) is given by

Pn
x (ξ) =

1

2π

∫ 2π

0
e−inθ f(x+ eiθ · ξ) dθ

for any ξ ∈ E. Since h̃ ◦ s is not identically 0 in V , the order o(h̃ ◦ s, 0) of
zero of h̃ ◦ s at 0 is finite. We set n(0) = o(h̃ ◦ s, 0). Then there exists ξ0 ∈ E
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such that P
n(0)
0 (ξ0) 6= 0. Since x → P

n(0)
x (ξ0) is continuous, there exists an

open neighbourhood N(0) of 0 in V such that P
n(0)
x (ξ0) 6= 0 for any x ∈ N(0).

Therefore we have o(h̃ ◦ s, x) ≤ n(0) for every x ∈ N(0). There exists a positive

number r such that 2r < ∆
{αj}

ω̃
(z0) and ϕ(µ,a) ◦ ϕ̃(B

{αj}

ω̃
(z0, 2r)) ⊂ N(0). We

can find p ∈ A such that λ(p) ∈ B
{αj}

ω̃
(z0, r). Then we have ∆

{αj}
ω (p) < r and it

follows that

λ(B
{αj}
ω (p)) = B

{αj}

ω̃
(λ(p),∆

{αj}
ω (p)) ⊂ B

{αj}

ω̃
(λ(p), r) ⊂ B

{αj}

ω̃
(z0, 2r) .

By the definition of the sequence (xk) there exists a strictly increasing sequence
(kn) of natural numbers such that xkn = p for every n. Hence each ykn belongs

to B
{αj}
ω (p) and therefore λ(ykn) ∈ B

{αj}

ω̃
(z0, 2r). We set zkn = ϕ(µ,a) ◦ ϕ̃(ykn).

Then zkn belong to N(0). On the other hand we have o(h̃ ◦ s, zkn) ≥ kn. Since
o(h̃ ◦ s, x) ≤ n(0) for every x ∈ N(0), this is a contradiction. This completes the
proof.

6 – Levi problem in a Riemann domain over an infinite dimensional
complex projective space

The aim of this section is to prove Theorem 1. Let E be a Fréchet space
with a Schauder basis (en)

∞
n=1. We shall first assume that E has a continu-

ous norm. Let (ω, ϕ) be a connected pseudoconvex Riemann domain over the
complex projective space P(E). Let (Ω,Φ) be the Riemann domain with C∗-
action associated with the Riemann domain (ω, ϕ) over P(E). We choose a
fundamental sequence (αn)

∞
n=1 of continuous norms on E with αn+1 ≥ 2αn and

αn = supk αn ◦Tk for every n. With the notations of Lemma 3.2 and Lemma 3.3,
we set ωn = ϕ−1(P(En)), An,ω = Q(An), Bn,ω = Q(Bn), Cn,ω = Q(Cn) and

(6.1) τn,ω(z) = Q ◦ τn ◦ (Q|An)
−1(z)

for every z ∈ An,ω. Then the mapping τn,ω is a holomorphic mapping of An,ω

into ωn. By Lemma 3.3 (e), (f) and Lemma 4.10, we have

(6.2) ∆α1,αn
ω (Bn,ω) ≥ 1/n .

A sequence C = (Cj,ω)
∞
j=1 of open sets of ω is a regular cover of ω. In fact, by

Lemma 3.3 (a) and Lemma 4.10, there exists an increasing sequence (βj)
∞
j=1 of

continuous norms on E such that β1 ≥ α1 and

(6.3) ∆
α1,βj
Cj+1

(Cj,ω) ≥ 1/j
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for every j ≥ 1.

Lemma 6.1. For each fn ∈ H(ωn) and for each ε > 0 there exists f ∈ H(ω)
such that

(a) f = fn on ωn;

(b) |f − fn ◦ τn,ω|Cn,ω ≤ ε;

(c) |f |Cj,ω <∞ for every j.

Proof: We define a holomorphic function gn on Ωn = Φ−1(En) by gn = fn ◦
(Q|Ωn) for each n. Each gn is aC∗-invariant function on Ωn. By Lemma 3.4, there
exists a C∗-invariant function g ∈ H(Ω) such that g = gn on Ω, |g−gn◦τn|Cn ≤ ε,
and |g|Cj <∞ for every j. We define a holomorphic function f on ω by

f(z) = g ◦Q−1(z) for every z ∈ ω .

Then f satisfies the required conditions (a), (b) and (c). This completes the
proof.

Lemma 6.2. ω is H∞(C)-separated.

Proof: Let a and b be any different points of ω. There exists a positive
integer N such that the set {a, b, τN,ω(a), τN,ω(b)} is contained in CN,ω and that
τN,ω(a) 6= τN,ω(b). By Proposition 4.4, ωN is a Stein manifold. By Oka–Cartan
theorem, there exists a holomorphic function fN on ωN such that fN (τN,ω(a)) = 2
and fN (τN,ω(b)) = 0. By Lemma 6.1, there exists a holomorphic function f ∈
H(ω) such that

(a) f = fN on ωN ;

(b) |f − fN ◦ τN,ω|CN,ω ≤ 1/2;

(c) |f |Cj,ω <∞ for every j ≥ 1.

Since {a, b} ⊂ CN,ω,
∣∣∣f(a)− f(b)

∣∣∣ ≥
∣∣∣fN ◦ τN,ω(a)− fN ◦ τN,ω(b)

∣∣∣−
∣∣∣f(a)− fN ◦ τN,ω(a)

∣∣∣

−
∣∣∣f(b)− fN ◦ τN,ω(b)

∣∣∣

≥ 2− 1/2− 1/2 = 1 .

Therefore we have f(a) 6= f(b). Thus ω is H∞(C)-separated. This completes the
proof.

Lemma 6.3. It is valid that

∆α1,αn
ω (Ĉn,ω H∞(C)) > 0
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for every n.

Proof: Let n be any positive integer and x0 be any point of Ĉn,ω H∞(C).
Then there exists a positive integer n0 such that n0 ≥ n and x0 ∈ Ck,ω for every
k ≥ n0. By Lemma 6.1, for each k ≥ n0, for each fk ∈ H(ωk) and each ε > 0,
there exists a function f ∈ H∞(C) such that |f − fk ◦ τk,ω|Ck,ω ≤ ε. Therefore

|fk ◦ τk,ω(x0)| ≤ |f(x0)|+ ε

≤ |f |Cn,ω + ε

≤ |fk ◦ τk,ω|Cn,ω + 2 ε

≤ |fk|Bn,ω∩ωk + 2 ε .

Since ε is arbitrarily given, τk,ω(x0) ∈ (Bn,ω ∩ ωk )̂H(ωk). We shall show that

∆α1,αn
ω (x0) ≥ 1/n. We assume that ∆α1,αn

ω (x0) < 1/n. Then there exists an
integer N ≥ n0 such that

(6.4) ∆α1,αn
ω (τm,ω(x0)) < 1/n

for every m ≥ N . There exists a point y0 of Ω such that Q(y0) = x0. We set

V (τm(y0)) =
{
λ · τm(y0); λ ∈ C∗

}
,

S(τm(y0)) =
{
eiθ · τm(y0); θ ∈ R

}
and

Km = (Bn ∩ Ωm)̂H(Ωm)

for every m ≥ N . Since Ω is pseudoconvex, since dαnΩ (Bn ∩ Ωm) ≥ 1 and
supBn α1≤n, we have dαnΩ (Km)≥1 and supKm

α≤n. Therefore by Lemma 4.10,
we have

(6.5) ∆α1,αn
ω (Q(Km)) ≥

1

n
.

Since Q(τm(y0))=τm,ω(x0), it follows from (6.4) and (6.5) that Km∩V (τm(y0))=∅
for every m ≥ N . We set

Tm = Km ∪ S(τm(y0))

for every m ≥ N . Since Ωm is a Stein manifold, T̂m H(Ωm) is compact in Ωm.

We write T̂m = T̂m H(Ωm). We remark that the set T̂m is contained in the set
V (τm(y0))∪Km. In fact, let x be a point of Ωm\(V (τm(y0))∪Km). Since Ωm is
a Stein manifold and V (τm(y0)) is a closed submanifold of Ωm, by Oka–Cartan
theorem there exists a holomorphic function s in Ωm with s = 0 on V (τm(y0))
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and with s(x) = 1. Since Km is a Runge compact subset of Ωm, there exists a
holomorphic function t in Ω such that |t(x)| > 1, |t|Km < 1/(|s|Km + 1). Then
we have |s(x) t(x)| > 1 and |s t|Tm < 1. Therefore x cannot belong to T̂m. Thus
the set T̂m is contained in the set V (τm(y0))∪Km. Since V (τm(y0))∩Km = ∅, it
follows that T̂m ∩V (τm(y0))∩Km = ∅ and T̂m = (T̂m ∩V (τm(y0)))∪Km. Let V1
and V2 be open neighbourhoods of T̂m ∩V (τm(y0)) and of Km, respectively, with
V1∩V2 = ∅. Let g be a holomorphic function on V1∪V2 defined by g = 2 on V1 and
g = 0 on V2. Since T̂m is a Runge compact subset of Ωm, there exists a function
h ∈ H(Ωm) such that |h − g|

T̂m
< 1/2. Then we have Reh ≥ 3/2 on S(τm(y0))

and |h|Bn∩Ωm ≤ 1/2 where Reh is the real part of h. Let h̃ be a holomorphic
function on Ωm defined by (3.6). The holomorphic function h̃ is constant on
Q−1(z) for every z ∈ ωm. Thus we can define a holomorphic function h∗ on ωm

by h∗(z) = h̃ ◦ Q−1(z) for every z ∈ ωm. Then we have |h∗|Bn,ω∩ωm ≤ 1/2 and

h∗(τm,ω(x0)) ≥ 3/2. Therefore τm,ω(x0) does not belong to (Bn,ω ∩ ωm)̂H(ωm).
This is a contradiction. Therefore we have

∆α1,αn(Ĉn,ω H∞(C)) ≥
1

n
> 0 .

This completes the proof.

From Lemma 6.2 and 6.3 we obtain the following Proposition 6.4.

Proposition 6.4. Let E be a Fréchet space with a Schauder basis and with a
continuous norm. Let (ω, ϕ) be a connected pseudoconvex Riemann domain over
the complex projective space P(E). Then there exist a regular cover U = (Uj)

∞
j=1

of ω and an increasing sequence (αj)
∞
j=1 of continuous norms on E such that ω

is H∞(U)-separated and ∆
α1,αj
ω (Ûj H∞(U)) > 0 for every j.

Next we shall assume that the Fréchet space E has not a continuous norm. Let
(ω, ϕ) be a connected pseudoconvex Riemann domain over the complex projective
space P(E). Let (Ω,Φ) be the Riemann domain over E associated with the
Riemann domain (ω, ϕ) over P(E). Then by Lemma 4.5 there exists a continuous
seminorm α0 on E such that α0 satisfies the condition (3.7), that δω(·, ·) =∞ on
Ω×α−10 (0) and that ϕ(ω) ⊂ P(E)α0

. Let (en) be a Schauder basis of E and Eα0

be a Fréchet space, defined by (3.8), with a Schauder basis and with a continuous
norm. Eα0 is a closed subspace of E and E is the topological direct sum of Eα0

and of α−10 (0). We set ωα0 = ϕ−1(P(Eα0)). We denote by πα0
the canonical

projective of E onto Eα0 . We set Ωα0 = Φ−1(Eα0) and ωα0 = ϕ−1(P(Eα0)).
Then (Ωα0 ,Φ|Ωα0) and (ωα0 , ϕ|ωα0) are Riemann domains over Eα0 and P(Eα0)
respectively. We set

σ̃α0
(z) = (Q|Ωα0) ◦ σα0

◦Q−1(z)
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for every z ∈ ω where σα0
is a holomorphic mapping of Ω onto Ωα0 in Lemma 3.6

(a). Since by Lemma 3.6 (a) we have σα0
(λ · x) = λ · σα0

(x) for every (λ, x) ∈
C∗×Ω, the mapping σ̃α0

is well-defined and a holomorphic mapping of ω onto ωα0 .
Moreover we have σ̃α0

= id on ωα0 . (ωα0 , ϕ|ωα0) is the connected pseudoconvex
Riemann domain over the projective space P(Eα0) and Eα0 has a Schauder basis
and a continuous norm. Thus, by Proposition 6.4, there exist a regular cover U =
(Uj)

∞
j=1 of ω

α0 and an increasing sequence (αj)
∞
j=1 with α1 ≥ α0|E

α0 of continuous

norms on Eα0 such that ωα0 is H∞(U)-separated and ∆
α1,αj
ω (Ûj H∞(U)) > 0 for

every j. We set Vj = σ̃−1α0
(Uj) for every j and V = (Vj)

∞
j=1. For each continuous

norm β on Eα0 , we define a continuous seminorm β̃ on E by β̃(x) = β(πα0
(x)) for

every x ∈ E. If a continuous norm β on Eα0 with β ≥ α1 satisfies ∆
α1,β
Uj+1

(Uj) > 0,

it is valid that ∆α̃1,β̃
Vj+1

(Vj) = ∆α1,β
Uj+1

(Uj) > 0. Since V̂j H(ω) ⊂ V̂j H∞(V),

∆
α̃1,α̃j
ω (V̂j H(ω)) ≥ ∆

α̃1,α̃j
ω (V̂j H∞(V))

≥ ∆
α̃1,α̃j
ω (σ̃−1α0

(Ûj H∞(U)))

= ∆
α1,αj
ωα0 (Ûj H∞(U)) > 0 .

Let w be a point of ϕ(ω). Let a and b be different points in the set ϕ−1(w).
Then there exist points x and y of Ω such that Q(x) = a and Q(y) = b. Then
we have Φ(x) = Φ(y) and x 6= y. By Lemma 3.6 (c), σα(x) 6= σα(y). Thus
σ̃α0

(a) 6= σ̃α0
(b). Since ωα0 is H∞(U)-separated, there exists f ∈ H∞(U) such

that f(σ̃α0
(a)) = f(σ̃α0

(b)). Since f ◦ σ̃0 ∈ H∞(V), ω is H∞(V)-fibre separated.
Thus we can obtain the following Proposition 6.5.

Proposition 6.5. Let E be a Fréchet space with a Schauder basis and (ω, ϕ)
be a connected pseudoconvex Riemann domain over the complex projective space
P(E). Then there exist a regular cover U = (Uj)

∞
j=1 of ω and an increasing

sequence (αj)
∞
j=0 of continuous seminorms on E such that δΩ(·, ·) = ∞ on Ω ×

α−10 (0), that ω is H∞(U)-fibre separated and that ∆
α1,αj
ω (Ûj H(ω)) > 0 for every

j.

A separable Fréchet space is said to have the bounded approximation property
if there is a sequence of continuous linear operator of finite rank which converges
pointwise to the identity. Pelczynski [38] has shown that every separable Fréchet
space with the bounded approximation property is topologically isomorphic to a
complement subspace of a Fréchet space with a Schauder basis.

Proposition 6.6. Let E be a separable Fréchet space with the bounded
approximation property or DFN-space, and (ω, ϕ) be a connected pseudoconvex
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Riemann domain over the complex projective space P(E). Then there exist a
regular cover U = (Uj)

∞
j=1 of ω and an increasing sequence (αj)

∞
j=1 of continuous

seminorms on E such that δΩ(·, ·) = ∞ on Ω × α−11 (0), that ω is H∞(U)-fibre
separated and that ∆

α1,αj
ω (Ûj H(ω)) > 0 for every j.

Proof: If E is a separable Fréchet space with the bounded approximation
property, by Pelczynski [38] there exist complex Fréchet spaces F and G such
that G is the topological direct sum of E and F and that G has a Schauder
basis. Let Ω̃ be the product space of the Riemann domain Ω associated with the
Riemann domain (ω, ϕ) and the space F and Φ̃ be a mapping of Ω̃ into the space
G defined by Φ̃(x, y) = Φ(x) + y for every (x, y) ∈ Ω̃ = Ω× F . We set

λ · (x, y) = (λ · x, λ · y) .

Then (Ω̃, Φ̃) is a connected pseudoconvex Riemann domain with C∗-action over
G = E⊕F . Let ω̃ be the quotient space by this C∗-action. Let Q̃ be the quotient
map of Ω̃ onto ω̃. We denote by q̃ the quotient map G−{0} of the projective space
P(G). Let ϕ̃ be the mapping of ω̃ into P(G) defined by ϕ̃(x) = q̃ ◦ Φ̃◦ Q̃−1(x) for
every x ∈ ω̃. Then ϕ̃ is well-defined and (ω̃, ϕ̃) is a connected Riemann domain
over P(G). Moreover the Riemann domain (Ω̃, Φ̃) is that associated with the
Riemann domain (ω̃, ϕ̃). Since Ω̃ is pseudoconvex, it follows from Proposition 4.4
that ω̃ is also pseudoconvex. By Proposition 6.5, there exist a regular cover
U = (Uj)

∞
j=1 of ω̃ and an increasing sequence (αj)

∞
j=1 of continuous seminorms

on G such that δ
Ω̃
(·, ·) =∞ on Ω̃×α−11 (0), that ω̃ is H∞(U)-fibre separated and

that ∆
α1,αj

ω̃
(Ûj H(ω̃)) > 0 for every j. Riemann domains Ω and ω are identified

with a closed submanifold Ω×{0} of Ω̃ and with a closed submanifold Q̃(Ω×{0})
of ω̃ respectively. We set

Vj = Uj ∩ ω and βj = αj |E .

Then a sequence V = (Vj)
∞
j=1 of open sets in ω and a sequence (αj)

∞
j=1 of contin-

uous seminorms of E satisfy the required condition.
If E is a DFN-space, by Colombeau and Mujica [5] and Nachbin [28] and

Paques and Zaine [37] there exists a Hilbert norm α on E such that (Ω,Φ) is a
Riemann domain over the separable pre-Hilbert space (E,α). Thus by the same
way as the proof of Proposition 6.4, we can obtain a regular cover (Uj)

∞
j=1 of ω

satisfying the required conditions. This completes the proof.

Proposition 6.7. With the condition of Proposition 6.5, ω is holomorphi-
cally separated.

Proof: Let E be a separated Fréchet space with the bounded approximation
property. By an examination of the proof of Proposition 6.6, there exist a Fréchet
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space G with a Schauder basis and a pseudoconvex Riemann domain (ω̃, ϕ̃) over
the projective space P(G) such that the space E is a complement subspace of
G and that ω is a closed submanifold of ω̃. Therefore we have only to prove
this proposition in case E has a Schauder basis. Let (Ω,Φ) be the Riemann
domain over E associated with the Riemann domain (ω, ϕ) over P(E). Let a and
b be different points of ω. There exist points x and y of Ω such that Q(x) = a,
Q(y) = b. We choose a Schauder basis (en)

∞
n=1 of E such that the linear span

of the set {e1, e2} contains the set {Φ(x),Φ(y)}. By an examination of the proof
of Proposition 6.4, there exist a continuous seminorm α, a complement subspace
Eα of E and a holomorphic mapping σ̃α : ω → ωα = ϕ−1(P(Eα)) such that
Eα has a Schauder basis and a continuous norm, that {e1, e2} ⊂ Eα and that
σ̃α = id on ωα. By Lemma 6.2, ωα is H(ωα)-separated. Since {a, b} ⊂ ωα, there
exists a function h ∈ H(ωα) such that h(a) 6= h(b). We define a holomorphic
function f on ω by f = h ◦ σ̃α. Since f |ωα = h, we have f(a) 6= f(b). Thus ω is
H(ω)-separated.

Let E be a DFN-space. Then by Colombeau and Mujica [5], Nachbin [28] and
Paque and Zaine [37], there exists a Hilbert norm α of E such that (Ω,Φ) is a
Riemann domain over the separable pre-Hilbert space (E,α). Thus by the same
way as the proof of Lemma 6.2, we can show that ω is H(ω)-separated. This
completes the proof.

Proof of Theorem 1: Without loss of generality we may assume that ω
is connected. We remark that (Ω,Φ) can be regarded as a Riemann domain
over a separable pre-Hilbert space by Colombeau and Mujica [5], Nachbin [28]
and Paque and Zaine [35] if E is a DFN-space. The proof of this theorem is
completed by Proposition 6.6, Proposition 6.7, Theorem 5.1, an examination of
the proof of Theorem 5.1 and Proposition 4.11.

7 – The indicator of entire functions of exponential type

The aim of this section is to prove Theorem 2 and Corollary 3. Let E be a
locally convex space. An entire function f ∈ H(E) is said to be exponential type
if

(7.1) lim sup
C3ζ→∞

log |f(ζz)|

|ζ|
<∞ .

for every z ∈ E. If f is an entire function of exponential type on E, by Hervé
[13] there exists a continuous seminorm α on E such that

(7.2) |f(z)| ≤ |f(0)|+ expα(z)− 1
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for every z ∈ E. We denote by EXP(E) the space of all entire functions of
exponential type on the space E. A function p on E is said to be positively
homogeneous of order σ if p(λz) = λσp(z) for every λ > 0 and every x ∈ E. For
an entire function f of exponential type on E, the indicator If of the function f
on E is plurisubharmonic and positively homogeneous of order 1.

Lemma 7.1. Let E be a separable Fréchet space with the bounded approx-
imation property or a DFN-space and Ω be a pseudoconvex domain of E. Let
F be a finite dimensional linear subspace of E. Then the restriction mapping of
H(Ω) into H(Ω ∩ F ) is surjective.

Proof: If E is a DFN-space, it follows from Colombeau–Mujica [5, Lemma 4.2]
that this restriction mapping is surjective. Therefore it is sufficient to show this
lemma in case E is a separable Fréchet space with the bounded approximation
property. Let E be a separable Fréchet space with the bounded approximation
property. By Pelczynski [38] there exist a Fréchet space E1 with a Schauder basis
and a Fréchet space E2 such that E1 is the topological direct sum of E and E2. Let
{e1, e2, ..., en} be a basis of F where n is the dimension of the space F . We choose
a sequence (ej)

∞
j=1 of E1 so that (ej)

∞
j=1 is a Schauder basis of E1. There exists

uniquely a sequence (ξn)
∞
n=1 of a continuous linear functionals on E such that

x =
∑∞

n=1 ξn(x) en for each x ∈ E. We denote by π the canonical projection of E1
onto E. Since the restriction mapping H(π−1(Ω))→ H(Ω) is surjective, we have
only to show that the restriction mapping H(π−1(Ω))→ H(Ω ∩ F ) is surjective.
If E1 has a continuous norm, it follows from Mujica [26, Lemma 2.7] that the
restriction mapping is surjective. We assume that E1 has not a continuous norm.
Let x0 be a point of π−1(Ω). Then there exists a continuous seminorm α on E1
such that dα

π−1(Ω)(x0) > 0, α(ej) 6= 0 for every j with 1 ≤ j ≤ n and α(x) =

sup{α(
∑m

n=1 ξn(x) en); m ≥ 1}. Since π−1(Ω) is pseudoconvex, by Lemma 4.5
the continuous seminorm α on E1 satisfies that δπ−1(Ω) =∞ on π−1(Ω)×α−1(0).
By Lemma 3.5, there exists a Fréchet space Eα

1 with a Schauder basis and with
a continuous norm such that the space E1 is the topological direct sum of Eα

1

and α−1(0). Then π−1(Ω) = {x+ y ∈ E1; x ∈ π−1(Ω) ∩ Eα
1 , y ∈ α−1(0)}. Since

π−1(Ω) ∩ Eα
1 is a pseudoconvex domain of Eα

1 and since F is a subspace of Eα
1 ,

the restriction mapping H(π−1(Ω) ∩ Eα
1 ) → H(Ω ∩ F ) is surjective. Since the

restriction mapping H(π−1(Ω)) → H(π−1(Ω) ∩ Eα
1 ) is surjective, the restriction

mapping H(π−1(Ω))→ H(Ω ∩ F ) is surjective. This completes the proof.

Lemma 7.2. Let E be a separable Fréchet space with the bounded ap-
proximation property or a DFN-space. Let Ω be a pseudoconvex domain with
C∗-action of the product space E × C with 0 /∈ Ω and Ω ∩ (E × {0}) 6= ∅. We
denote by q the quotient mapping of (E × C) − {0} onto the projective space
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P(E×C). We set ω = q(Ω). Then if the domain ω of P(E×C) is pseudoconvex,
there exists a holomorphic function f on ω such that f is not identically zero and
f ◦ q(x, 0) = 0 for every (x, 0) ∈ Ω.

Proof: There exists a finite dimensional linear subspace F of E such that
(F ×C)∩Ω 6= ∅. We set ωF×C = ω ∩P(F ×C). By Oka–Cartan theorem, there
exists a holomorphic function h on ωF×C such that h is not identically zero and
h ◦ q(x, 0) = 0 for every x ∈ F with (x, 0) ∈ Ω. Then a function

(x, ζ)→
h ◦ q(x, ζ)

ζ

(
(x, ζ) ∈ (F ×C) ∩ Ω

)

is holomorphic in (F×C)∩Ω. By Lemma 7.1, there exists a holomorphic function

h̃ on Ω such that h̃(x, ζ) = h◦q(x,ζ)
ζ

for every (x, ζ) ∈ Ω ∩ (F ×C). We define a

holomorphic function g on Ω by g(x, ζ) = ζ h̃(x, ζ) for every (x, ζ) ∈ Ω ⊂ E ×C.
We define a C∗-invariant holomorphic function g̃ on Ω by

g̃(x, ζ) =
1

2π

∫ 2π

0
g(eiθx, eiθζ) dθ

for every (x, ζ) ∈ Ω ⊂ E ×C. Then we have g̃|Ω ∩ (F ×C) = h ◦ q. We define
a holomorphic function f on ω by f(z) = g̃ ◦ q−1(z) for every z ∈ ω. Then we
have f ◦ q(x, 0) = 0 for every (x, 0) ∈ Ω ⊂ E ×C. Since f |ωF×C = h, f is not
identically zero. This completes the proof.

We recall that the Borel transform of an entire function F of exponential type
in one complex variable is given for large |t| by

H(t) =
∞∑

j=1

Aj t
−j−1 if F (τ) =

∞∑

j=1

Aj
τ j

j!
.

The corresponding integral representation is

H(t) =

∫ ∞

0
F (s τ) e−stτ τ ds ,

where τ ∈ C has to chosen suitable for every t. It follows from this formula that
H can be holomorphically continued into the complement of the convex compact
set

K =

{
t ∈ C; ∀ τ ∈ C, lim sup

s→∞

1

s
log |F (st)| ≥ Re t τ

}
.

Conversely we have

F (τ) =
1

2πi

∫

Γ
H(t) etτ dt ,
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where Γ is some large circle. This integral representation of F shows immediately
that for all ε > 0 we have

|F (τ)| ≤ Cε exp
(
sup
t∈L

Re tτ + ε|τ |
)

if H is holomorphic outside a compact convex set L ⊂ C.
Let E be a locally convex space and p be a positively homogeneous plurisub-

harmonic function of order 1 on E with values in [−∞,∞). Then we set

Dp =
⋃

t∈C

{
z ∈ E; p(tz) < Re t

}
,(7.3)

Ωp =
⋃

t∈C

{
(z, ζ) ∈ E ×C; p(tz) < Re t ζ

}
,(7.4)

ωp = q(Ωp) .(7.5)

Then by Kiselman [18, Theorem 3.1 and 3.3] and by Proposition 2.3, we have the
following Lemma 7.3.

Lemma 7.3. The open setDp of E is connected and pseudoconvex. The open
set ωp of the projective space P(E ×C) is connected, proper and pseudoconvex
if and only if p is not identically −∞. Moreover ωp determines F uniquely: if
plurisubharmonic functions p and r on E are positively homogeneous of order 1,
we have r ≤ p if and only if ωp ⊂ ωr.

Proof of Theorem 2: If p = −∞, we take f = 0. We assume that p is not
identically −∞. Then we consider the open sets Ωp and ωp defined by (7.4) and
(7.5), of (E × C) − {0} and of the projective space P(E × C) respectively. By
Lemma 7.3 the open set ωp of the projective space P(E × C) is pseudoconvex.
Therefore by Theorem 1 there exists a non-constant holomorphic function f1 of
ωp such that for every connected open neighbourhood V of an arbitrary point on
the boundary of ωp, each component of V ∩ ωp contains zero of f1 of arbitrary
high order. By Lemma 7.2 there exists a function f2 ∈ H(ωp) such that f2 is not
identically zero and f2 ◦q|ω∩ (E×{0}) = 0. We set f3 = f1 f2. Then the domain
ωp is the domain of existence of a holomorphic function f3 on ωp. We define a
holomorphic function g on Dp by g(z) = f3 ◦ q(z, 1) for every z ∈ Dp. The open
set Dp of the space E is connected and contains the origin 0 in E. Thus there
exist continuous n-homogeneous polynomials pn : E → C and a balanced open
neighbourhood W of 0 in E such that W ⊂ Dp and that the expansion

g(z) =
∞∑

n=0

pn(z)
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uniformly for z ∈W . We define an entire function on E by

f(z) =
∞∑

n=0

1

n!
pn(z)

for every z ∈ E. Then by Boas [2, Theorem 5.3.1] and by Hervé [13, Theo-
rem 3.3.9] the function f is an entire function of exponential type on E. We
consider a function r on E which is positively homogeneous of order 1 defined by

r(z) = lim sup
s→∞

log |f(sz)|

s

for every z ∈ E. We set hz(t) = g(z/t)/t = f3 ◦ q(z, t)/t for some fixed z ∈ E.
Then hz is the Borel transform of τ → f(τ z) so that

f(τ z) =
1

2πi

∫

Γ
hz(t) e

tτ dt .

In view of our choice of f3 ◦ q, hz can be holomorphically continued to every
point t such that (z, t) ∈ Ωp; in particular there is no singularity at the origin if
(z, 0) ∈ Ωp. We can therefore choose Γ in any neighbourhood of the convex set

{
t ∈ C; ∀ τ ∈ C, p(τ z) ≥ Re t τ

}
.

Thus for every ε > 0 there exists a positive constant Cε such that

|f(τz)| ≤ Cε exp
(
p(τz) + ε|τ |

)

for every τ ∈ C (z is fixed). Hence r(z) ≤ p(z) and since z is arbitrary, r∗ ≤ p
where we denote by r∗ the upper regularized of the function r on E.

On the other hand, the integral

hz(t) =

∫ ∞

0
f(s τ z) e−stτ τ ds

converges absolutely and uniformly for all (z, t) satisfying r(τz) ≤ Re tτ − ε.
It follows that hz(ζ) is a holomorphic function of (z, ζ) in Ωr∗ , in particular
ζhz(ζ) = f3◦q(z, ζ) can be holomorphic continued to a function in H(Ωr∗). Since
Ωr∗ = q−1(ωr∗) and the function (z, ζ) → ζhz(ζ) = f3 ◦ q(z, ζ) is C∗-invariant,
the function f3 is continued holomorphically to ωr∗ . Since ωr∗ ∩ ωp 6= ∅, since
ωp is the domain of existence of f3 and since by Lemma 7.3 ωr∗ is connected, we
have ωr∗ ⊂ ωp. Thus by Lemma 7.3, p ≤ r∗. This completes the proof.

Let E be a locally convex space. We induce the compact open topology in
the space H(E) of all entire functions in E. A continuous linear functional µ on
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H(E) or, in other words, an element of the dual space H(E)′ of the space H(E),
is called an analytic functional in E. Let µ ∈ H(E)′. The (generalized) Laplace
transform µ̂ of µ is defined by µ̂(ϕ) = µ(eϕ), ϕ ∈ H(E). Then the restriction of
µ̂ on the dual space E ′ of E is the Fourier–Borel transformation of µ, which is
an entire function of exponential type on E ′.

Proof of Corollary 3: If E is a Fréchet nuclear space or a DFN-space, the
correspondence H(E ′)′ 3 µ→ µ̂ ∈ EXP(E) by the Fourier–Borel transformation
is bijective (cf. Colombeau [4] and Dineen [8]). Thus by Theorem 2 the proof of
Corollary 3 is completed.
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