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ON THE GEOMETRY OF £(15,1) AND 13 ®. 1]

PRZEMYSLAW SCHERWENTKE

Abstract: In this paper the characterization of extreme, exposed (and smooth)
points of the unit ball of the space of continuous linear operators acting from 15, p > 2 to
its conjugate space is obtained. The class of extreme contractions found here is different
from those of the special cases, which have already been solved.

1 — Introduction

The aim of this paper is the continuation of investigation of extreme contrac-
tions. The case of the operators on C'(X) is evident. This fact together with the
well-known isomorphism [*° — C(BIN) gives characterization of extreme con-
tractions on (> (see e.g. Sharir [18], Kim [14], Gendler [2] and references there).
From this, making use duality, the /'-spaces case has been achieved (see Iwanik
[10]). On the Hilbert space extreme contractions are isometries and coisometries
(see Kadison [11], Grzaslewicz [5]). More results have been achieved in finite
dimensional case (see for instance Lindenstrauss and Perles [15]).

Let 1 < p < oo. By ¢ the dual power coefficient is denoted, which is such
a number that 1/p +1/q = 1. By 1% we denote IR? with the standard [P-norm,
ie. ||x|| = ||(z1,22)|| = (Jz1|P + |22[P)*/P. For Banach spaces E, F by L(E, F) we
denote the Banach space of all linear bounded operators from E into F', and by
E ® F their tensor product. Additionally we denote by E ®. F' the (complete)
injective tensor product. Note that (5®.7 is norm isomorfic to £(13, 1). Moreover
(B®:05)* =2 182,13 (cf. [1]). For any Banach space E by B(F) we denote its closed
unit ball and by Bg(x,r) the set {y € E: ||y —x||lg < r}. The characterization
of extreme points of the unit ball B(E ®, F) is given by Ruess and Stegall [17].
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In particular they have proved that
ext(B((15 @. 1B)")) = (ext B() ® ext B()) = S(§) © S(1) ,

where S(-) denotes the unit sphere and ext () — the set of extreme points of Q.
The characterization of extreme points in 12 ® I3 ® (3 is presented in [6]. In [3] a
characterization of B(L(15,1%)) is given (for some generalizations for the infinite
dimensional case see [4], [12], [13]). Furthemore, the consideration of the spaces
L(IP,12) and L(I2,,1P) can be found in [7].

In this paper we continue the characterization in question for L£(I2, 1) or
equivalently for 15 @. 15.

2 — Extreme points
Let x = (z1,22) € S(1B), y = (y1,92) € S(1); recall 1/p+1/q = 1. Put
Jey ={T € BILW@,18): Tx=y},

where B denotes the unit ball in £(15,1]). We are going to prove that Jxy is
identical with the set of all the contractions of the form

~1 ~1 -1 -1
(1) Tp= (2,25 )@y, y) +u- (—x2,21) @ (—ys ,yl ) =:
=x''ey+ux @y ), peR,

here x ® y denotes one-dimensional operator for which (x ® y)(z) = (z,x)y;
at = (a1,a2)" = (—az,a;1), and a® = (ay,as)® = (sgn(ay) - |a1|®, sgn(az) - |as|®)
(note that for x € S(I5) we have (x,x*) = 0 and the vector x?~1 € S(I9) is the
only possible functional for which (x,xP~1) = 1).

Indeed, Jx,y contains all operators of such a form. Conversely, for S,T" € Jxy
we have (S — T)x = 0, hence dim(Im(S — 7)) < 1 and therefore S — T =
x1 ® z for some z € [3. Since S*(y? ') = T*(y?!) = xP~!, we have also
(S—T) (y9') =0 and (S —T)* = (y9 1)+ @ w for some w € 1}, which implies
that S — T =w® (y9™ )t soz = p- (y9=!)* for some p € R, thus completing
the proof.

Note that if 11 > pp > 0 (or if 0 > po > p1), then [T}, || > || T, || > 1. Indeed,
if e.g.: g > po > 0, the vector y belongs to I and the functional y* is equal to
y?! (then y*(y) =1 = ||y*| and y*((y?~")") = 0) and if

Q=Be(0. Iy +m* M) n{z: y(2) <1},
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then @ is a convex set contained in the ball Bg(0, ||y + 1 (y9~1)*|), so the whole
interval y + o p1(y? )4, @ € [0,1] lies in Q. This implies ||y + p2(y? )4 <
|y + p1(y? 1)+ and ends the proof. m

Consider a function
P4

0,00 = e 60 1, o ) .

_ 1p\4
(2) = <|x1—)\1‘§ Y Jzg + Aab 1|p)

-1 1 p

—(lyr = Ay 7+ g+ Apyd )

If || T,]] <1 then ®,(A) >0 for all A € IR. By a standard calculation we obtain

Q#(O) = 0 ’
@,,(0) =0,
7,(0) = pa|(p— 1) a2l = p?(q = 1) lyayel” 2] |

B/(0) = pa|(p— 1) (o~ 2) sgnraa) [przal ™ (Jrl? — [z
— 10— 1) g = 2) senlonge) Lol (jn1* = 1el7)|

for such z1, z9, y1, y2 that make sense for the above-mentioned expressions.

Let p be the maximal (or minimal) number for which ||7},|| = 1. Then 7}, is
the extreme contraction, because the norm of operator 7T}, £ R cannot increase
neither in direction y nor (y?~')*, hence R = 0, and ®,(0) > 0.

Let ©;;(0) > 0 and g > 0. Then for all ¢ > 0 we have [|T,1.| > 1. The
continuity of ®}(0) as a function of ;i gives that there exists g > 0 such that
o _(0) > 0 for all 0 < € < g9. Hence there exists § > 0 such that for all

pte
0 < € < gg and for all

ue {u0<u-x|<s A u=1}

we have ||T,,4-ul| < 1. Let {e,}52; be a sequence in which &,, < g¢ for all n and
en — 0. Let u, be such a vector for which ||T},4c,u,| = 1. The compactness
of the unit ball implies the existence of such ugp that u.,, @ > n — oo >> uy.
Evidently ||7,,(uo)|| = 1. But |ju., — x|| > 6, hence |[ug — x|| > ¢ and up and
x are such two linearly independent vectors that T}, attains its norm on them.
Therefore, if p is the maximal (or minimal) element then 7}, is such an extreme
operator which attains its norm on two linearly independent vectors.
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Let now ®},(0) = 0. Then ®7(0) = 0 as well, hence in this case the following
pair of equalities is true:

(3) (p = 1) o122~ = p? (¢ = 1) |yrye| 2
@ (=1 p—2) sgn(z1z2) [wr22 7 (Jor]? — |22]) =

= 11 (¢ — 1) (g — 2) sgn(y1y2) [y1g2l* > (ly1]” — [92]) ,
which is equivalent to
5)  (p—2)(q— 1" sgu(@12s) [yry2|* (|21 [P — |22f?) =

= (¢-2) (p = )" sen(yryz) lr122P* (Jy1|” — [y2]?) -
The set of solutions of (5) is contained in the set of solutions of
6) (=27 (¢— 1) w2l (|21 = 2 |wr2af? + |22|*) =

= (q—2)% (p = 1) |zazaf” (92" = 2 |y1gol? + [y2*) .
Let oo = |z1|P, § = |y1|?. Then (6) is equivalent to

12
(p—2>2<q—1>=(§g_2)(q—2>2<p—1>.

(2ac — 1)2
a(l —a)

Relations between p and ¢ imply that
(P=2%-1)=@-2?*@p-1),

” (201 (2810

al—a)  BI-5)
This means that « = § or @« = 1 — # (we may consider only the first case,

establishing a suitable base) and

Y1 Y2
T X9

p==x(p-1)

Analysing the signs of both sides of (5) we conclude, that “+” is possible only if
1

Let us denote

m@p—G»h—Au—aWH41—@~u+AMﬂUP

_<0"‘1_)\(1—p)(1—04)p%4—(1—04)-‘14—)\(1—1))04Ppl)T
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If T}, is a contraction, then ¥(\) > 0 for all A\. But ¥/(0) = ¥”(0) = ¥"”(0) =0
and
T (0) = 302(1-0)? (1-p) p(p—2) — p(p—1) (p—2) a(1-0) (0*+ (1-)?)
<0 forall a€(0;1) and p>2.

Hence, for p > 2 and x # e;, i = 1,2 the operator T}, is not a contraction.

Let us assume now that z1zoy1y2 = 0. We need to consider the following
cases:
1) z172 = 0, y1y2 # 0, p > 2. Then ®j(0) = —12(q — 1) lyry2|72 = 0 iff
w=0,1ie.
T,=[y1 Oya 0] or [0 y0 ], yell.

2) z1xz2 # 0, y1y2 = 0, p > 2. Then T),(z1 + )\xé’_l, T — )\x’f_l) = (1,=Ap).
Hence T}, is a contraction iff

1/ _ _ 1/
(7) (14 1l7) ™ < (o + AP+ oo = 2 P)

Let
p—1p p—1p\ /P g\ /4
FO) = (fn+ Aah P+ o = 2T P) = (1 )

Easy calculation shows that f(0) = 0, f/(0) =0, f"(A\)@ > X\ — 0 >> —oco for
1 # 0, which in accordance with the Taylor formula with the second remainder,
contradicts the inequality (7). Hence pu = 0, so

T,=1[0 027" a5 or T,=[2t"" 257'0 0], xel.

3) z122 = 0, y1y2 = 0, p > 2. Then x = +e;, y = *e;, for 4,5 € {1,2}.
Hence T, € Jxy iff 4 = 0, because from the Taylor theorem, for all p # 0 it is
not a contraction.

In this way we have proved the following:

Lemma 1. Let2 < p < o0, let ¢ be such a number that (1/p)+(1/q) = 1, and
T € L(15,11) be an extreme contraction of such form of (1) in which 122 y1y2 = 0.
Then T assumes one of the following forms:

a) T=[y1 Oya 0] or T=1[0 y0 wy2], yeS).
b) T=[0 022" 257 or T=[2t"" 257%0 0], xeS(B).

Lemma 2. Letp > 2, lety € S(Id) and let y; # 0 for all i € IN. Then the
operator T = e; ® y is an extreme contraction in L(15,13).
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Proof: Let T = e;®y, ie. Tx = (x,e1)y and ||T'+ R|| < 1 for some
R e L(15,13). Without the loss of generality we can assume that T = e; ® y.
Then T'e; =y, hence from the strict convexity of I} we have Re; = 0. Evidently
T ey, =0. Let z= Rey. Therefore we have:

(T+R)(e1+ Xe2) =y £ Az .

Because of [|e1 + Aea||, = (14 |\]?)/? the following inequality should be fulfilled:
) q q\P/4 .
(8) LO): (Il £ A7+ [y £ An[7) " <1+ AP =:P()) .
By differentiating L(\) and P(\) by A we obtain:
P(0)=0 and L'(0) = P<|y1|q_1 -sgnY1 - 21+ [ya| T - sgnys - 22) '

The inequality (8) can be satisfied only if L'(0) = 0. Differentiating again, we
obtain P”(0) = 0 and

£(0) =p(q—1) (Jn" =2 23 + [yl 72 - 23) .
Because L”(0) > 0 for z # 0, we obtain z = 0. m

Lemma 3. Let p > 2, and S(I1) > z be such a vector that z; # 0 for all
i € IN. Then the operator T = z ® e; is an extreme contraction in L(I%,13).

Proof: Let, for example, assume that T'= z ® e; . Similarly to the case of
the proof of lemma 3 we obtain:

(T+R)(x+Xx1)=e; + )z .

This means that the following inequality should be fulfilled:

[ A [Aaal? < (for — AP + g + 21 P) "
Denoting left-hand side of the above inequality by L(\), the right-hand side by
R()) and differentiatig both expressions by A we obtain P’(0) = 0 and L"(0) =

q- 21, hence z; = 0. The rest of the proof is similar to the case 2) before lemma 1
(with p = 29). Hence z9 = 0 and Im(R) = {0}. m

Therefore we can formulate the following theorem:

Theorem 1. Let 2 < p < oo, and let ¢ be such a number for which
(1/p) + (1/q) = 1. Then T € L(15,1]) is an extreme contraction if and only if
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|T|| = 1 and: either T attains its norm on two linearly independent vectors in
I5 or T is of one of the following forms:

a) T=[y1 Oy2 0] or T=[0 10 wy2], yeSi.

b) T=[0 027" 257 or T=1[2t"" 2570 0], xeSB).

Proof: We have just proved that an extreme contraction 7T has the form
described in the theorem.

If |T|| = 1 and T attains its norm on two linearly independent vectors or

T = e;®e;, then T is evidently an extreme contraction. We obtain the remaining
part from lemmas 2 and 3. n

3 — Remarks on the case 1 < p < 2

Let us recall the following inequality:

Lemma 4([16]). Let 1 <p <r < oo and let v = /(p—1)/(r —1). Then,
for all A € IR, we have

<|1 + YA+ 1 —fyw)l/r _ <|1 + AP+ 1 - >\|p)1/p
2 = 2 ’

(*) moreover, if A # 0 then the strict inequality proves to be true.

Remark. In [16] the lemma is formulated without (*), but (*) is a direct
corollary from the proof (cf. [16] p.75).

Put f = (1,1) and f* = (—1,1). The above inequality can be considered as
the inequality
IT5(E + A £5) [l < JIE+ A £,

for T, € L(15,1%) of the form
T, =20 (fef iy froft).

Let us note that 7%, has the form (1). Let ®, be the function of the form (2) for
p = 7. It is easy to check that ®7(0) = 0 for T, hence p = v is the maximal
number and T’ is an extreme contraction. This means that v is the best possible
constant in the above inequality. Hence we have:

Proposition. Let 1 <p<r<oo,p<2,v=4/(p—1)/(r—1) and let

T7:2((1/p)_(1/7“))[1:|:'y 1Fy1lFy 1£79].



56 PRZEMYSILAW SCHERWENTKE

Then T € ext B(L(15,15)) and T, attains its norm only on one-dimensional space.

Note that (with the use of computer calculations) for p € (1;2), taking such
u that @Z(O) = 0 some of corresponding operators 7}, are contractions and some
of them have the norm greater than one. It means that for p € (1;2), x # e,
y # e;, i = 1,2, there are also extreme operators which are two-dimensional and
which attain their norm only at one independent vector.

4 — Exposed points

We recall that a point gp of a convex set @ is called exposed if there exists
such a linear functional £ for which &(qo) > £(q) for all ¢ € Q\{qo}-

Lemma 5. Let p,r € (1;00) and let x € S(f), y € S(I%) with x # e;,
y #e;,i=1,2. Then xP~! ®y is not an extreme point of B(L(15,15)).

Proof: Considering the function ®,,()) for xP~t®@y € L(15,13) it is easy to see
that @ZO > 0 for sufficietly small g > 0. It means that in some neighbourhood
of x the operator xP~ ' ®y £x+ ® (y"~1)* does not extend norm one. Therefore,
for sufficiently small po > 0, we have

ey uxt eyt <1,

i.e. x’~! ® y is not an extreme contraction. m

Theorem 2. Let p € (2,00). Then all extreme points of B(L(I5,15)) except
the two dimensional operators which attain their norms only on one-dimensional
subspace, are exposed points.

Proof: Let a contraction 7' attains its norm at two linearly independent
vectors X1, xg with ||x;]| =1, ¢ = 1,2. Then the functional £ defined by

f(R) = 1(<}3X1, (TXl)q_1> + <RX2, (TXQ)q_1>>

2
exposes B(L(15,15)) at T. Indeed, let ||£| = &(T) = 1. Suppose that £(R) = 1
for some R € B(L(I5,15)). Then (Rx;, (Tx;)9 ') = 1, i = 1,2, and by strict
convexity of 1 we have Rx; = Tx; (i = 1,2). Since x1, X2 generate [5 , we obtain
R =T, i.e. T is exposed.
If an extreme operator 7" has the form e; ® y (y # ey, e3), then T' is exposed
by the functional ¢ defined by £(R) = (Rey,y?™ '), R € L£(15,1%). Indeed, we
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have ||¢|| = &£(T) = 1. Moreover, for R € B(L(15,15)) with £(R) = 1 we have
Rey = y. Because |R|| < 1 and ||Re1]| = 1, we have Res = 0. Hence R =T
and T is exposed. We use analogous arguments for the operator of the form
xP~1®e;, i = 1,2. In accordance with the lemma 5 there are no other extreme one-
dimensional operators. Let T be the extreme two-dimensional operator, which
attains its norm only on a one-dimensional subspace. Then T assumes the form

T=x""'@y+pox @y, p#0,

i.e. T attains its norm only at x. We define the set of functionals
A={eeBL@B,18)): &T) = el =1} .

The set A is a closed convex subset of the B(L(15,15)) . In fact: A is a compact
face of B(L(15,15)*). Hence ext A C ext B(L(15,15)*). From the Ruess-Stegall
results, we know that each element & € ext B(L(15,15)*) has the form ¢(R) =
(Rxp,up) = (x¢ ® ug)(R) for some xg,uy € 15 with [|xg|| = [jug|]| = 1. The
condition £(T) = 1 implies that xg = x and ug = y?~!. Hence ext.4 has only
one element & = x ® y?~! than A = {{y}, as well. Therefore, there exists only
one functional which supports B(L(15,15)) at T. It is easy to see that &y does not
expose B(L(I5,15)) at T, at least for the simple reason that & (xP~! ®y) = 1.
Hence T is not an exposed point. m

We point out that all elements of the unit sphere of L£(15,11) are smooth,
except for these (extreme) operators, which attain their norms at two linearly
independent vectors (see Heinrich [9]).

Remark 1. Theorem 1 remains valid for every p > 2 and 1 < ¢ < 2. We
can prove this using methods simillar to used in the proof of theorem 1.

Remark 2. On the figure 1 we can see the unit ball for p = 3 and its image
by the extreme operator for ¢ = 3/2. This operator is an operator corresponding
to inequality formulated in lemma 4.
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