ON THE GEOMETRY OF $\mathcal{L}\left(l_{2}^{p}, l_{2}^{q}\right)$ AND $l_{2}^{q} \otimes_{\varepsilon} l_{2}^{q}$

Przemyseaw Scherwentke

Abstract

In this paper the characterization of extreme, exposed (and smooth) points of the unit ball of the space of continuous linear operators acting from $l_{2}^{p}, p>2$ to its conjugate space is obtained. The class of extreme contractions found here is different from those of the special cases, which have already been solved.

1 - Introduction

The aim of this paper is the continuation of investigation of extreme contractions. The case of the operators on $C(X)$ is evident. This fact together with the well-known isomorphism $l^{\infty} \rightarrow C(\beta \mathbb{N})$ gives characterization of extreme contractions on l^{∞} (see e.g. Sharir [18], Kim [14], Gendler [2] and references there). From this, making use duality, the l^{1}-spaces case has been achieved (see Iwanik [10]). On the Hilbert space extreme contractions are isometries and coisometries (see Kadison [11], Grza̧ślewicz [5]). More results have been achieved in finite dimensional case (see for instance Lindenstrauss and Perles [15]).

Let $1<p<\infty$. By q the dual power coefficient is denoted, which is such a number that $1 / p+1 / q=1$. By l_{2}^{p} we denote \mathbb{R}^{2} with the standard l^{p}-norm, i.e. $\|\mathbf{x}\|=\left\|\left(x_{1}, x_{2}\right)\right\|=\left(\left|x_{1}\right|^{p}+\left|x_{2}\right|^{p}\right)^{1 / p}$. For Banach spaces E, F by $\mathcal{L}(E, F)$ we denote the Banach space of all linear bounded operators from E into F, and by $E \otimes F$ their tensor product. Additionally we denote by $E \otimes_{\varepsilon} F$ the (complete) injective tensor product. Note that $l_{2}^{p} \otimes_{\varepsilon} l_{2}^{p}$ is norm isomorfic to $\mathcal{L}\left(l_{2}^{q}, l_{2}^{p}\right)$. Moreover $\left(l_{2}^{p} \otimes_{\varepsilon} l_{2}^{p}\right)^{*} \cong l_{2}^{q} \otimes_{\pi} l_{2}^{q}$ (cf. [1]). For any Banach space E by $B(E)$ we denote its closed unit ball and by $B_{E}(\mathbf{x}, r)$ the set $\left\{\mathbf{y} \in E:\|\mathbf{y}-\mathbf{x}\|_{E} \leq r\right\}$. The characterization of extreme points of the unit ball $B\left(E \otimes_{\pi} F\right)$ is given by Ruess and Stegall [17].

[^0]In particular they have proved that

$$
\operatorname{ext}\left(B\left(\left(l_{2}^{p} \otimes_{\varepsilon} l_{2}^{p}\right)^{*}\right)\right)=\left(\operatorname{ext} B\left(l_{2}^{q}\right) \otimes \operatorname{ext} B\left(l_{2}^{q}\right)\right)=S\left(l_{2}^{q}\right) \otimes S\left(l_{2}^{q}\right)
$$

where $S(\cdot)$ denotes the unit sphere and $\operatorname{ext} Q$ - the set of extreme points of Q. The characterization of extreme points in $l_{2}^{2} \otimes l_{2}^{2} \otimes l_{2}^{2}$ is presented in [6]. In [3] a characterization of $B\left(\mathcal{L}\left(l_{2}^{p}, l_{2}^{p}\right)\right)$ is given (for some generalizations for the infinite dimensional case see [4], [12], [13]). Furthemore, the consideration of the spaces $\mathcal{L}\left(l_{m}^{p}, l_{n}^{2}\right)$ and $\mathcal{L}\left(l_{m}^{2}, l_{n}^{p}\right)$ can be found in [7].

In this paper we continue the characterization in question for $\mathcal{L}\left(l_{2}^{q}, l_{2}^{p}\right)$ or equivalently for $l_{2}^{p} \otimes_{\varepsilon} l_{2}^{p}$.

2 - Extreme points

Let $\mathbf{x}=\left(x_{1}, x_{2}\right) \in S\left(l_{2}^{p}\right), \mathbf{y}=\left(y_{1}, y_{2}\right) \in S\left(l_{2}^{q}\right) ;$ recall $1 / p+1 / q=1$. Put

$$
J_{\mathbf{x}, \mathbf{y}}=\left\{T \in B\left(\mathcal{L}\left(l_{2}^{p}, l_{2}^{q}\right)\right): T \mathbf{x}=\mathbf{y}\right\}
$$

where B denotes the unit ball in $\mathcal{L}\left(l_{2}^{p}, l_{2}^{q}\right)$. We are going to prove that $J_{\mathbf{x}, \mathbf{y}}$ is identical with the set of all the contractions of the form

$$
\begin{align*}
T_{\mu}=\left(x_{1}^{p-1}, x_{2}^{p-1}\right) \otimes\left(y_{1}, y_{2}\right)+\mu \cdot & \left(-x_{2}, x_{1}\right) \otimes\left(-y_{2}^{q-1}, y_{1}^{q-1}\right)=: \tag{1}\\
& =: \mathbf{x}^{p-1} \otimes \mathbf{y}+\mu \mathbf{x}^{\perp} \otimes\left(\mathbf{y}^{q-1}\right)^{\perp}, \quad \mu \in \mathbb{R},
\end{align*}
$$

here $\mathbf{x} \otimes \mathbf{y}$ denotes one-dimensional operator for which $(\mathbf{x} \otimes \mathbf{y})(\mathbf{z})=\langle\mathbf{z}, \mathbf{x}\rangle \mathbf{y}$; $\mathbf{a}^{\perp}=\left(a_{1}, a_{2}\right)^{\perp}=\left(-a_{2}, a_{1}\right)$, and $\mathbf{a}^{s}=\left(a_{1}, a_{2}\right)^{s}=\left(\operatorname{sgn}\left(a_{1}\right) \cdot\left|a_{1}\right|^{s}, \operatorname{sgn}\left(a_{2}\right) \cdot\left|a_{2}\right|^{s}\right)$ (note that for $\mathbf{x} \in S\left(l_{2}^{p}\right)$ we have $\left\langle\mathbf{x}, \mathbf{x}^{\perp}\right\rangle=0$ and the vector $\mathbf{x}^{p-1} \in S\left(l_{2}^{q}\right)$ is the only possible functional for which $\left\langle\mathbf{x}, \mathbf{x}^{p-1}\right\rangle=1$).

Indeed, $J_{\mathbf{x}, \mathbf{y}}$ contains all operators of such a form. Conversely, for $S, T \in J_{\mathbf{x}, \mathbf{y}}$ we have $(S-T) \mathbf{x}=\mathbf{0}$, hence $\operatorname{dim}(\operatorname{Im}(S-T)) \leq 1$ and therefore $S-T=$ $\mathbf{x}^{\perp} \otimes \mathbf{z}$ for some $\mathbf{z} \in l_{2}^{q}$. Since $S^{*}\left(\mathbf{y}^{q-1}\right)=T^{*}\left(\mathbf{y}^{q-1}\right)=\mathbf{x}^{p-1}$, we have also $(S-T)^{*}\left(\mathbf{y}^{q-1}\right)=\mathbf{0}$ and $(S-T)^{*}=\left(\mathbf{y}^{q-1}\right)^{\perp} \otimes \mathbf{w}$ for some $\mathbf{w} \in l_{2}^{p}$, which implies that $S-T=\mathbf{w} \otimes\left(\mathbf{y}^{q-1}\right)^{\perp}$ so $\mathbf{z}=\mu \cdot\left(\mathbf{y}^{q-1}\right)^{\perp}$ for some $\mu \in \mathbb{R}$, thus completing the proof.

Note that if $\mu_{1}>\mu_{2}>0$ (or if $0>\mu_{2}>\mu_{1}$), then $\left\|T_{\mu_{1}}\right\| \geq\left\|T_{\mu_{2}}\right\| \geq 1$. Indeed, if e.g.: $\mu_{1}>\mu_{2}>0$, the vector \mathbf{y} belongs to l_{2}^{q} and the functional \mathbf{y}^{*} is equal to $\mathbf{y}^{q-1}\left(\right.$ then $\mathbf{y}^{*}(\mathbf{y})=1=\left\|\mathbf{y}^{*}\right\|$ and $\left.\mathbf{y}^{*}\left(\left(\mathbf{y}^{q-1}\right)^{\perp}\right)=0\right)$ and if

$$
Q=B_{E}\left(\mathbf{0},\left\|\mathbf{y}+\mu_{1}\left(\mathbf{y}^{q-1}\right)^{\perp}\right\|\right) \cap\left\{\mathbf{z}: \mathbf{y}^{*}(\mathbf{z}) \leq 1\right\}
$$

then Q is a convex set contained in the ball $B_{E}\left(\mathbf{0},\left\|\mathbf{y}+\mu_{1}\left(\mathbf{y}^{q-1}\right)^{\perp}\right\|\right)$, so the whole interval $\mathbf{y}+\alpha \mu_{1}\left(\mathbf{y}^{q-1}\right)^{\perp}, \alpha \in[0,1]$ lies in Q. This implies $\left\|\mathbf{y}+\mu_{2}\left(\mathbf{y}^{q-1}\right)^{\perp}\right\| \leq$ $\left\|\mathbf{y}+\mu_{1}\left(\mathbf{y}^{q-1}\right)^{\perp}\right\|$ and ends the proof.

Consider a function

$$
\begin{align*}
\Phi_{\mu}(\lambda)= & \left\|\mathbf{x}+\lambda\left(\mathbf{x}^{p-1}\right)^{\perp}\right\|_{p}^{p q}-\left\|T_{\mu}\left(\mathbf{x}+\lambda\left(\mathbf{x}^{p-1}\right)^{\perp}\right)\right\|_{q}^{p q} \\
= & \left(\left|x_{1}-\lambda x_{2}^{p-1}\right|^{p}+\left|x_{2}+\lambda x_{1}^{p-1}\right|^{p}\right)^{q} \tag{2}\\
& -\left(\left|y_{1}-\lambda \mu y_{2}^{q-1}\right|^{q}+\left|y_{2}+\lambda \mu y_{1}^{q-1}\right|^{q}\right)^{p}
\end{align*}
$$

If $\left\|T_{\mu}\right\| \leq 1$ then $\Phi_{\mu}(\lambda) \geq 0$ for all $\lambda \in \mathbb{R}$. By a standard calculation we obtain

$$
\begin{aligned}
\Phi_{\mu}(0) & =0 \\
\Phi_{\mu}^{\prime}(0) & =0 \\
\Phi_{\mu}^{\prime \prime}(0) & =p q\left[(p-1)\left|x_{1} x_{2}\right|^{p-2}-\mu^{2}(q-1)\left|y_{1} y_{2}\right|^{q-2}\right] \\
\Phi_{\mu}^{\prime \prime \prime}(0) & =p q\left[(p-1)(p-2) \operatorname{sgn}\left(x_{1} x_{2}\right)\left|x_{1} x_{2}\right|^{p-3}\left(\left|x_{1}\right|^{p}-\left|x_{2}\right|^{p}\right)\right. \\
& \left.-\mu^{3}(q-1)(q-2) \operatorname{sgn}\left(y_{1} y_{2}\right)\left|y_{1} y_{2}\right|^{q-3}\left(\left|y_{1}\right|^{q}-\left|y_{2}\right|^{q}\right)\right]
\end{aligned}
$$

for such $x_{1}, x_{2}, y_{1}, y_{2}$ that make sense for the above-mentioned expressions.
Let μ be the maximal (or minimal) number for which $\left\|T_{\mu}\right\|=1$. Then T_{μ} is the extreme contraction, because the norm of operator $T_{\mu} \pm R$ cannot increase neither in direction \mathbf{y} nor $\left(\mathbf{y}^{q-1}\right)^{\perp}$, hence $R=\mathbf{0}$, and $\Phi_{\mu}^{\prime \prime}(0) \geq 0$.

Let $\Phi_{\mu}^{\prime \prime}(0)>0$ and $\mu>0$. Then for all $\varepsilon>0$ we have $\left\|T_{\mu+\varepsilon}\right\|>1$. The continuity of $\Phi_{\mu}^{\prime \prime}(0)$ as a function of μ gives that there exists $\varepsilon_{0}>0$ such that $\Phi_{\mu+\varepsilon}^{\prime \prime}(0)>0$ for all $0<\varepsilon<\varepsilon_{0}$. Hence there exists $\delta>0$ such that for all $0<\varepsilon<\varepsilon_{0}$ and for all

$$
\mathbf{u} \in\{\mathbf{u}: 0<\|\mathbf{u}-\mathbf{x}\|<\delta \wedge\|\mathbf{u}\|=1\}
$$

we have $\left\|T_{\mu+\varepsilon} \mathbf{u}\right\|<1$. Let $\left\{\varepsilon_{n}\right\}_{n=1}^{\infty}$ be a sequence in which $\varepsilon_{n}<\varepsilon_{0}$ for all n and $\varepsilon_{n} \rightarrow 0$. Let \mathbf{u}_{n} be such a vector for which $\left\|T_{\mu+\varepsilon_{n}} \mathbf{u}_{n}\right\|=1$. The compactness of the unit ball implies the existence of such \mathbf{u}_{0} that $\mathbf{u}_{\varepsilon_{n}} @>n \rightarrow \infty \gg \mathbf{u}_{0}$. Evidently $\left\|T_{\mu}\left(\mathbf{u}_{0}\right)\right\|=1$. But $\left\|\mathbf{u}_{\varepsilon_{n}}-\mathbf{x}\right\|>\delta$, hence $\left\|\mathbf{u}_{0}-\mathbf{x}\right\| \geq \delta$ and \mathbf{u}_{0} and \mathbf{x} are such two linearly independent vectors that T_{μ} attains its norm on them. Therefore, if μ is the maximal (or minimal) element then T_{μ} is such an extreme operator which attains its norm on two linearly independent vectors.

Let now $\Phi_{\mu}^{\prime \prime}(0)=0$. Then $\Phi_{\mu}^{\prime \prime \prime}(0)=0$ as well, hence in this case the following pair of equalities is true:

$$
\begin{equation*}
(p-1)\left|x_{1} x_{2}\right|^{p-2}=\mu^{2}(q-1)\left|y_{1} y_{2}\right|^{q-2} \tag{3}
\end{equation*}
$$

$$
\begin{align*}
& (p-1)(p-2) \operatorname{sgn}\left(x_{1} x_{2}\right)\left|x_{1} x_{2}\right|^{p-3}\left(\left|x_{1}\right|^{p}-\left|x_{2}\right|^{p}\right)= \tag{4}\\
& \quad=\mu^{3}(q-1)(q-2) \operatorname{sgn}\left(y_{1} y_{2}\right)\left|y_{1} y_{2}\right|^{q-3}\left(\left|y_{1}\right|^{q}-\left|y_{2}\right|^{q}\right)
\end{align*}
$$

which is equivalent to

$$
\begin{align*}
& (p-2)(q-1)^{1 / 2} \operatorname{sgn}\left(x_{1} x_{2}\right)\left|y_{1} y_{2}\right|^{q / 2}\left(\left|x_{1}\right|^{p}-\left|x_{2}\right|^{p}\right)= \tag{5}\\
& \quad=(q-2)(p-1)^{1 / 2} \operatorname{sgn}\left(y_{1} y_{2}\right)\left|x_{1} x_{2}\right|^{p / 2}\left(\left|y_{1}\right|^{q}-\left|y_{2}\right|^{q}\right)
\end{align*}
$$

The set of solutions of (5) is contained in the set of solutions of

$$
\begin{align*}
& (p-2)^{2}(q-1)\left|y_{1} y_{2}\right|^{q}\left(\left|x_{1}\right|^{2 p}-2\left|x_{1} x_{2}\right|^{p}+\left|x_{2}\right|^{2 p}\right)= \tag{6}\\
& \quad=(q-2)^{2}(p-1)\left|x_{1} x_{2}\right|^{p}\left(\left|y_{1}\right|^{2 q}-2\left|y_{1} y_{2}\right|^{q}+\left|y_{2}\right|^{2 q}\right)
\end{align*}
$$

Let $\alpha=\left|x_{1}\right|^{p}, \beta=\left|y_{1}\right|^{q}$. Then (6) is equivalent to

$$
\frac{(2 \alpha-1)^{2}}{\alpha(1-\alpha)}(p-2)^{2}(q-1)=\frac{(2 \beta-1)^{2}}{\beta(1-\beta)}(q-2)^{2}(p-1)
$$

Relations between p and q imply that

$$
(p-2)^{2}(q-1)=(q-2)^{2}(p-1)
$$

SO

$$
\frac{(2 \alpha-1)^{2}}{\alpha(1-\alpha)}=\frac{(2 \beta-1)^{2}}{\beta(1-\beta)}
$$

This means that $\alpha=\beta$ or $\alpha=1-\beta$ (we may consider only the first case, establishing a suitable base) and

$$
\mu= \pm(p-1) \frac{y_{1} y_{2}}{x_{1} x_{2}}
$$

Analysing the signs of both sides of (5) we conclude, that " + " is possible only if $\alpha=\frac{1}{2}$.

Let us denote

$$
\begin{aligned}
\Psi(\lambda)= & \left(\alpha \cdot|1-\lambda(1-\alpha)|^{p}+(1-\alpha) \cdot|1+\lambda \alpha|^{p}\right)^{1 / p} \\
& -\left(\alpha \cdot|1-\lambda(1-p)(1-\alpha)|^{\frac{p}{p-1}}+(1-\alpha) \cdot|1+\lambda(1-p) \alpha|^{\frac{p}{p-1}}\right)^{\frac{p-1}{p}}
\end{aligned}
$$

If T_{μ} is a contraction, then $\Psi(\lambda) \geq 0$ for all λ. But $\Psi^{\prime}(0)=\Psi^{\prime \prime}(0)=\Psi^{\prime \prime \prime}(0)=0$ and

$$
\begin{aligned}
\Psi^{(4)}(0) & =3 \alpha^{2}(1-\alpha)^{2}(1-p) p(p-2)-p(p-1)(p-2) \alpha(1-\alpha)\left(\alpha^{3}+(1-\alpha)^{3}\right) \\
& <0 \quad \text { for all } \alpha \in(0 ; 1) \text { and } p>2 .
\end{aligned}
$$

Hence, for $p>2$ and $\mathbf{x} \neq \mathbf{e}_{i}, i=1,2$ the operator T_{μ} is not a contraction.

Let us assume now that $x_{1} x_{2} y_{1} y_{2}=0$. We need to consider the following cases:

1) $x_{1} x_{2}=0, y_{1} y_{2} \neq 0, p>2$. Then $\Phi_{\mu}^{\prime \prime}(0)=-\mu^{2}(q-1)\left|y_{1} y_{2}\right|^{q-2}=0$ iff $\mu=0$, i.e.

$$
T_{\mu}=\left[\begin{array}{lll}
y_{1} & 0 y_{2} & 0
\end{array}\right] \quad \text { or }\left[\begin{array}{lll}
0 & y_{1} 0 & y_{2}
\end{array}\right], \quad \mathbf{y} \in l_{2}^{q} .
$$

2) $x_{1} x_{2} \neq 0, y_{1} y_{2}=0, p>2$. Then $T_{\mu}\left(x_{1}+\lambda x_{2}^{p-1}, x_{2}-\lambda x_{1}^{p-1}\right)=(1,-\lambda \mu)$. Hence T_{μ} is a contraction iff

$$
\begin{equation*}
\left(1+|\lambda \mu|^{q}\right)^{1 / q} \leq\left(\left|x_{1}+\lambda x_{2}^{p-1}\right|^{p}+\left|x_{2}-\lambda x_{1}^{p-1}\right|^{p}\right)^{1 / p} \tag{7}
\end{equation*}
$$

Let

$$
f(\lambda)=\left(\left|x_{1}+\lambda x_{2}^{p-1}\right|^{p}+\left|x_{2}-\lambda x_{1}^{p-1}\right|^{p}\right)^{1 / p}-\left(1+|\lambda \mu|^{q}\right)^{1 / q}
$$

Easy calculation shows that $f(0)=0, f^{\prime}(0)=0, f^{\prime \prime}(\lambda) @>\lambda \rightarrow 0 \gg-\infty$ for $\mu \neq 0$, which in accordance with the Taylor formula with the second remainder, contradicts the inequality (7). Hence $\mu=0$, so

$$
T_{\mu}=\left[\begin{array}{lll}
0 & 0 x_{1}^{p-1} & x_{2}^{p-1}
\end{array}\right] \quad \text { or } T_{\mu}=\left[\begin{array}{lll}
x_{1}^{p-1} & x_{2}^{p-1} 0 & 0
\end{array}\right], \quad \mathbf{x} \in l_{2}^{p}
$$

3) $x_{1} x_{2}=0, y_{1} y_{2}=0, p>2$. Then $\mathbf{x}= \pm \mathbf{e}_{i}, \mathbf{y}= \pm \mathbf{e}_{j}$, for $i, j \in\{1,2\}$. Hence $T_{\mu} \in J_{\mathbf{x}, \mathbf{y}}$ iff $\mu=0$, because from the Taylor theorem, for all $\mu \neq 0$ it is not a contraction.

In this way we have proved the following:
Lemma 1. Let $2<p<\infty$, let q be such a number that $(1 / p)+(1 / q)=1$, and $T \in L\left(l_{2}^{p}, l_{2}^{q}\right)$ be an extreme contraction of such form of (1) in which $x_{1} x_{2} y_{1} y_{2}=0$. Then T assumes one of the following forms:
a) $T=\left[\begin{array}{lll}y_{1} & 0 y_{2} & 0\end{array}\right] \quad$ or $T=\left[\begin{array}{lll}0 & y_{1} 0 & y_{2}\end{array}\right], \quad \mathbf{y} \in S\left(l_{2}^{q}\right)$.
b) $T=\left[\begin{array}{lll}0 & 0 x_{1}^{p-1} & x_{2}^{p-1}\end{array}\right]$ or $T=\left[\begin{array}{lll}x_{1}^{p-1} & x_{2}^{p-1} 0 & 0\end{array}\right], \quad \mathbf{x} \in S\left(l_{2}^{p}\right)$.

Lemma 2. Let $p>2$, let $\mathbf{y} \in S\left(l_{2}^{q}\right)$ and let $\mathbf{y}_{i} \neq 0$ for all $i \in \mathbb{N}$. Then the operator $T=\mathbf{e}_{i} \otimes \mathbf{y}$ is an extreme contraction in $\mathcal{L}\left(l_{2}^{p}, l_{2}^{q}\right)$.

Proof: Let $T=\mathbf{e}_{i} \otimes \mathbf{y}$, i.e. $T \mathbf{x}=\left\langle\mathbf{x}, \mathbf{e}_{1}\right\rangle \mathbf{y}$ and $\|T \pm R\| \leq 1$ for some $R \in \mathcal{L}\left(l_{2}^{p}, l_{2}^{q}\right)$. Without the loss of generality we can assume that $T=\mathbf{e}_{1} \otimes \mathbf{y}$. Then $T \mathbf{e}_{1}=\mathbf{y}$, hence from the strict convexity of l_{2}^{p} we have $R \mathbf{e}_{1}=\mathbf{0}$. Evidently $T \mathbf{e}_{2}=\mathbf{0}$. Let $\mathbf{z}=R \mathbf{e}_{2}$. Therefore we have:

$$
(T \pm R)\left(\mathbf{e}_{1}+\lambda \mathbf{e}_{2}\right)=\mathbf{y} \pm \lambda \mathbf{z}
$$

Because of $\left\|\mathbf{e}_{1}+\lambda \mathbf{e}_{2}\right\|_{p}=\left(1+|\lambda|^{p}\right)^{1 / p}$ the following inequality should be fulfilled:

$$
\begin{equation*}
L(\lambda):\left(\left|y_{1} \pm \lambda z_{1}\right|^{q}+\left|y_{2} \pm \lambda z_{2}\right|^{q}\right)^{p / q} \leq 1+|\lambda|^{p}=: P(\lambda) \tag{8}
\end{equation*}
$$

By differentiating $L(\lambda)$ and $P(\lambda)$ by λ we obtain:

$$
P^{\prime}(0)=0 \quad \text { and } \quad L^{\prime}(0)=p\left(\left|y_{1}\right|^{q-1} \cdot \operatorname{sgn} y_{1} \cdot z_{1}+\left|y_{2}\right|^{q-1} \cdot \operatorname{sgn} y_{2} \cdot z_{2}\right)
$$

The inequality (8) can be satisfied only if $L^{\prime}(0)=0$. Differentiating again, we obtain $P^{\prime \prime}(0)=0$ and

$$
L^{\prime \prime}(0)=p(q-1)\left(\left|y_{1}\right|^{r-2} \cdot z_{1}^{2}+\left|y_{2}\right|^{r-2} \cdot z_{2}^{2}\right)
$$

Because $L^{\prime \prime}(0)>0$ for $\mathbf{z} \neq \mathbf{0}$, we obtain $\mathbf{z}=\mathbf{0}$.
Lemma 3. Let $p>2$, and $S\left(l_{2}^{q}\right) \ni \mathbf{z}$ be such a vector that $\mathbf{z}_{i} \neq 0$ for all $i \in \mathbb{N}$. Then the operator $T=\mathbf{z} \otimes \mathbf{e}_{i}$ is an extreme contraction in $\mathcal{L}\left(l_{2}^{p}, l_{2}^{q}\right)$.

Proof: Let, for example, assume that $T=\mathbf{z} \otimes \mathbf{e}_{1}$. Similarly to the case of the proof of lemma 3 we obtain:

$$
(T \pm R)\left(\mathbf{x}+\lambda \mathbf{x}^{\perp}\right)=\mathbf{e}_{1} \pm \lambda \mathbf{z}
$$

This means that the following inequality should be fulfilled:

$$
\left|1 \pm \lambda z_{1}\right|^{q}+\left|\lambda z_{2}\right|^{q} \leq\left(\left|x_{1}-\lambda x_{2}^{p-1}\right|^{p}+\left|x_{2}+\lambda x_{1}^{p-1}\right|^{p}\right)^{q / p}
$$

Denoting left-hand side of the above inequality by $L(\lambda)$, the right-hand side by $R(\lambda)$ and differentiatig both expressions by λ we obtain $P^{\prime}(0)=0$ and $L^{\prime \prime}(0)=$ $q \cdot z_{1}$, hence $z_{1}=0$. The rest of the proof is similar to the case 2) before lemma 1 (with $\mu=z_{2}$). Hence $z_{2}=0$ and $\operatorname{Im}(R)=\{\mathbf{0}\}$.

Therefore we can formulate the following theorem:
Theorem 1. Let $2<p<\infty$, and let q be such a number for which $(1 / p)+(1 / q)=1$. Then $T \in L\left(l_{2}^{p}, l_{2}^{q}\right)$ is an extreme contraction if and only if
$\|T\|=1$ and: either T attains its norm on two linearly independent vectors in l_{2}^{p} or T is of one of the following forms:
a) $T=\left[\begin{array}{lll}y_{1} & 0 y_{2} & 0\end{array}\right]$ or $T=\left[\begin{array}{lll}0 & y_{1} 0 & y_{2}\end{array}\right], \quad \mathbf{y} \in S\left(l_{2}^{q}\right)$.
b) $T=\left[\begin{array}{lll}0 & 0 x_{1}^{p-1} & x_{2}^{p-1}\end{array}\right]$ or $T=\left[\begin{array}{lll}x_{1}^{p-1} & x_{2}^{p-1} 0 & 0\end{array}\right], \quad \mathbf{x} \in S\left(l_{2}^{p}\right)$.

Proof: We have just proved that an extreme contraction T has the form described in the theorem.

If $\|T\|=1$ and T attains its norm on two linearly independent vectors or $T=\mathbf{e}_{i} \otimes \mathbf{e}_{j}$, then T is evidently an extreme contraction. We obtain the remaining part from lemmas 2 and 3 .

3 - Remarks on the case $1<p<2$

Let us recall the following inequality:
Lemma 4([16]). Let $1<p<r<\infty$ and let $\gamma=\sqrt{(p-1) /(r-1)}$. Then, for all $\lambda \in \mathbb{R}$, we have

$$
\left(\frac{|1+\gamma \lambda|^{r}+|1-\gamma \lambda|^{r}}{2}\right)^{1 / r} \leq\left(\frac{|1+\lambda|^{p}+|1-\lambda|^{p}}{2}\right)^{1 / p},
$$

${ }^{(*)}$ moreover, if $\lambda \neq 0$ then the strict inequality proves to be true.
Remark. In [16] the lemma is formulated without $\left({ }^{*}\right)$, but $\left({ }^{*}\right)$ is a direct corollary from the proof (cf. [16] p.75).

Put $\mathbf{f}=(1,1)$ and $\mathbf{f}^{\perp}=(-1,1)$. The above inequality can be considered as the inequality

$$
\left\|T_{\gamma}\left(\mathbf{f}+\lambda \cdot \mathbf{f}^{\perp}\right)\right\|_{r} \leq\left\|\mathbf{f}+\lambda \cdot \mathbf{f}^{\perp}\right\|_{p}
$$

for $T_{\gamma} \in \mathcal{L}\left(l_{2}^{p}, l_{2}^{r}\right)$ of the form

$$
T_{\gamma}=2^{((1 / p)-(1 / r))}\left(\mathbf{f} \otimes \mathbf{f}+\gamma \cdot \mathbf{f}^{\perp} \otimes \mathbf{f}^{\perp}\right) .
$$

Let us note that T_{γ} has the form (1). Let Φ_{γ} be the function of the form (2) for $\mu=\gamma$. It is easy to check that $\Phi_{\gamma}^{\prime \prime}(0)=0$ for T_{γ}, hence $\mu=\gamma$ is the maximal number and T_{γ} is an extreme contraction. This means that γ is the best possible constant in the above inequality. Hence we have:

Proposition. Let $1<p<r<\infty, p<2, \gamma=\sqrt{(p-1) /(r-1)}$ and let

$$
T_{\gamma}=2^{((1 / p)-(1 / r))}[1 \pm \gamma \quad 1 \mp \gamma 1 \mp \gamma \quad 1 \pm \gamma] .
$$

Then $T_{\gamma} \in \operatorname{ext} B\left(\mathcal{L}\left(l_{2}^{p}, l_{2}^{r}\right)\right)$ and T_{γ} attains its norm only on one-dimensional space.
Note that (with the use of computer calculations) for $p \in(1 ; 2)$, taking such μ that $\Phi_{\mu}^{\prime \prime}(0)=0$ some of corresponding operators T_{μ} are contractions and some of them have the norm greater than one. It means that for $p \in(1 ; 2), \mathbf{x} \neq \mathbf{e}_{i}$, $\mathbf{y} \neq \mathbf{e}_{i}, i=1,2$, there are also extreme operators which are two-dimensional and which attain their norm only at one independent vector.

4 - Exposed points

We recall that a point q_{0} of a convex set Q is called exposed if there exists such a linear functional ξ for which $\xi\left(q_{0}\right)>\xi(q)$ for all $q \in Q \backslash\left\{q_{0}\right\}$.

Lemma 5. Let $p, r \in(1 ; \infty)$ and let $\mathbf{x} \in S\left(l_{2}^{p}\right), \mathbf{y} \in S\left(l_{2}^{r}\right)$ with $\mathbf{x} \neq \mathbf{e}_{i}$, $\mathbf{y} \neq \mathbf{e}_{i}, i=1,2$. Then $\mathbf{x}^{p-1} \otimes \mathbf{y}$ is not an extreme point of $B\left(\mathcal{L}\left(l_{2}^{p}, l_{2}^{r}\right)\right)$.

Proof: Considering the function $\Phi_{\mu}(\lambda)$ for $\mathbf{x}^{p-1} \otimes \mathbf{y} \in \mathcal{L}\left(l_{2}^{p}, l_{2}^{r}\right)$ it is easy to see that $\Phi_{\mu_{0}}^{\prime \prime}>0$ for sufficietly small $\mu_{0}>0$. It means that in some neighbourhood of \mathbf{x} the operator $\mathbf{x}^{p-1} \otimes \mathbf{y} \pm \mathbf{x}^{\perp} \otimes\left(\mathbf{y}^{r-1}\right)^{\perp}$ does not extend norm one. Therefore, for sufficiently small $\mu_{0}>0$, we have

$$
\left\|\mathrm{x}^{p-1} \otimes \mathbf{y} \pm \mu_{0} \mathbf{x}^{\perp} \otimes\left(\mathbf{y}^{r-1}\right)^{\perp}\right\| \leq 1
$$

i.e. $\mathrm{x}^{p-1} \otimes \mathrm{y}$ is not an extreme contraction.

Theorem 2. Let $p \in(2, \infty)$. Then all extreme points of $B\left(\mathcal{L}\left(l_{2}^{p}, l_{2}^{r}\right)\right)$ except the two dimensional operators which attain their norms only on one-dimensional subspace, are exposed points.

Proof: Let a contraction T attains its norm at two linearly independent vectors $\mathbf{x}_{1}, \mathbf{x}_{2}$ with $\left\|\mathbf{x}_{i}\right\|=1, i=1,2$. Then the functional ξ defined by

$$
\xi(R)=\frac{1}{2}\left(\left\langle R \mathbf{x}_{1},\left(T \mathbf{x}_{1}\right)^{q-1}\right\rangle+\left\langle R \mathbf{x}_{2},\left(T \mathbf{x}_{2}\right)^{q-1}\right\rangle\right)
$$

exposes $B\left(\mathcal{L}\left(l_{2}^{p}, l_{2}^{r}\right)\right)$ at T. Indeed, let $\|\xi\|=\xi(T)=1$. Suppose that $\xi(R)=1$ for some $R \in B\left(\mathcal{L}\left(l_{2}^{p}, l_{2}^{r}\right)\right)$. Then $\left\langle R \mathbf{x}_{i},\left(T \mathbf{x}_{i}\right)^{q-1}\right\rangle=1, i=1,2$, and by strict convexity of l_{2}^{q} we have $R \mathbf{x}_{i}=T \mathbf{x}_{i}(i=1,2)$. Since $\mathbf{x}_{1}, \mathbf{x}_{2}$ generate l_{2}^{p}, we obtain $R=T$, i.e. T is exposed.

If an extreme operator T has the form $\mathbf{e}_{i} \otimes \mathbf{y}\left(\mathbf{y} \neq \mathbf{e}_{1}, \mathbf{e}_{2}\right)$, then T is exposed by the functional ξ defined by $\xi(R)=\left\langle R \mathbf{e}_{1}, \mathbf{y}^{q-1}\right\rangle, R \in \mathcal{L}\left(l_{2}^{p}, l_{2}^{q}\right)$. Indeed, we
have $\|\xi\|=\xi(T)=1$. Moreover, for $R \in B\left(\mathcal{L}\left(l_{2}^{p}, l_{2}^{r}\right)\right)$ with $\xi(R)=1$ we have $R \mathbf{e}_{1}=\mathbf{y}$. Because $\|R\| \leq 1$ and $\left\|R \mathbf{e}_{1}\right\|=1$, we have $R \mathbf{e}_{2}=0$. Hence $R=T$ and T is exposed. We use analogous arguments for the operator of the form $\mathrm{x}^{p-1} \otimes \mathbf{e}_{i}, i=1,2$. In accordance with the lemma 5 there are no other extreme onedimensional operators. Let T be the extreme two-dimensional operator, which attains its norm only on a one-dimensional subspace. Then T assumes the form

$$
T=\mathbf{x}^{p-1} \otimes \mathbf{y}+\mu_{0} \mathbf{x}^{\perp} \otimes\left(\mathbf{y}^{q-1}\right)^{\perp}, \quad \mu_{0} \neq 0
$$

i.e. T attains its norm only at \mathbf{x}. We define the set of functionals

$$
\mathcal{A}=\left\{\xi \in B\left(\mathcal{L}\left(l_{2}^{p}, l_{2}^{q}\right)^{*}\right): \xi(T)=\|\xi\|=1\right\} .
$$

The set \mathcal{A} is a closed convex subset of the $B\left(\mathcal{L}\left(l_{2}^{p}, l_{2}^{r}\right)\right)$. In fact: \mathcal{A} is a compact face of $B\left(\mathcal{L}\left(l_{2}^{p}, l_{2}^{r}\right)^{*}\right)$. Hence ext $\mathcal{A} \subset \operatorname{ext} B\left(\mathcal{L}\left(l_{2}^{p}, l_{2}^{r}\right)^{*}\right)$. From the Ruess-Stegall results, we know that each element $\xi \in \operatorname{ext} B\left(\mathcal{L}\left(l_{2}^{p}, l_{2}^{r}\right)^{*}\right)$ has the form $\xi(R)=$ $\left\langle R \mathbf{x}_{0}, \mathbf{u}_{0}\right\rangle=\left(\mathbf{x}_{0} \otimes \mathbf{u}_{0}\right)(R)$ for some $\mathbf{x}_{0}, \mathbf{u}_{0} \in l_{2}^{p}$ with $\left\|\mathbf{x}_{0}\right\|=\left\|\mathbf{u}_{0}\right\|=1$. The condition $\xi(T)=1$ implies that $\mathbf{x}_{0}=\mathbf{x}$ and $\mathbf{u}_{0}=\mathbf{y}^{q-1}$. Hence ext \mathcal{A} has only one element $\xi_{0}=\mathbf{x} \otimes \mathbf{y}^{q-1}$ than $\mathcal{A}=\left\{\xi_{0}\right\}$, as well. Therefore, there exists only one functional which supports $B\left(\mathcal{L}\left(l_{2}^{p}, l_{2}^{r}\right)\right)$ at T. It is easy to see that ξ_{0} does not expose $B\left(\mathcal{L}\left(l_{2}^{p}, l_{2}^{r}\right)\right)$ at T, at least for the simple reason that $\xi_{0}\left(\mathbf{x}^{p-1} \otimes \mathbf{y}\right)=1$. Hence T is not an exposed point.

We point out that all elements of the unit sphere of $\mathcal{L}\left(l_{2}^{p}, l_{2}^{q}\right)$ are smooth, except for these (extreme) operators, which attain their norms at two linearly independent vectors (see Heinrich [9]).

Remark 1. Theorem 1 remains valid for every $p>2$ and $1<q<2$. We can prove this using methods simillar to used in the proof of theorem 1 .

Remark 2. On the figure 1 we can see the unit ball for $p=3$ and its image by the extreme operator for $q=3 / 2$. This operator is an operator corresponding to inequality formulated in lemma 4.

ACKNOWLEDGEMENTS - I am very grateful to Professor Ryszard Grząślewicz for his kind assistance in the work on this subject.

I would also like to express my gratitude to the referee for detailed reviewing of the paper and valuable suggestions.

REFERENCES

[1] Diestel, J. and Uhl, Jr., J.J. - Vector Measures, Amer. Math. Soc. Math. Surveys, 15, 1977.
[2] Gendler, A. - Extreme operators in the unit ball of $L(C(X), C(Y))$ over the complex field, Proc. Amer. Math. Soc., 57 (1976), 85-88.
[3] Grząślewicz, R. - Extreme operators on 2-dimensional l_{p}-spaces, Colloqium Math., 44 (1981), 309-315.
[4] Grza̧śLewicz, R. - A note on extreme contractions on l_{p}-spaces, Portugaliae Math., 40 (1981), 413-419.
[5] Grząślewicz, R. - Extreme contractions on real Hilbert space, Math. Ann., 261 (1982), 463-466.
[6] Grza̧ślewicz, R. and John, K. - Extreme elements of the unit ball of bilinear operators, Arch. Math., 50 (1988), 264-269.
[7] GRZA̧ŚLEWICZ, R. - Extremal structure of $\mathcal{L}\left(l_{m}^{2}, l_{n}^{p}\right)$, Linear and Multilinear Algebra, 24 (1989), 117-125.
[8] Grza̧ślewicz, R. and Younis, R. - Smooth points and M-ideals (submitted).
[9] Heinrich, S. - The differentiability of the norm in spaces of operators, (in Russian), Funkcional Anal. Prilozen (Kharkov), 9(4) (1975), 93-94; English translation in: Functional Anal. Appl., 9(4) (1975), 360-362.
[10] Iwanik, A. - Extreme contractions on certain function spaces, Colloquium Math., 40 (1978), 147-153.
[11] Kadison, R.V. - Isometries of operator algebras, Ann. Math.,54(2) (1951), 325-338.
[12] Kan, Charn-Huen - A class of extreme L_{p} contractions, $p \neq 1,2, \infty$, and real 2×2 extreme matrices, Illinois J. Math., 30(4) (1986), 612-635.
[13] Kan, Charn-Huen - A family of 2×2 extreme contractions and a generalization of Clarkson's inequalities, Linear and Multilinear Algebra, 21 (1987), 191-199.
[14] Kim, C.W. - Extreme contraction operators on l^{∞}, Math. Z., 151 (1976), 101-110.
[15] Lindenstrauss, J. and Perles, M.A. - On extreme operators in finite-dimensional spaces, Duke Math. J., 36 (1969), 301-314.
[16] Lindenstrauss, J. and Tzafriri, L. - Classical Banach spaces II, SpringerVerlag, Berlin, Heidelberg, New York, 1979.
[17] Ruess, W.M. and Stegall, C.P. - Extreme points in duals of operator spaces, Math. Ann., 261 (1982), 535-546.
[18] Sharir, M. - Characterization and properties of extreme operators into $C(Y)$, Israel J. Math., 12 (1972), 174-183.

[^0]: Received: January 8, 1993; Revised: May 24, 1993.
 1980 Mathematics Subject Classification: Primary 47D20;
 Secondary 52A20.

