PORTUGALIAE MATHEMATICA Vol. 52 Fasc. 1 – 1995

ON THE GEOMETRY OF $\mathcal{L}(l_2^p, l_2^q)$ AND $l_2^q \otimes_{\varepsilon} l_2^q$

PRZEMYSŁAW SCHERWENTKE

Abstract: In this paper the characterization of extreme, exposed (and smooth) points of the unit ball of the space of continuous linear operators acting from l_2^p , p > 2 to its conjugate space is obtained. The class of extreme contractions found here is different from those of the special cases, which have already been solved.

1 – Introduction

The aim of this paper is the continuation of investigation of extreme contractions. The case of the operators on C(X) is evident. This fact together with the well-known isomorphism $l^{\infty} \to C(\beta \mathbb{N})$ gives characterization of extreme contractions on l^{∞} (see e.g. Sharir [18], Kim [14], Gendler [2] and references there). From this, making use duality, the l^1 -spaces case has been achieved (see Iwanik [10]). On the Hilbert space extreme contractions are isometries and coisometries (see Kadison [11], Grząślewicz [5]). More results have been achieved in finite dimensional case (see for instance Lindenstrauss and Perles [15]).

Let 1 . By q the dual power coefficient is denoted, which is sucha number that <math>1/p + 1/q = 1. By l_2^p we denote \mathbb{R}^2 with the standard l^p -norm, i.e. $\|\mathbf{x}\| = \|(x_1, x_2)\| = (|x_1|^p + |x_2|^p)^{1/p}$. For Banach spaces E, F by $\mathcal{L}(E, F)$ we denote the Banach space of all linear bounded operators from E into F, and by $E \otimes F$ their tensor product. Additionally we denote by $E \otimes_{\varepsilon} F$ the (complete) injective tensor product. Note that $l_2^p \otimes_{\varepsilon} l_2^p$ is norm isomorfic to $\mathcal{L}(l_2^q, l_2^p)$. Moreover $(l_2^p \otimes_{\varepsilon} l_2^p)^* \cong l_2^q \otimes_{\pi} l_2^q$ (cf. [1]). For any Banach space E by B(E) we denote its closed unit ball and by $B_E(\mathbf{x}, r)$ the set $\{\mathbf{y} \in E : \|\mathbf{y} - \mathbf{x}\|_E \leq r\}$. The characterization of extreme points of the unit ball $B(E \otimes_{\pi} F)$ is given by Ruess and Stegall [17].

Received: January 8, 1993; Revised: May 24, 1993.

¹⁹⁸⁰ Mathematics Subject Classification: Primary 47D20; Secondary 52A20.

In particular they have proved that

$$\operatorname{ext}\left(B((l_2^p \otimes_{\varepsilon} l_2^p)^*)\right) = \left(\operatorname{ext} B(l_2^q) \otimes \operatorname{ext} B(l_2^q)\right) = S(l_2^q) \otimes S(l_2^q) ,$$

where $S(\cdot)$ denotes the unit sphere and $\operatorname{ext} Q$ — the set of extreme points of Q. The characterization of extreme points in $l_2^2 \otimes l_2^2 \otimes l_2^2$ is presented in [6]. In [3] a characterization of $B(\mathcal{L}(l_2^p, l_2^p))$ is given (for some generalizations for the infinite dimensional case see [4], [12], [13]). Furthemore, the consideration of the spaces $\mathcal{L}(l_m^p, l_n^2)$ and $\mathcal{L}(l_m^2, l_n^p)$ can be found in [7].

In this paper we continue the characterization in question for $\mathcal{L}(l_2^q, l_2^p)$ or equivalently for $l_2^p \otimes_{\varepsilon} l_2^p$.

$\mathbf{2} - \mathbf{Extreme points}$

Let
$$\mathbf{x} = (x_1, x_2) \in S(l_2^p), \ \mathbf{y} = (y_1, y_2) \in S(l_2^q); \text{ recall } 1/p + 1/q = 1.$$
 Put
$$J_{\mathbf{x}, \mathbf{y}} = \left\{ T \in B(\mathcal{L}(l_2^p, l_2^q)): \ T\mathbf{x} = \mathbf{y} \right\},$$

where B denotes the unit ball in $\mathcal{L}(l_2^p, l_2^q)$. We are going to prove that $J_{\mathbf{x},\mathbf{y}}$ is identical with the set of all the contractions of the form

(1)
$$T_{\mu} = (x_1^{p-1}, x_2^{p-1}) \otimes (y_1, y_2) + \mu \cdot (-x_2, x_1) \otimes (-y_2^{q-1}, y_1^{q-1}) =:$$
$$=: \mathbf{x}^{p-1} \otimes \mathbf{y} + \mu \, \mathbf{x}^{\perp} \otimes (\mathbf{y}^{q-1})^{\perp}, \quad \mu \in \mathbf{R},$$

here $\mathbf{x} \otimes \mathbf{y}$ denotes one-dimensional operator for which $(\mathbf{x} \otimes \mathbf{y})(\mathbf{z}) = \langle \mathbf{z}, \mathbf{x} \rangle \mathbf{y};$ $\mathbf{a}^{\perp} = (a_1, a_2)^{\perp} = (-a_2, a_1)$, and $\mathbf{a}^s = (a_1, a_2)^s = (\operatorname{sgn}(a_1) \cdot |a_1|^s, \operatorname{sgn}(a_2) \cdot |a_2|^s)$ (note that for $\mathbf{x} \in S(l_2^p)$ we have $\langle \mathbf{x}, \mathbf{x}^{\perp} \rangle = 0$ and the vector $\mathbf{x}^{p-1} \in S(l_2^q)$ is the only possible functional for which $\langle \mathbf{x}, \mathbf{x}^{p-1} \rangle = 1$).

Indeed, $J_{\mathbf{x},\mathbf{y}}$ contains all operators of such a form. Conversely, for $S, T \in J_{\mathbf{x},\mathbf{y}}$ we have $(S - T)\mathbf{x} = \mathbf{0}$, hence dim $(\operatorname{Im}(S - T)) \leq 1$ and therefore $S - T = \mathbf{x}^{\perp} \otimes \mathbf{z}$ for some $\mathbf{z} \in l_2^q$. Since $S^*(\mathbf{y}^{q-1}) = T^*(\mathbf{y}^{q-1}) = \mathbf{x}^{p-1}$, we have also $(S - T)^*(\mathbf{y}^{q-1}) = \mathbf{0}$ and $(S - T)^* = (\mathbf{y}^{q-1})^{\perp} \otimes \mathbf{w}$ for some $\mathbf{w} \in l_2^p$, which implies that $S - T = \mathbf{w} \otimes (\mathbf{y}^{q-1})^{\perp}$ so $\mathbf{z} = \mu \cdot (\mathbf{y}^{q-1})^{\perp}$ for some $\mu \in \mathbb{R}$, thus completing the proof.

Note that if $\mu_1 > \mu_2 > 0$ (or if $0 > \mu_2 > \mu_1$), then $||T_{\mu_1}|| \ge ||T_{\mu_2}|| \ge 1$. Indeed, if e.g.: $\mu_1 > \mu_2 > 0$, the vector \mathbf{y} belongs to l_2^q and the functional \mathbf{y}^* is equal to \mathbf{y}^{q-1} (then $\mathbf{y}^*(\mathbf{y}) = 1 = ||\mathbf{y}^*||$ and $\mathbf{y}^*((\mathbf{y}^{q-1})^{\perp}) = 0$) and if

$$Q = B_E \left(\mathbf{0}, \|\mathbf{y} + \mu_1(\mathbf{y}^{q-1})^{\perp}\| \right) \cap \left\{ \mathbf{z} \colon \mathbf{y}^*(\mathbf{z}) \le 1 \right\},$$

then Q is a convex set contained in the ball $B_E(\mathbf{0}, \|\mathbf{y}+\mu_1(\mathbf{y}^{q-1})^{\perp}\|)$, so the whole interval $\mathbf{y} + \alpha \, \mu_1(\mathbf{y}^{q-1})^{\perp}$, $\alpha \in [0, 1]$ lies in Q. This implies $\|\mathbf{y} + \mu_2(\mathbf{y}^{q-1})^{\perp}\| \le \|\mathbf{y} + \mu_1(\mathbf{y}^{q-1})^{\perp}\|$ and ends the proof. \blacksquare

Consider a function

(2)

$$\Phi_{\mu}(\lambda) = \left\| \mathbf{x} + \lambda(\mathbf{x}^{p-1})^{\perp} \right\|_{p}^{pq} - \left\| T_{\mu} \left(\mathbf{x} + \lambda(\mathbf{x}^{p-1})^{\perp} \right) \right\|_{q}^{pq}$$

$$= \left(|x_{1} - \lambda x_{2}^{p-1}|^{p} + |x_{2} + \lambda x_{1}^{p-1}|^{p} \right)^{q}$$

$$- \left(|y_{1} - \lambda \mu y_{2}^{q-1}|^{q} + |y_{2} + \lambda \mu y_{1}^{q-1}|^{q} \right)^{p}.$$

If $||T_{\mu}|| \leq 1$ then $\Phi_{\mu}(\lambda) \geq 0$ for all $\lambda \in \mathbb{R}$. By a standard calculation we obtain

$$\begin{split} \Phi_{\mu}(0) &= 0 \ , \\ \Phi'_{\mu}(0) &= 0 \ , \\ \Phi''_{\mu}(0) &= p \ q \Big[(p-1) \ |x_1 x_2|^{p-2} - \mu^2 (q-1) \ |y_1 y_2|^{q-2} \Big] \ , \\ \Phi'''_{\mu}(0) &= p \ q \Big[(p-1) \ (p-2) \ \operatorname{sgn}(x_1 x_2) \ |x_1 x_2|^{p-3} \left(|x_1|^p - |x_2|^p \right) \\ &- \mu^3 (q-1) \ (q-2) \ \operatorname{sgn}(y_1 y_2) \ |y_1 y_2|^{q-3} \left(|y_1|^q - |y_2|^q \right) \Big] \end{split}$$

for such x_1, x_2, y_1, y_2 that make sense for the above-mentioned expressions.

Let μ be the maximal (or minimal) number for which $||T_{\mu}|| = 1$. Then T_{μ} is the extreme contraction, because the norm of operator $T_{\mu} \pm R$ cannot increase neither in direction **y** nor $(\mathbf{y}^{q-1})^{\perp}$, hence $R = \mathbf{0}$, and $\Phi''_{\mu}(0) \geq 0$.

Let $\Phi''_{\mu}(0) > 0$ and $\mu > 0$. Then for all $\varepsilon > 0$ we have $||T_{\mu+\varepsilon}|| > 1$. The continuity of $\Phi''_{\mu}(0)$ as a function of μ gives that there exists $\varepsilon_0 > 0$ such that $\Phi''_{\mu+\varepsilon}(0) > 0$ for all $0 < \varepsilon < \varepsilon_0$. Hence there exists $\delta > 0$ such that for all $0 < \varepsilon < \varepsilon_0$ and for all

$$\mathbf{u} \in \left\{ \mathbf{u} \colon 0 < \|\mathbf{u} - \mathbf{x}\| < \delta \land \|\mathbf{u}\| = 1 \right\}$$

we have $||T_{\mu+\varepsilon} \mathbf{u}|| < 1$. Let $\{\varepsilon_n\}_{n=1}^{\infty}$ be a sequence in which $\varepsilon_n < \varepsilon_0$ for all n and $\varepsilon_n \to 0$. Let \mathbf{u}_n be such a vector for which $||T_{\mu+\varepsilon_n}\mathbf{u}_n|| = 1$. The compactness of the unit ball implies the existence of such \mathbf{u}_0 that $\mathbf{u}_{\varepsilon_n} @>n \to \infty >> \mathbf{u}_0$. Evidently $||T_{\mu}(\mathbf{u}_0)|| = 1$. But $||\mathbf{u}_{\varepsilon_n} - \mathbf{x}|| > \delta$, hence $||\mathbf{u}_0 - \mathbf{x}|| \ge \delta$ and \mathbf{u}_0 and \mathbf{x} are such two linearly independent vectors that T_{μ} attains its norm on them. Therefore, if μ is the maximal (or minimal) element then T_{μ} is such an extreme operator which attains its norm on two linearly independent vectors.

Let now $\Phi''_{\mu}(0) = 0$. Then $\Phi''_{\mu}(0) = 0$ as well, hence in this case the following pair of equalities is true:

(3)
$$(p-1)|x_1x_2|^{p-2} = \mu^2 (q-1)|y_1y_2|^{q-2}$$
,

(4)
$$(p-1)(p-2) \operatorname{sgn}(x_1x_2) |x_1x_2|^{p-3} (|x_1|^p - |x_2|^p) =$$

= $\mu^3 (q-1) (q-2) \operatorname{sgn}(y_1y_2) |y_1y_2|^{q-3} (|y_1|^q - |y_2|^q) ,$

which is equivalent to

(5)
$$(p-2)(q-1)^{1/2} \operatorname{sgn}(x_1x_2) |y_1y_2|^{q/2} (|x_1|^p - |x_2|^p) =$$

= $(q-2)(p-1)^{1/2} \operatorname{sgn}(y_1y_2) |x_1x_2|^{p/2} (|y_1|^q - |y_2|^q).$

The set of solutions of (5) is contained in the set of solutions of

(6)
$$(p-2)^{2} (q-1) |y_{1}y_{2}|^{q} (|x_{1}|^{2p} - 2 |x_{1}x_{2}|^{p} + |x_{2}|^{2p}) = = (q-2)^{2} (p-1) |x_{1}x_{2}|^{p} (|y_{1}|^{2q} - 2 |y_{1}y_{2}|^{q} + |y_{2}|^{2q}) .$$

Let $\alpha = |x_1|^p$, $\beta = |y_1|^q$. Then (6) is equivalent to

$$\frac{(2\alpha-1)^2}{\alpha(1-\alpha)} (p-2)^2 (q-1) = \frac{(2\beta-1)^2}{\beta(1-\beta)} (q-2)^2 (p-1) .$$

Relations between p and q imply that

$$(p-2)^2 (q-1) = (q-2)^2 (p-1)$$
,

 \mathbf{SO}

$$\frac{(2\alpha - 1)^2}{\alpha(1 - \alpha)} = \frac{(2\beta - 1)^2}{\beta(1 - \beta)} \; .$$

This means that $\alpha = \beta$ or $\alpha = 1 - \beta$ (we may consider only the first case, establishing a suitable base) and

$$\mu = \pm (p-1) \, \frac{y_1 \, y_2}{x_1 \, x_2} \; .$$

Analysing the signs of both sides of (5) we conclude, that "+" is possible only if $\alpha = \frac{1}{2}$.

Let us denote

$$\Psi(\lambda) = \left(\alpha \cdot \left|1 - \lambda(1 - \alpha)\right|^p + (1 - \alpha) \cdot |1 + \lambda\alpha|^p\right)^{1/p} - \left(\alpha \cdot \left|1 - \lambda(1 - p)\left(1 - \alpha\right)\right|^{\frac{p}{p-1}} + (1 - \alpha) \cdot \left|1 + \lambda(1 - p)\alpha\right|^{\frac{p}{p-1}}\right)^{\frac{p-1}{p}}.$$

If T_{μ} is a contraction, then $\Psi(\lambda) \ge 0$ for all λ . But $\Psi'(0) = \Psi''(0) = \Psi''(0) = 0$ and

$$\begin{split} \Psi^{(4)}(0) &= 3\alpha^2(1-\alpha)^2 \, (1-p) \, p(p-2) - p(p-1) \, (p-2) \, \alpha(1-\alpha) \, (\alpha^3 + (1-\alpha)^3) \\ &< 0 \quad \text{for all} \ \alpha \in (0;1) \ \text{and} \ p > 2 \ . \end{split}$$

Hence, for p > 2 and $\mathbf{x} \neq \mathbf{e}_i$, i = 1, 2 the operator T_{μ} is not a contraction.

Let us assume now that $x_1x_2y_1y_2 = 0$. We need to consider the following cases:

1) $x_1x_2 = 0, \ y_1y_2 \neq 0, \ p > 2$. Then $\Phi''_{\mu}(0) = -\mu^2(q-1) |y_1y_2|^{q-2} = 0$ iff $\mu = 0$, i.e. $T_{\mu} = \begin{bmatrix} y_1 & 0y_2 & 0 \end{bmatrix}$ or $\begin{bmatrix} 0 & y_10 & y_2 \end{bmatrix}, \quad \mathbf{y} \in l_2^q$.

2) $x_1x_2 \neq 0, y_1y_2 = 0, p > 2$. Then $T_{\mu}(x_1 + \lambda x_2^{p-1}, x_2 - \lambda x_1^{p-1}) = (1, -\lambda \mu)$. Hence T_{μ} is a contraction iff

(7)
$$\left(1+|\lambda\mu|^q\right)^{1/q} \le \left(|x_1+\lambda x_2^{p-1}|^p+|x_2-\lambda x_1^{p-1}|^p\right)^{1/p}.$$

Let

$$f(\lambda) = \left(|x_1 + \lambda x_2^{p-1}|^p + |x_2 - \lambda x_1^{p-1}|^p\right)^{1/p} - \left(1 + |\lambda \mu|^q\right)^{1/q}$$

Easy calculation shows that f(0) = 0, f'(0) = 0, $f''(\lambda) @>\lambda \to 0 >> -\infty$ for $\mu \neq 0$, which in accordance with the Taylor formula with the second remainder, contradicts the inequality (7). Hence $\mu = 0$, so

$$T_{\mu} = \begin{bmatrix} 0 & 0x_1^{p-1} & x_2^{p-1} \end{bmatrix}$$
 or $T_{\mu} = \begin{bmatrix} x_1^{p-1} & x_2^{p-1} 0 & 0 \end{bmatrix}$, $\mathbf{x} \in l_2^p$.

3) $x_1x_2 = 0$, $y_1y_2 = 0$, p > 2. Then $\mathbf{x} = \pm \mathbf{e}_i$, $\mathbf{y} = \pm \mathbf{e}_j$, for $i, j \in \{1, 2\}$. Hence $T_{\mu} \in J_{\mathbf{x},\mathbf{y}}$ iff $\mu = 0$, because from the Taylor theorem, for all $\mu \neq 0$ it is not a contraction.

In this way we have proved the following:

Lemma 1. Let 2 , let q be such a number that <math>(1/p)+(1/q) = 1, and $T \in L(l_2^p, l_2^q)$ be an extreme contraction of such form of (1) in which $x_1x_2y_1y_2 = 0$. Then T assumes one of the following forms:

- **a**) $T = \begin{bmatrix} y_1 & 0y_2 & 0 \end{bmatrix}$ or $T = \begin{bmatrix} 0 & y_1 0 & y_2 \end{bmatrix}$, $\mathbf{y} \in S(l_2^q)$.
- $\mathbf{b}) \ T = \begin{bmatrix} 0 & 0x_1^{p-1} & x_2^{p-1} \end{bmatrix} \ \text{or} \ T = \begin{bmatrix} x_1^{p-1} & x_2^{p-1}0 & 0 \end{bmatrix}, \quad \mathbf{x} \in S(l_2^p).$

Lemma 2. Let p > 2, let $\mathbf{y} \in S(l_2^q)$ and let $\mathbf{y}_i \neq 0$ for all $i \in \mathbb{N}$. Then the operator $T = \mathbf{e}_i \otimes \mathbf{y}$ is an extreme contraction in $\mathcal{L}(l_2^p, l_2^q)$.

Proof: Let $T = \mathbf{e}_i \otimes \mathbf{y}$, i.e. $T\mathbf{x} = \langle \mathbf{x}, \mathbf{e}_1 \rangle \mathbf{y}$ and $||T \pm R|| \leq 1$ for some $R \in \mathcal{L}(l_2^p, l_2^q)$. Without the loss of generality we can assume that $T = \mathbf{e}_1 \otimes \mathbf{y}$. Then $T\mathbf{e}_1 = \mathbf{y}$, hence from the strict convexity of l_2^p we have $R\mathbf{e}_1 = \mathbf{0}$. Evidently $T\mathbf{e}_2 = \mathbf{0}$. Let $\mathbf{z} = R\mathbf{e}_2$. Therefore we have:

$$(T \pm R) (\mathbf{e}_1 + \lambda \mathbf{e}_2) = \mathbf{y} \pm \lambda \mathbf{z}$$

Because of $\|\mathbf{e}_1 + \lambda \mathbf{e}_2\|_p = (1 + |\lambda|^p)^{1/p}$ the following inequality should be fulfilled:

(8)
$$L(\lambda): \left(|y_1 \pm \lambda z_1|^q + |y_2 \pm \lambda z_2|^q \right)^{p/q} \le 1 + |\lambda|^p =: P(\lambda)$$

By differentiating $L(\lambda)$ and $P(\lambda)$ by λ we obtain:

$$P'(0) = 0$$
 and $L'(0) = p(|y_1|^{q-1} \cdot \operatorname{sgn} y_1 \cdot z_1 + |y_2|^{q-1} \cdot \operatorname{sgn} y_2 \cdot z_2)$.

The inequality (8) can be satisfied only if L'(0) = 0. Differentiating again, we obtain P''(0) = 0 and

$$L''(0) = p(q-1)\left(|y_1|^{r-2} \cdot z_1^2 + |y_2|^{r-2} \cdot z_2^2\right)$$

Because L''(0) > 0 for $\mathbf{z} \neq \mathbf{0}$, we obtain $\mathbf{z} = \mathbf{0}$.

Lemma 3. Let p > 2, and $S(l_2^q) \ni \mathbf{z}$ be such a vector that $\mathbf{z}_i \neq 0$ for all $i \in \mathbb{N}$. Then the operator $T = \mathbf{z} \otimes \mathbf{e}_i$ is an extreme contraction in $\mathcal{L}(l_2^p, l_2^q)$.

Proof: Let, for example, assume that $T = \mathbf{z} \otimes \mathbf{e}_1$. Similarly to the case of the proof of lemma 3 we obtain:

$$(T \pm R) (\mathbf{x} + \lambda \mathbf{x}^{\perp}) = \mathbf{e}_1 \pm \lambda \mathbf{z} .$$

This means that the following inequality should be fulfilled:

$$|1 \pm \lambda z_1|^q + |\lambda z_2|^q \le \left(|x_1 - \lambda x_2^{p-1}|^p + |x_2 + \lambda x_1^{p-1}|^p\right)^{q/p}$$

Denoting left-hand side of the above inequality by $L(\lambda)$, the right-hand side by $R(\lambda)$ and differentiating both expressions by λ we obtain P'(0) = 0 and $L''(0) = q \cdot z_1$, hence $z_1 = 0$. The rest of the proof is similar to the case 2) before lemma 1 (with $\mu = z_2$). Hence $z_2 = 0$ and $\operatorname{Im}(R) = \{\mathbf{0}\}$.

Therefore we can formulate the following theorem:

Theorem 1. Let 2 , and let q be such a number for which <math>(1/p) + (1/q) = 1. Then $T \in L(l_2^p, l_2^q)$ is an extreme contraction if and only if

||T|| = 1 and: either T attains its norm on two linearly independent vectors in l_2^p or T is of one of the following forms:

- **a**) $T = \begin{bmatrix} y_1 & 0y_2 & 0 \end{bmatrix}$ or $T = \begin{bmatrix} 0 & y_10 & y_2 \end{bmatrix}$, $\mathbf{y} \in S(l_2^q)$.
- **b**) $T = \begin{bmatrix} 0 & 0x_1^{p-1} & x_2^{p-1} \end{bmatrix}$ or $T = \begin{bmatrix} x_1^{p-1} & x_2^{p-1}0 & 0 \end{bmatrix}$, $\mathbf{x} \in S(l_2^p)$.

Proof: We have just proved that an extreme contraction T has the form described in the theorem.

If ||T|| = 1 and T attains its norm on two linearly independent vectors or $T = \mathbf{e}_i \otimes \mathbf{e}_j$, then T is evidently an extreme contraction. We obtain the remaining part from lemmas 2 and 3.

3 -Remarks on the case 1

Let us recall the following inequality:

Lemma 4([16]). Let $1 and let <math>\gamma = \sqrt{(p-1)/(r-1)}$. Then, for all $\lambda \in \mathbb{R}$, we have

$$\left(\frac{|1+\gamma\lambda|^r+|1-\gamma\lambda|^r}{2}\right)^{1/r} \le \left(\frac{|1+\lambda|^p+|1-\lambda|^p}{2}\right)^{1/p},$$

(*) moreover, if $\lambda \neq 0$ then the strict inequality proves to be true.

Remark. In [16] the lemma is formulated without (*), but (*) is a direct corollary from the proof (cf. [16] p.75).

Put $\mathbf{f} = (1, 1)$ and $\mathbf{f}^{\perp} = (-1, 1)$. The above inequality can be considered as the inequality

$$||T_{\gamma}(\mathbf{f} + \lambda \cdot \mathbf{f}^{\perp})||_{r} \le ||\mathbf{f} + \lambda \cdot \mathbf{f}^{\perp}||_{p}$$

for $T_{\gamma} \in \mathcal{L}(l_2^p, l_2^r)$ of the form

$$T_{\gamma} = 2^{((1/p) - (1/r))} \left(\mathbf{f} \otimes \mathbf{f} + \gamma \cdot \mathbf{f}^{\perp} \otimes \mathbf{f}^{\perp} \right) \,.$$

Let us note that T_{γ} has the form (1). Let Φ_{γ} be the function of the form (2) for $\mu = \gamma$. It is easy to check that $\Phi_{\gamma}'(0) = 0$ for T_{γ} , hence $\mu = \gamma$ is the maximal number and T_{γ} is an extreme contraction. This means that γ is the best possible constant in the above inequality. Hence we have:

Proposition. Let
$$1 , $p < 2$, $\gamma = \sqrt{(p-1)/(r-1)}$ and let
 $T_{\gamma} = 2^{((1/p)-(1/r))} [1 \pm \gamma \quad 1 \mp \gamma 1 \mp \gamma \quad 1 \pm \gamma]$.$$

Then $T_{\gamma} \in \text{ext } B(\mathcal{L}(l_2^p, l_2^r))$ and T_{γ} attains its norm only on one-dimensional space.

Note that (with the use of computer calculations) for $p \in (1; 2)$, taking such μ that $\Phi''_{\mu}(0) = 0$ some of corresponding operators T_{μ} are contractions and some of them have the norm greater than one. It means that for $p \in (1; 2)$, $\mathbf{x} \neq \mathbf{e}_i$, $\mathbf{y} \neq \mathbf{e}_i$, i = 1, 2, there are also extreme operators which are two-dimensional and which attain their norm only at one independent vector.

4 – Exposed points

We recall that a point q_0 of a convex set Q is called exposed if there exists such a linear functional ξ for which $\xi(q_0) > \xi(q)$ for all $q \in Q \setminus \{q_0\}$.

Lemma 5. Let $p, r \in (1; \infty)$ and let $\mathbf{x} \in S(l_2^p)$, $\mathbf{y} \in S(l_2^r)$ with $\mathbf{x} \neq \mathbf{e}_i$, $\mathbf{y} \neq \mathbf{e}_i$, i = 1, 2. Then $\mathbf{x}^{p-1} \otimes \mathbf{y}$ is not an extreme point of $B(\mathcal{L}(l_2^p, l_2^r))$.

Proof: Considering the function $\Phi_{\mu}(\lambda)$ for $\mathbf{x}^{p-1} \otimes \mathbf{y} \in \mathcal{L}(l_2^p, l_2^r)$ it is easy to see that $\Phi_{\mu_0}'' > 0$ for sufficiently small $\mu_0 > 0$. It means that in some neighbourhood of \mathbf{x} the operator $\mathbf{x}^{p-1} \otimes \mathbf{y} \pm \mathbf{x}^{\perp} \otimes (\mathbf{y}^{r-1})^{\perp}$ does not extend norm one. Therefore, for sufficiently small $\mu_0 > 0$, we have

$$\left\|\mathbf{x}^{p-1}\otimes\mathbf{y}\pm\mu_0\mathbf{x}^{\perp}\otimes(\mathbf{y}^{r-1})^{\perp}\right\|\leq 1,$$

i.e. $\mathbf{x}^{p-1} \otimes \mathbf{y}$ is not an extreme contraction.

Theorem 2. Let $p \in (2, \infty)$. Then all extreme points of $B(\mathcal{L}(l_2^p, l_2^r))$ except the two dimensional operators which attain their norms only on one-dimensional subspace, are exposed points.

Proof: Let a contraction T attains its norm at two linearly independent vectors \mathbf{x}_1 , \mathbf{x}_2 with $\|\mathbf{x}_i\| = 1$, i = 1, 2. Then the functional ξ defined by

$$\xi(R) = \frac{1}{2} \left(\left\langle R \mathbf{x}_1, (T \mathbf{x}_1)^{q-1} \right\rangle + \left\langle R \mathbf{x}_2, (T \mathbf{x}_2)^{q-1} \right\rangle \right)$$

exposes $B(\mathcal{L}(l_2^p, l_2^r))$ at T. Indeed, let $\|\xi\| = \xi(T) = 1$. Suppose that $\xi(R) = 1$ for some $R \in B(\mathcal{L}(l_2^p, l_2^r))$. Then $\langle R\mathbf{x}_i, (T\mathbf{x}_i)^{q-1} \rangle = 1$, i = 1, 2, and by strict convexity of l_2^q we have $R\mathbf{x}_i = T\mathbf{x}_i$ (i = 1, 2). Since $\mathbf{x}_1, \mathbf{x}_2$ generate l_2^p , we obtain R = T, i.e. T is exposed.

If an extreme operator T has the form $\mathbf{e}_i \otimes \mathbf{y}$ ($\mathbf{y} \neq \mathbf{e}_1, \mathbf{e}_2$), then T is exposed by the functional ξ defined by $\xi(R) = \langle R\mathbf{e}_1, \mathbf{y}^{q-1} \rangle$, $R \in \mathcal{L}(l_2^p, l_2^q)$. Indeed, we

have $\|\xi\| = \xi(T) = 1$. Moreover, for $R \in B(\mathcal{L}(l_2^p, l_2^r))$ with $\xi(R) = 1$ we have $R\mathbf{e}_1 = \mathbf{y}$. Because $\|R\| \leq 1$ and $\|R\mathbf{e}_1\| = 1$, we have $R\mathbf{e}_2 = 0$. Hence R = T and T is exposed. We use analogous arguments for the operator of the form $\mathbf{x}^{p-1} \otimes \mathbf{e}_i, i = 1, 2$. In accordance with the lemma 5 there are no other extreme onedimensional operators. Let T be the extreme two-dimensional operator, which attains its norm only on a one-dimensional subspace. Then T assumes the form

$$T = \mathbf{x}^{p-1} \otimes \mathbf{y} + \mu_0 \, \mathbf{x}^{\perp} \otimes (\mathbf{y}^{q-1})^{\perp} \,, \quad \mu_0 \neq 0 \,,$$

i.e. T attains its norm only at \mathbf{x} . We define the set of functionals

$$\mathcal{A} = \left\{ \xi \in B(\mathcal{L}(l_2^p, l_2^q)^*) \colon \xi(T) = \|\xi\| = 1 \right\} \,.$$

The set \mathcal{A} is a closed convex subset of the $B(\mathcal{L}(l_2^p, l_1^r))$. In fact: \mathcal{A} is a compact face of $B(\mathcal{L}(l_2^p, l_2^r)^*)$. Hence ext $\mathcal{A} \subset \text{ext } B(\mathcal{L}(l_2^p, l_2^r)^*)$. From the Ruess–Stegall results, we know that each element $\xi \in \text{ext } B(\mathcal{L}(l_2^p, l_2^r)^*)$ has the form $\xi(R) = \langle R\mathbf{x}_0, \mathbf{u}_0 \rangle = (\mathbf{x}_0 \otimes \mathbf{u}_0)(R)$ for some $\mathbf{x}_0, \mathbf{u}_0 \in l_2^p$ with $\|\mathbf{x}_0\| = \|\mathbf{u}_0\| = 1$. The condition $\xi(T) = 1$ implies that $\mathbf{x}_0 = \mathbf{x}$ and $\mathbf{u}_0 = \mathbf{y}^{q-1}$. Hence ext \mathcal{A} has only one element $\xi_0 = \mathbf{x} \otimes \mathbf{y}^{q-1}$ than $\mathcal{A} = \{\xi_0\}$, as well. Therefore, there exists only one functional which supports $B(\mathcal{L}(l_2^p, l_2^r))$ at T. It is easy to see that ξ_0 does not expose $B(\mathcal{L}(l_2^p, l_2^r))$ at T, at least for the simple reason that $\xi_0(\mathbf{x}^{p-1} \otimes \mathbf{y}) = 1$. Hence T is not an exposed point.

We point out that all elements of the unit sphere of $\mathcal{L}(l_2^p, l_2^q)$ are smooth, except for these (extreme) operators, which attain their norms at two linearly independent vectors (see Heinrich [9]).

Remark 1. Theorem 1 remains valid for every p > 2 and 1 < q < 2. We can prove this using methods similar to used in the proof of theorem 1.

Remark 2. On the figure 1 we can see the unit ball for p = 3 and its image by the extreme operator for q = 3/2. This operator is an operator corresponding to inequality formulated in lemma 4.

ACKNOWLEDGEMENTS – I am very grateful to Professor Ryszard Grząślewicz for his kind assistance in the work on this subject.

I would also like to express my gratitude to the referee for detailed reviewing of the paper and valuable suggestions.

REFERENCES

- DIESTEL, J. and UHL, JR., J.J. Vector Measures, Amer. Math. Soc. Math. Surveys, 15, 1977.
- [2] GENDLER, A. Extreme operators in the unit ball of L(C(X), C(Y)) over the complex field, *Proc. Amer. Math. Soc.*, 57 (1976), 85–88.
- [3] GRZĄŚLEWICZ, R. Extreme operators on 2-dimensional l_p-spaces, Colloqium Math., 44 (1981), 309–315.
- [4] GRZĄŚLEWICZ, R. A note on extreme contractions on l_p-spaces, Portugaliae Math., 40 (1981), 413–419.
- [5] GRZĄŚLEWICZ, R. Extreme contractions on real Hilbert space, Math. Ann., 261 (1982), 463–466.
- [6] GRZĄŚLEWICZ, R. and JOHN, K. Extreme elements of the unit ball of bilinear operators, Arch. Math., 50 (1988), 264–269.
- [7] GRZĄŚLEWICZ, R. Extremal structure of $\mathcal{L}(l_m^2, l_n^p)$, Linear and Multilinear Algebra, 24 (1989), 117–125.

- [8] GRZĄŚLEWICZ, R. and YOUNIS, R. Smooth points and M-ideals (submitted).
- [9] HEINRICH, S. The differentiability of the norm in spaces of operators, (in Russian), Funkcional Anal. Prilozen (Kharkov), 9(4) (1975), 93–94; English translation in: Functional Anal. Appl., 9(4) (1975), 360–362.
- [10] IWANIK, A. Extreme contractions on certain function spaces, Colloquium Math., 40 (1978), 147–153.
- [11] KADISON, R.V. Isometries of operator algebras, Ann. Math., 54(2) (1951), 325–338.
- [12] KAN, CHARN-HUEN A class of extreme L_p contractions, $p \neq 1, 2, \infty$, and real 2×2 extreme matrices, *Illinois J. Math.*, 30(4) (1986), 612–635.
- [13] KAN, CHARN-HUEN A family of 2×2 extreme contractions and a generalization of Clarkson's inequalities, *Linear and Multilinear Algebra*, 21 (1987), 191–199.
- [14] KIM, C.W. Extreme contraction operators on l^{∞} , Math. Z., 151 (1976), 101–110.
- [15] LINDENSTRAUSS, J. and PERLES, M.A. On extreme operators in finite-dimensional spaces, Duke Math. J., 36 (1969), 301–314.
- [16] LINDENSTRAUSS, J. and TZAFRIRI, L. Classical Banach spaces II, Springer-Verlag, Berlin, Heidelberg, New York, 1979.
- [17] RUESS, W.M. and STEGALL, C.P. Extreme points in duals of operator spaces, Math. Ann., 261 (1982), 535–546.
- [18] SHARIR, M. Characterization and properties of extreme operators into C(Y), Israel J. Math., 12 (1972), 174–183.

Przemysław Scherwentke, Institute of Mathematics, Wrocław Technical University, Wybrzeże Wyspiańskiego 27, PL-50-370 Wrocław – POLAND