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ON THE GEOMETRY OF L(lp2, l
q
2) AND lq2 ⊗ε l

q
2

PrzemysÃlaw Scherwentke

Abstract: In this paper the characterization of extreme, exposed (and smooth)

points of the unit ball of the space of continuous linear operators acting from lp2 , p > 2 to

its conjugate space is obtained. The class of extreme contractions found here is different

from those of the special cases, which have already been solved.

1 – Introduction

The aim of this paper is the continuation of investigation of extreme contrac-
tions. The case of the operators on C(X) is evident. This fact together with the
well-known isomorphism l∞ → C(βIN) gives characterization of extreme con-
tractions on l∞ (see e.g. Sharir [18], Kim [14], Gendler [2] and references there).
From this, making use duality, the l1-spaces case has been achieved (see Iwanik
[10]). On the Hilbert space extreme contractions are isometries and coisometries
(see Kadison [11], Grza̧ślewicz [5]). More results have been achieved in finite
dimensional case (see for instance Lindenstrauss and Perles [15]).

Let 1 < p < ∞. By q the dual power coefficient is denoted, which is such
a number that 1/p + 1/q = 1. By lp2 we denote IR2 with the standard lp-norm,
i.e. ‖x‖ = ‖(x1, x2)‖ = (|x1|

p + |x2|
p)1/p. For Banach spaces E,F by L(E,F ) we

denote the Banach space of all linear bounded operators from E into F , and by
E ⊗ F their tensor product. Additionally we denote by E ⊗ε F the (complete)
injective tensor product. Note that lp2⊗εl

p
2 is norm isomorfic to L(lq2, l

p
2). Moreover

(lp2⊗εl
p
2)
∗ ∼= lq2⊗π l

q
2 (cf. [1]). For any Banach space E by B(E) we denote its closed

unit ball and by BE(x, r) the set {y ∈ E : ‖y − x‖E ≤ r}. The characterization
of extreme points of the unit ball B(E ⊗π F ) is given by Ruess and Stegall [17].
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In particular they have proved that

ext
(

B((lp2 ⊗ε l
p
2)
∗)
)

=
(

extB(lq2)⊗ extB(lq2)
)

= S(lq2)⊗ S(lq2) ,

where S(·) denotes the unit sphere and extQ — the set of extreme points of Q.
The characterization of extreme points in l22 ⊗ l22 ⊗ l22 is presented in [6]. In [3] a
characterization of B(L(lp2, l

p
2)) is given (for some generalizations for the infinite

dimensional case see [4], [12], [13]). Furthemore, the consideration of the spaces
L(lpm, l2n) and L(l2m, lpn) can be found in [7].

In this paper we continue the characterization in question for L(lq2, l
p
2) or

equivalently for lp2 ⊗ε l
p
2.

2 – Extreme points

Let x = (x1, x2) ∈ S(lp2), y = (y1, y2) ∈ S(lq2); recall 1/p + 1/q = 1. Put

Jx,y =
{

T ∈ B(L(lp2, l
q
2)) : Tx = y

}

,

where B denotes the unit ball in L(lp2, l
q
2). We are going to prove that Jx,y is

identical with the set of all the contractions of the form

(1) Tµ = (xp−1
1 , xp−1

2 )⊗ (y1, y2) + µ · (−x2, x1)⊗ (−yq−1
2 , yq−1

1 )=:

=:xp−1 ⊗ y + µx⊥ ⊗ (yq−1)⊥ , µ ∈ IR ,

here x ⊗ y denotes one-dimensional operator for which (x ⊗ y)(z) = 〈z,x〉y;
a⊥ = (a1, a2)

⊥ = (−a2, a1), and as = (a1, a2)
s = (sgn(a1) · |a1|

s, sgn(a2) · |a2|
s)

(note that for x ∈ S(lp2) we have 〈x,x⊥〉 = 0 and the vector xp−1 ∈ S(lq2) is the
only possible functional for which 〈x,xp−1〉 = 1).

Indeed, Jx,y contains all operators of such a form. Conversely, for S, T ∈ Jx,y

we have (S − T )x = 0, hence dim(Im(S − T )) ≤ 1 and therefore S − T =
x⊥ ⊗ z for some z ∈ lq2. Since S∗(yq−1) = T ∗(yq−1) = xp−1, we have also
(S − T )

∗
(yq−1) = 0 and (S − T )∗ = (yq−1)⊥ ⊗w for some w ∈ lp2, which implies

that S − T = w ⊗ (yq−1)⊥ so z = µ · (yq−1)⊥ for some µ ∈ IR, thus completing
the proof.

Note that if µ1 > µ2 > 0 (or if 0 > µ2 > µ1), then ‖Tµ1‖ ≥ ‖Tµ2‖ ≥ 1. Indeed,
if e.g.: µ1 > µ2 > 0, the vector y belongs to lq2 and the functional y∗ is equal to
yq−1 (then y∗(y) = 1 = ‖y∗‖ and y∗((yq−1)⊥) = 0) and if

Q = BE

(

0, ‖y + µ1(y
q−1)⊥‖

)

∩
{

z : y∗(z) ≤ 1
}

,
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then Q is a convex set contained in the ball BE(0, ‖y+µ1(y
q−1)⊥‖), so the whole

interval y + αµ1(y
q−1)⊥, α ∈ [0, 1] lies in Q. This implies ‖y + µ2(y

q−1)⊥‖ ≤
‖y + µ1(y

q−1)⊥‖ and ends the proof.

Consider a function

(2)

Φµ(λ) =
∥

∥

∥x + λ(xp−1)⊥
∥

∥

∥

pq

p
−

∥

∥

∥Tµ
(

x + λ(xp−1)⊥
)∥

∥

∥

pq

q

=
(

|x1 − λxp−1
2 |p + |x2 + λxp−1

1 |p
)q

−
(

|y1 − λµ yq−1
2 |q + |y2 + λµ yq−1

1 |q
)p

.

If ‖Tµ‖ ≤ 1 then Φµ(λ) ≥ 0 for all λ ∈ IR. By a standard calculation we obtain

Φµ(0) = 0 ,

Φ′µ(0) = 0 ,

Φ′′µ(0) = p q
[

(p− 1) |x1x2|
p−2 − µ2(q − 1) |y1y2|

q−2
]

,

Φ′′′µ (0) = p q

[

(p− 1) (p− 2) sgn(x1x2) |x1x2|
p−3

(

|x1|
p − |x2|

p
)

− µ3(q − 1) (q − 2) sgn(y1y2) |y1y2|
q−3

(

|y1|
q − |y2|

q
)

]

for such x1, x2, y1, y2 that make sense for the above-mentioned expressions.

Let µ be the maximal (or minimal) number for which ‖Tµ‖ = 1. Then Tµ is
the extreme contraction, because the norm of operator Tµ ± R cannot increase
neither in direction y nor (yq−1)⊥, hence R = 0, and Φ′′µ(0) ≥ 0.

Let Φ′′µ(0) > 0 and µ > 0. Then for all ε > 0 we have ‖Tµ+ε‖ > 1. The
continuity of Φ′′µ(0) as a function of µ gives that there exists ε0 > 0 such that
Φ′′µ+ε(0) > 0 for all 0 < ε < ε0. Hence there exists δ > 0 such that for all
0 < ε < ε0 and for all

u ∈
{

u : 0 < ‖u− x‖ < δ ∧ ‖u‖ = 1
}

we have ‖Tµ+ε u‖ < 1. Let {εn}
∞
n=1 be a sequence in which εn < ε0 for all n and

εn → 0. Let un be such a vector for which ‖Tµ+εnun‖ = 1. The compactness
of the unit ball implies the existence of such u0 that uεn@ > n → ∞ >> u0.
Evidently ‖Tµ(u0)‖ = 1. But ‖uεn − x‖ > δ, hence ‖u0 − x‖ ≥ δ and u0 and
x are such two linearly independent vectors that Tµ attains its norm on them.
Therefore, if µ is the maximal (or minimal) element then Tµ is such an extreme
operator which attains its norm on two linearly independent vectors.
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Let now Φ′′µ(0) = 0. Then Φ′′′µ (0) = 0 as well, hence in this case the following
pair of equalities is true:

(3) (p− 1) |x1x2|
p−2 = µ2 (q − 1) |y1y2|

q−2 ,

(4) (p− 1) (p− 2) sgn(x1x2) |x1x2|
p−3(|x1|

p − |x2|
p) =

= µ3 (q − 1) (q − 2) sgn(y1y2) |y1y2|
q−3(|y1|

q − |y2|
q) ,

which is equivalent to

(5) (p− 2) (q − 1)1/2 sgn(x1x2) |y1y2|
q/2(|x1|

p − |x2|
p) =

= (q − 2) (p− 1)1/2 sgn(y1y2) |x1x2|
p/2(|y1|

q − |y2|
q) .

The set of solutions of (5) is contained in the set of solutions of

(6) (p− 2)2 (q − 1) |y1y2|
q (|x1|

2p − 2 |x1x2|
p + |x2|

2p) =

= (q − 2)2 (p− 1) |x1x2|
p (|y1|

2q − 2 |y1y2|
q + |y2|

2q) .

Let α = |x1|
p, β = |y1|

q. Then (6) is equivalent to

(2α− 1)2

α(1− α)
(p− 2)2 (q − 1) =

(2β − 1)2

β(1− β)
(q − 2)2 (p− 1) .

Relations between p and q imply that

(p− 2)2 (q − 1) = (q − 2)2 (p− 1) ,

so
(2α− 1)2

α(1− α)
=

(2β − 1)2

β(1− β)
.

This means that α = β or α = 1 − β (we may consider only the first case,
establishing a suitable base) and

µ = ±(p− 1)
y1 y2

x1 x2
.

Analysing the signs of both sides of (5) we conclude, that “+” is possible only if
α = 1

2 .

Let us denote

Ψ(λ) =

(

α ·
∣

∣

∣1− λ(1− α)
∣

∣

∣

p
+ (1− α) · |1 + λα|p

)1/p

−

(

α ·
∣

∣

∣1− λ(1− p) (1− α)
∣

∣

∣

p
p−1 + (1− α) ·

∣

∣

∣1 + λ(1− p)α
∣

∣

∣

p
p−1

)

p−1

p

.
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If Tµ is a contraction, then Ψ(λ) ≥ 0 for all λ. But Ψ′(0) = Ψ′′(0) = Ψ′′′(0) = 0
and

Ψ(4)(0) = 3α2(1−α)2 (1−p) p(p−2)− p(p−1) (p−2)α(1−α) (α3+ (1−α)3)

< 0 for all α ∈ (0; 1) and p > 2 .

Hence, for p > 2 and x 6= ei, i = 1, 2 the operator Tµ is not a contraction.

Let us assume now that x1x2 y1y2 = 0. We need to consider the following
cases:

1) x1x2 = 0, y1y2 6= 0, p > 2. Then Φ′′µ(0) = −µ2(q − 1) |y1y2|
q−2 = 0 iff

µ = 0, i.e.
Tµ = [ y1 0y2 0 ] or [ 0 y10 y2 ] , y ∈ lq2 .

2) x1x2 6= 0, y1y2 = 0, p > 2. Then Tµ(x1 + λxp−1
2 , x2 − λxp−1

1 ) = (1,−λµ).
Hence Tµ is a contraction iff

(7)
(

1 + |λµ|q
)1/q

≤
(

|x1 + λxp−1
2 |p + |x2 − λxp−1

1 |p
)1/p

.

Let

f(λ) =
(

|x1 + λxp−1
2 |p + |x2 − λxp−1

1 |p
)1/p

−
(

1 + |λµ|q
)1/q

.

Easy calculation shows that f(0) = 0, f ′(0) = 0, f ′′(λ)@ > λ → 0 >> −∞ for
µ 6= 0, which in accordance with the Taylor formula with the second remainder,
contradicts the inequality (7). Hence µ = 0, so

Tµ = [ 0 0xp−1
1 xp−1

2 ] or Tµ = [xp−1
1 xp−1

2 0 0 ] , x ∈ lp2 .

3) x1x2 = 0, y1y2 = 0, p > 2. Then x = ±ei, y = ±ej , for i, j ∈ {1, 2}.
Hence Tµ ∈ Jx,y iff µ = 0, because from the Taylor theorem, for all µ 6= 0 it is
not a contraction.

In this way we have proved the following:

Lemma 1. Let 2 < p <∞, let q be such a number that (1/p)+(1/q) = 1, and
T ∈ L(lp2, l

q
2) be an extreme contraction of such form of (1) in which x1x2 y1y2 = 0.

Then T assumes one of the following forms:

a) T = [ y1 0y2 0 ] or T = [ 0 y10 y2 ] , y ∈ S(lq2).

b) T = [ 0 0xp−1
1 xp−1

2 ] or T = [xp−1
1 xp−1

2 0 0 ] , x ∈ S(lp2).

Lemma 2. Let p > 2, let y ∈ S(lq2) and let yi 6= 0 for all i ∈ IN. Then the
operator T = ei ⊗ y is an extreme contraction in L(lp2, l

q
2).
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Proof: Let T = ei ⊗ y, i.e. Tx = 〈x, e1〉y and ‖T ± R‖ ≤ 1 for some
R ∈ L(lp2, l

q
2). Without the loss of generality we can assume that T = e1 ⊗ y.

Then Te1 = y, hence from the strict convexity of lp2 we have R e1 = 0. Evidently
T e2 = 0. Let z = R e2. Therefore we have:

(T ±R) (e1 + λe2) = y ± λz .

Because of ‖e1 +λe2‖p = (1+ |λ|p)1/p the following inequality should be fulfilled:

(8) L(λ) :
(

|y1 ± λz1|
q + |y2 ± λz2|

q
)p/q

≤ 1 + |λ|p=:P (λ) .

By differentiating L(λ) and P (λ) by λ we obtain:

P ′(0) = 0 and L′(0) = p
(

|y1|
q−1 · sgn y1 · z1 + |y2|

q−1 · sgn y2 · z2

)

.

The inequality (8) can be satisfied only if L′(0) = 0. Differentiating again, we
obtain P ′′(0) = 0 and

L′′(0) = p (q − 1)
(

|y1|
r−2 · z2

1 + |y2|
r−2 · z2

2

)

.

Because L′′(0) > 0 for z 6= 0, we obtain z = 0.

Lemma 3. Let p > 2, and S(lq2) 3 z be such a vector that zi 6= 0 for all
i ∈ IN. Then the operator T = z⊗ ei is an extreme contraction in L(lp2, l

q
2).

Proof: Let, for example, assume that T = z ⊗ e1 . Similarly to the case of
the proof of lemma 3 we obtain:

(T ±R) (x + λx⊥) = e1 ± λz .

This means that the following inequality should be fulfilled:

|1± λz1|
q + |λz2|

q ≤
(

|x1 − λxp−1
2 |p + |x2 + λxp−1

1 |p
)q/p

.

Denoting left-hand side of the above inequality by L(λ), the right-hand side by
R(λ) and differentiatig both expressions by λ we obtain P ′(0) = 0 and L′′(0) =
q · z1, hence z1 = 0. The rest of the proof is similar to the case 2) before lemma 1
(with µ = z2). Hence z2 = 0 and Im(R) = {0}.

Therefore we can formulate the following theorem:

Theorem 1. Let 2 < p < ∞, and let q be such a number for which
(1/p) + (1/q) = 1. Then T ∈ L(lp2, l

q
2) is an extreme contraction if and only if
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‖T‖ = 1 and: either T attains its norm on two linearly independent vectors in
lp2 or T is of one of the following forms:

a) T = [ y1 0y2 0 ] or T = [ 0 y10 y2 ] , y ∈ S(lq2).

b) T = [ 0 0xp−1
1 xp−1

2 ] or T = [xp−1
1 xp−1

2 0 0 ] , x ∈ S(lp2).

Proof: We have just proved that an extreme contraction T has the form
described in the theorem.

If ‖T‖ = 1 and T attains its norm on two linearly independent vectors or
T = ei⊗ej , then T is evidently an extreme contraction. We obtain the remaining
part from lemmas 2 and 3.

3 – Remarks on the case 1 < p < 2

Let us recall the following inequality:

Lemma 4([16]). Let 1 < p < r < ∞ and let γ =
√

(p− 1)/(r − 1). Then,
for all λ ∈ IR, we have

(

|1 + γλ|r + |1− γλ|r

2

)1/r

≤

(

|1 + λ|p + |1− λ|p

2

)1/p

,

(*) moreover, if λ 6= 0 then the strict inequality proves to be true.

Remark. In [16] the lemma is formulated without (*), but (*) is a direct
corollary from the proof (cf. [16] p.75).

Put f = (1, 1) and f⊥ = (−1, 1). The above inequality can be considered as
the inequality

‖Tγ(f + λ · f⊥)‖r ≤ ‖f + λ · f⊥‖p

for Tγ ∈ L(l
p
2, l

r
2) of the form

Tγ = 2((1/p)−(1/r))
(

f ⊗ f + γ · f⊥ ⊗ f⊥
)

.

Let us note that Tγ has the form (1). Let Φγ be the function of the form (2) for
µ = γ. It is easy to check that Φ′′γ(0) = 0 for Tγ , hence µ = γ is the maximal
number and Tγ is an extreme contraction. This means that γ is the best possible
constant in the above inequality. Hence we have:

Proposition. Let 1 < p < r <∞, p < 2, γ =
√

(p− 1)/(r − 1) and let

Tγ = 2((1/p)−(1/r)) [ 1± γ 1∓ γ1∓ γ 1± γ ] .
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Then Tγ ∈ extB(L(lp2, l
r
2)) and Tγ attains its norm only on one-dimensional space.

Note that (with the use of computer calculations) for p ∈ (1; 2), taking such
µ that Φ′′µ(0) = 0 some of corresponding operators Tµ are contractions and some
of them have the norm greater than one. It means that for p ∈ (1; 2), x 6= ei,
y 6= ei, i = 1, 2, there are also extreme operators which are two-dimensional and
which attain their norm only at one independent vector.

4 – Exposed points

We recall that a point q0 of a convex set Q is called exposed if there exists
such a linear functional ξ for which ξ(q0) > ξ(q) for all q ∈ Q\{q0}.

Lemma 5. Let p, r ∈ (1;∞) and let x ∈ S(lp2), y ∈ S(lr2) with x 6= ei,
y 6= ei, i = 1, 2. Then xp−1 ⊗ y is not an extreme point of B(L(lp2, l

r
2)).

Proof: Considering the function Φµ(λ) for xp−1⊗y ∈ L(lp2, l
r
2) it is easy to see

that Φ′′µ0
> 0 for sufficietly small µ0 > 0. It means that in some neighbourhood

of x the operator xp−1⊗y±x⊥⊗ (yr−1)⊥ does not extend norm one. Therefore,
for sufficiently small µ0 > 0, we have

∥

∥

∥xp−1 ⊗ y ± µ0x
⊥ ⊗ (yr−1)⊥

∥

∥

∥ ≤ 1 ,

i.e. xp−1 ⊗ y is not an extreme contraction.

Theorem 2. Let p ∈ (2,∞). Then all extreme points of B(L(lp2, l
r
2)) except

the two dimensional operators which attain their norms only on one-dimensional
subspace, are exposed points.

Proof: Let a contraction T attains its norm at two linearly independent
vectors x1, x2 with ‖xi‖ = 1, i = 1, 2. Then the functional ξ defined by

ξ(R) =
1

2

(

〈

Rx1, (Tx1)
q−1

〉

+
〈

Rx2, (Tx2)
q−1

〉

)

exposes B(L(lp2, l
r
2)) at T . Indeed, let ‖ξ‖ = ξ(T ) = 1. Suppose that ξ(R) = 1

for some R ∈ B(L(lp2, l
r
2)). Then 〈Rxi, (Txi)

q−1〉 = 1, i = 1, 2, and by strict
convexity of lq2 we have Rxi = Txi (i = 1, 2). Since x1, x2 generate lp2 , we obtain
R = T , i.e. T is exposed.

If an extreme operator T has the form ei ⊗ y (y 6= e1, e2), then T is exposed
by the functional ξ defined by ξ(R) = 〈Re1,y

q−1〉, R ∈ L(lp2, l
q
2). Indeed, we
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have ‖ξ‖ = ξ(T ) = 1. Moreover, for R ∈ B(L(lp2, l
r
2)) with ξ(R) = 1 we have

Re1 = y. Because ‖R‖ ≤ 1 and ‖Re1‖ = 1, we have Re2 = 0. Hence R = T
and T is exposed. We use analogous arguments for the operator of the form
xp−1⊗ei, i = 1, 2. In accordance with the lemma 5 there are no other extreme one-
dimensional operators. Let T be the extreme two-dimensional operator, which
attains its norm only on a one-dimensional subspace. Then T assumes the form

T = xp−1 ⊗ y + µ0 x⊥ ⊗ (yq−1)⊥ , µ0 6= 0 ,

i.e. T attains its norm only at x. We define the set of functionals

A =
{

ξ ∈ B(L(lp2, l
q
2)
∗) : ξ(T ) = ‖ξ‖ = 1

}

.

The set A is a closed convex subset of the B(L(lp2, l
r
2)) . In fact: A is a compact

face of B(L(lp2, l
r
2)
∗). Hence extA ⊂ extB(L(lp2, l

r
2)
∗). From the Ruess–Stegall

results, we know that each element ξ ∈ extB(L(lp2, l
r
2)
∗) has the form ξ(R) =

〈Rx0,u0〉 = (x0 ⊗ u0)(R) for some x0,u0 ∈ lp2 with ‖x0‖ = ‖u0‖ = 1. The
condition ξ(T ) = 1 implies that x0 = x and u0 = yq−1. Hence extA has only
one element ξ0 = x ⊗ yq−1 than A = {ξ0}, as well. Therefore, there exists only
one functional which supports B(L(lp2, l

r
2)) at T . It is easy to see that ξ0 does not

expose B(L(lp2, l
r
2)) at T , at least for the simple reason that ξ0(x

p−1 ⊗ y) = 1.
Hence T is not an exposed point.

We point out that all elements of the unit sphere of L(lp2, l
q
2) are smooth,

except for these (extreme) operators, which attain their norms at two linearly
independent vectors (see Heinrich [9]).

Remark 1. Theorem 1 remains valid for every p > 2 and 1 < q < 2. We
can prove this using methods simillar to used in the proof of theorem 1.

Remark 2. On the figure 1 we can see the unit ball for p = 3 and its image
by the extreme operator for q = 3/2. This operator is an operator corresponding
to inequality formulated in lemma 4.
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