OSCILLATION PROPERTIES OF NONLINEAR DIFFERENCE EQUATIONS

Willie E. Taylor, Jr. and Minghua Sun

0 - Introduction and preliminary results

This paper is concerned with the oscillation of solutions of the equation:

$$
\begin{equation*}
\Delta^{4} V_{n}+b_{n+2} f\left(V_{n+2}, \Delta V_{n+2}, \Delta^{2} V_{n+2}, \Delta^{3} V_{n+2}\right)=0 \tag{E}
\end{equation*}
$$

where Δ is the forward difference operation, i.e. $\Delta V_{n}=V_{n+1}-V_{n}$. It will be assumed throughout that the conditions below are satisfied:
i) $b_{n}>0$ for $n>1$;
ii) $f: \mathbb{R}^{4} \rightarrow \mathbb{R}$ is continuous;
iii) $w f(w, x, y, z) \geq 0$ and $f(w, x, y, z) \neq 0$ whenever $w x y z \neq 0$.

The results in this paper were motivated by the work of W.E. Taylor, Jr. [2] on the equation

$$
\begin{equation*}
\Delta^{4} V_{n}+b_{n+2} V_{n+2}=0 \tag{e}
\end{equation*}
$$

Many of the results herein extend results of [2]; however, some theorems are new since the order of (E) need not be four.

By a solution of (E) we mean a real sequence V satisfying equation (E) for $n=$ $1,2,3, \ldots$. A solution V of (E) is called nonoscillatory if it is eventually positive or eventually negative. Otherwise, a solution V of (E) is called oscillatory. A solution V of (E) is called quickly oscillatory if $V_{n} V_{n+1}<0$ for all n sufficiently large, or equivalently, $V_{n}=(-1)^{n} a_{n}$ where a_{n} is a sequence of positive numbers or negative numbers.

In this paper, we only concern the solutions of (E) which $\Delta^{4} V_{n} \not \equiv 0$ for all n sufficiently large.

[^0]We begin the study of this equation by considering a functional which plays a vital role in the investigation.

Lemma 1.1. If V_{n} is a solution of (E), define $F\left(V_{n}\right)=V_{n+1} \Delta^{3} V_{n}-$ $\Delta V_{n} \Delta^{2} V_{n}$. Then $F\left(V_{n}\right)$ is nonincreasing for $n \geq 1$.

Proof: Let V be any solution of (E). Then

$$
\begin{aligned}
\Delta F\left(V_{n}\right) & =V_{n+2} \Delta^{4} V_{n}+\Delta V_{n+1} \Delta^{3} V_{n}-\Delta V_{n+1} \Delta^{3} V_{n}-\left(\Delta^{2} V_{n}\right)^{2} \\
& =V_{n+2} \Delta^{4} V_{n}-\left(\Delta^{2} V_{n}\right)^{2} \\
& =-b_{n+2} V_{n+2} f\left(V_{n+2}, \Delta V_{n+2}, \Delta^{2} V_{n+2}, \Delta^{3} V_{n+2}\right)-\left(\Delta^{2} V_{n}\right)^{2} \leq 0
\end{aligned}
$$

Therefore $F\left(V_{n}\right)$ is nonincreasing for all solutions of (E).
Because of this result, the limit of $F\left(V_{n}\right)$ as $n \rightarrow \infty$ exists of $F\left(V_{n}\right) \rightarrow-\infty$ as $n \rightarrow \infty$. If $\lim _{n \rightarrow \infty} F\left(V_{n}\right) \geq 0$, we call the solution V of (E) a Type I solution. If $\lim _{n \rightarrow \infty} F\left(V_{n}\right)<0$, we call V a Type II solution. Furthermore, if $-\infty<$ $\lim _{n \rightarrow \infty} F\left(V_{n}\right)<0$, we call V a Type $I I($ a $)$ solution, and if $\lim _{n \rightarrow \infty} F\left(V_{n}\right)=-\infty$, we call V a Type $I I(b)$ solution.

Theorem 1.2. If V is a Type I or Type $I I($ a) solution, then
(1) $\sum^{\infty} V_{n+2} b_{n+2} f\left(V_{n+2}, \Delta V_{n+2}, \Delta^{2} V_{n+2}, \Delta^{3} V_{n+2}\right)<\infty$;
(2) $\sum^{\infty}\left(\Delta^{2} V_{n}\right)^{2}<\infty$;
(3) $\sum^{\infty}\left(\Delta^{3} V_{n}\right)^{2}<\infty$;
(4) $\lim _{n \rightarrow \infty} \Delta^{2} V_{n}=\lim _{n \rightarrow \infty} \Delta^{3} V_{n}=0$.

Proof: For Type I and Type II(a) solutions, $\lim _{n \rightarrow \infty} F\left(V_{n}\right)=k>-\infty$ and $F\left(V_{n}\right) \geq k$ for all $n=0,1,2,3, \ldots$ Then,

$$
\begin{aligned}
F\left(V_{m}\right) & =\sum_{n=0}^{m-1} \Delta F\left(V_{n}\right)+F\left(V_{0}\right) \\
& =-\sum_{n=0}^{m-1} V_{n+2} b_{n+2} f\left(V_{n+2}, \Delta V_{n+2}, \Delta^{2} V_{n+2}, \Delta^{3} V_{n+2}\right)-\sum_{n=0}^{m-1}\left(\Delta^{2} V_{n}\right)^{2}+F\left(V_{0}\right) \\
& \geq k
\end{aligned}
$$

Since $V_{n+2} b_{n+2} f\left(V_{n+2}, \Delta V_{n+2}, \Delta^{2} V_{n+2}, \Delta^{3} V_{n+2}\right) \geq 0$ and $\left(\Delta^{2} V_{n}\right)^{2} \geq 0$, then

$$
\sum_{n=0}^{m-1} V_{n+2} b_{n+2} f\left(V_{n+2}, \Delta V_{n+2}, \Delta^{2} V_{n+2}, \Delta^{3} V_{n+2}\right) \leq F\left(V_{0}\right)-k<\infty
$$

and

$$
\sum_{n=0}^{m-1}\left(\Delta^{2} V_{n}\right)^{2} \leq F\left(V_{0}\right)-k<\infty
$$

Let $m \rightarrow \infty$, then

$$
\sum_{n=0}^{\infty} V_{n+2} b_{n+2} f\left(V_{n+2}, \Delta V_{n+2}, \Delta^{2} V_{n+2}, \Delta^{3} V_{n+2}\right) \leq F\left(V_{0}\right)-k<\infty
$$

and

$$
\sum_{n=0}^{\infty}\left(\Delta^{2} V_{n}\right)^{2} \leq F\left(V_{0}\right)-k<\infty
$$

Since $\left(\Delta^{3} V_{n}\right)^{2} \leq 2\left(\Delta^{2} V_{n+1}\right)^{2}+2\left(\Delta^{2} V_{n}\right)^{2}$, then

$$
\sum_{n=0}^{\infty}\left(\Delta^{3} V_{n}\right)^{2} \leq 2 \sum_{n=0}^{\infty}\left(\Delta^{2} V_{n+1}\right)^{2}+2 \sum_{n=0}^{\infty}\left(\Delta^{2} V_{n}\right)^{2}<\infty
$$

Since $\sum_{n=0}^{\infty}\left(\Delta^{2} V_{n}\right)^{2}<\infty$ and $\sum_{n=0}^{\infty}\left(\Delta^{3} V_{n}\right)^{2}<\infty$, then $\left(\Delta^{2} V_{n}\right)^{2} \rightarrow 0$ and $\left(\Delta^{3} V_{n}\right)^{2} \rightarrow 0$ as $n \rightarrow \infty$. Therefore $\lim _{n \rightarrow \infty} \Delta^{2} V_{n}=\lim _{n \rightarrow \infty} \Delta^{3} V_{n}=0$.

Theorem 1.3. If V is a Type II solution of (E), then V_{n} is unbounded.
Proof: Consider $H\left(V_{n}\right)=V_{n} \Delta^{2} V_{n}-\left(\Delta V_{n}\right)^{2}$.

$$
\begin{aligned}
\Delta H\left(V_{n}\right) & =\Delta\left(V_{n} \Delta^{2} V_{n}\right)-\Delta\left(\Delta V_{n}\right)^{2} \\
& =V_{n+1} \Delta^{3} V_{n}+\Delta V_{n} \Delta^{2} V_{n}-2 \Delta V_{n} \Delta^{2} V_{n}-\left(\Delta^{2} V_{n}\right)^{2} \\
& =F\left(V_{n}\right)-\left(\Delta^{2} V_{n}\right)^{2}
\end{aligned}
$$

Since V is a Type II solution of $(E), F\left(V_{n}\right)$ is negative and bounded away from zero for all n sufficiently large; hence $\Delta H\left(V_{n}\right)$ is negative and bounded away from zero. So $H\left(V_{n}\right) \rightarrow-\infty$ as $n \rightarrow \infty$. Thus at least one of $V_{n}, \Delta V_{n}, \Delta^{2} V_{n}$ must be unbounded. If $\Delta^{2} V_{n}$ is unbounded, then ΔV_{n} is unbounded. If ΔV_{n} is unbounded, then V_{n} is unbounded. Therefore V_{n} must be unbounded.

2 - Nonoscillation results

Now we discuss the behavior of nonoscillatory solutions.
Lemma 2.1. If V is a nonoscillatory solution of (E), then either

$$
\operatorname{sgn} V_{n}=\operatorname{sgn} \Delta V_{n}=\operatorname{sgn} \Delta^{2} V_{n}=\operatorname{sgn} \Delta^{3} V_{n}=-\operatorname{sgn} \Delta^{4} V_{n}
$$

for all n sufficiently large, or

$$
\operatorname{sgn} V_{n}=\operatorname{sgn} \Delta V_{n}=\operatorname{sgn} \Delta^{3} V_{n}=-\operatorname{sgn} \Delta^{2} V_{n}=-\operatorname{sgn} \Delta^{4} V_{n}
$$

for all n sufficiently large, and $\lim _{n \rightarrow \infty} \Delta^{2} V_{n}=\lim _{n \rightarrow \infty} \Delta^{3} V_{n}=0$.
Proof: Assume V is a nonoscillatory solution of (E), where $V_{n}>0$ for all n sufficiently large. Since $w f(w, x, y, z) \geq 0$ and $b_{n}>0$, then

$$
V_{n+2} b_{n+2} f\left(V_{n+2}, \Delta V_{n+2}, \Delta^{2} V_{n+2}, \Delta^{3} V_{n+2}\right) \geq 0 .
$$

For all n sufficiently large, $V_{n+2}>0$, so we have

$$
\Delta^{4} V_{n}=-b_{n+2} f\left(V_{n+2}, \Delta V_{n+2}, \Delta^{2} V_{n+2}, \Delta^{3} V_{n+2}\right) \leq 0
$$

for all n sufficiently large. Then $\Delta^{3} V_{n}$ is nonincreasing. For all n sufficiently large, since $\Delta^{4} V_{n} \not \equiv 0$, the following two cases must be considered: case I, $\Delta^{3} V_{n}>0$, case II, $\Delta^{3} V_{n}<0$.

In case I, $\Delta^{2} V_{n}$ is increasing, then either $\Delta^{2} V_{n}>0$ or $\Delta^{2} V_{n}<0$ for all n sufficiently large.

If $\Delta^{2} V_{n}>0$, then $\Delta^{2} V_{n}>k>0$ for all n sufficiently large. This means $\Delta V_{n} \rightarrow+\infty$ and $V_{n} \rightarrow+\infty$ as $n \rightarrow \infty$; then for n sufficiently large,

$$
V_{n}>0, \quad \Delta V_{n}>0, \quad \Delta^{2} V_{n}>0, \quad \Delta^{3} V_{n}>0,
$$

and

$$
f\left(V_{n+2}, \Delta V_{n+2}, \Delta^{2} V_{n+2}, \Delta^{3} V_{n+2}\right) \neq 0 ;
$$

then $\Delta^{4} V_{n}<0$.
If $\Delta^{2} V_{n}<0, \lim _{n \rightarrow \infty} \Delta^{2} V_{n}=r \leq 0$ because $\Delta^{3} V_{n}>0$. If $r<0$, then $\Delta V_{n} \rightarrow-\infty$ and $V_{n} \rightarrow-\infty$ as $n \rightarrow \infty$. This contradicts $V_{n}>0$. Therefore $r=0$. Hence ΔV_{n} is decreasing. Since $V_{n}>0$, then $\Delta V_{n}>0$. Therefore for all n sufficiently large,

$$
V_{n}>0, \quad \Delta V_{n}>0, \quad \Delta^{2} V_{n}<0, \quad \Delta^{3} V_{n}>0
$$

and

$$
f\left(V_{n+2}, \Delta V_{n+2}, \Delta^{2} V_{n+2}, \Delta^{3} V_{n+2}\right) \neq 0 ;
$$

then $\Delta^{4} V_{n}<0$. Since $\Delta^{3} V_{n}>0, \Delta^{2} V_{n}<0$, and $\lim _{n \rightarrow \infty} \Delta^{2} V_{n}=0$, then

$$
\lim _{n \rightarrow \infty} \Delta^{2} V_{n}=\lim _{n \rightarrow \infty} \Delta^{3} V_{n}=0
$$

In case II, for n sufficiently large, there exists $r<0$ such that $\Delta^{3} V_{n}<r<0$ because $\Delta^{3} V_{n}$ is decreasing. This means $\Delta^{2} V_{n} \rightarrow-\infty, \Delta V_{n} \rightarrow-\infty$, and $V_{n} \rightarrow$ $-\infty$ as $n \rightarrow \infty$, which is impossible.

Similarly, when $V_{n}<0$ for all n sufficiently large, then either

$$
V_{n}<0, \quad \Delta V_{n}<0, \quad \Delta^{2} V_{n}<0, \quad \Delta^{3} V_{n}<0 \quad \text { and } \quad \Delta^{4} V_{n}>0
$$

or

$$
V_{n}<0, \quad \Delta V_{n}<0, \quad \Delta^{2} V_{n}>0, \quad \Delta^{3} V_{n}<0, \quad \Delta^{4} V_{n}>0
$$

and $\lim _{n \rightarrow \infty} \Delta^{2} V_{n}=\lim _{n \rightarrow \infty} \Delta^{3} V_{n}=0$.
Theorem 2.2. If V is a nonoscillatory solution of (E), then the following statements are equivalent:
(1) V_{n} is a Type I solution;
(2) $\sum^{\infty}\left(\Delta^{2} V_{n}\right)^{2}<\infty$;
(3) $\operatorname{sgn} V_{n}=\operatorname{sgn} \Delta V_{n}=\operatorname{sgn} \Delta^{3} V_{n}=-\operatorname{sgn} \Delta^{2} V_{n}=-\operatorname{sgn} \Delta^{4} V_{n}$.

Proof: First we prove (2) from (1). If V is a nonoscillatory Type I solution, by Theorem 1.2, $\sum^{\infty}\left(\Delta^{2} V_{n}\right)^{2}<\infty$.

Now we prove (3) from (2). Suppose V is nonoscillatory and $\sum^{\infty}\left(\Delta^{2} V_{n}\right)^{2}<$ ∞. There are only two cases:
(a) $\operatorname{sgn} V_{n}=\operatorname{sgn} \Delta V_{n}=\operatorname{sgn} \Delta^{2} V_{n}=\operatorname{sgn} \Delta^{3} V_{n}=-\operatorname{sgn} \Delta^{4} V_{n}$;
(b) $\operatorname{sgn} V_{n}=\operatorname{sgn} \Delta V_{n}=\operatorname{sgn} \Delta^{3} V_{n}=-\operatorname{sgn} \Delta^{2} V_{n}=-\operatorname{sgn} \Delta^{4} V_{n}$.

Case (a) is impossible because $\lim _{n \rightarrow \infty} \Delta^{2} V_{n} \neq 0$ and $\sum^{\infty}\left(\Delta^{2} V_{n}\right)^{2}<\infty$. Thus (b) must be true.

We prove (1) from (3). Suppose V is nonoscillatory and satisfies $\operatorname{sgn} V_{n}=$ $\operatorname{sgn} \Delta V_{n}=\operatorname{sgn} \Delta^{3} V_{n}=-\operatorname{sgn} \Delta^{2} V_{n}$; then

$$
\begin{aligned}
F\left(V_{n}\right) & =V_{n+1} \Delta^{3} V_{n}-\Delta V_{n} \Delta^{2} V_{n} \\
& =\operatorname{sgn} V_{n+1} \operatorname{sgn} \Delta^{3} V_{n}\left|V_{n+1} \Delta^{3} V_{n}\right|-\operatorname{sgn} \Delta V_{n} \operatorname{sgn} \Delta^{2} V_{n}\left|\Delta V_{n} \Delta^{2} V_{n}\right| \\
& =\left|V_{n+1} \Delta^{3} V_{n}\right|+\left|\Delta V_{n} \Delta^{2} V_{n}\right| \geq 0 .
\end{aligned}
$$

Therefore V is a Type I solution.
Lemma 2.3. If V is a Type $I I(a)$ solution of (E), then V cannot be nonoscillatory.

Proof: Assume a Type II(a) solution V is nonoscillatory and $V_{n}>0$ for all $n>N$. The proof is similar if $V_{n}<0$ for all $n>N$. According to Lemma 2.1, there are only two possibilities:
(a) $\operatorname{sgn} V_{n}=\operatorname{sgn} \Delta V_{n}=\operatorname{sgn} \Delta^{2} V_{n}=\operatorname{sgn} \Delta^{3} V_{n}=-\operatorname{sgn} \Delta^{4} V_{n}$,
(b) $\operatorname{sgn} V_{n}=\operatorname{sgn} \Delta V_{n}=\operatorname{sgn} \Delta^{3} V_{n}=-\operatorname{sgn} \Delta^{2} V_{n}=-\operatorname{sgn} \Delta^{4} V_{n}$.

According to Theorem 1.2, $\lim _{n \rightarrow \infty} \Delta^{2} V_{n}=\lim _{n \rightarrow \infty} \Delta^{3} V_{n}=0$, so only (b) can occur. By Theorem 2.2, V is a Type I solution; this contradicts V is a Type $\mathrm{II}(\mathrm{a})$ solution. Therefore V is oscillatory.

Therefore, if V is a nonoscillatory solution of $(E), V$ is either a Type I solution or a Type II(b) solution.

Theorem 2.4. If V is a nonoscillatory solution of (E), then the following are equivalent:
(1) V is a Type $\operatorname{II}(b)$ solution;
(2) $\operatorname{sgn} V_{n}=\operatorname{sgn} \Delta V_{n}=\operatorname{sgn} \Delta^{2} V_{n}=\operatorname{sgn} \Delta^{3} V_{n}=-\operatorname{sgn} \Delta^{4} V_{n}$ for all n sufficiently large;
(3) There exists $k>0$ such that $\left|\Delta^{2} V_{n}\right| \geq k$ for all n sufficiently large.

Proof: First we prove (2) from (1). Since V is nonoscillatory, then for n sufficiently large, either
(a) $\operatorname{sgn} V_{n}=\operatorname{sgn} \Delta V_{n}=\operatorname{sgn} \Delta^{2} V_{n}=\operatorname{sgn} \Delta^{3} V_{n}=-\operatorname{sgn} \Delta^{4} V_{n}$, or
(b) $\operatorname{sgn} V_{n}=\operatorname{sgn} \Delta V_{n}=\operatorname{sgn} \Delta^{3} V_{n}=-\operatorname{sgn} \Delta^{2} V_{n}=-\operatorname{sgn} \Delta^{4} V_{n}$.

By Theorem 2.3, (b) implies that V is a Type I solution. Therefore, (a) must be true.

Now we prove (3) from (2). Assume $V_{n}>0$ for $n \geq N$. Since $\operatorname{sgn} V_{n}=$ $\operatorname{sgn} \Delta V_{n}=\operatorname{sgn} \Delta^{2} V_{n}=\operatorname{sgn} \Delta^{3} V_{n}=-\operatorname{sgn} \Delta^{4} V_{n}$ for $n \geq N$, then $\Delta^{2} V_{n}>0$ and $\Delta^{3} V_{n}>0$ for $n \geq N$. So $\Delta^{2} V_{n}$ is increasing when $n \geq N$. Let $k=\Delta^{2} V_{N}>0$, then $\Delta^{2} V_{n}>k>0$ for all $n \geq N$. Similarly, when $V_{n}<0$ for $n \geq N, \Delta^{2} V_{n}<$ $\Delta^{2} V_{N}<0$ for $n>N$. (3) is proved.

We prove (1) from (3). Since V is nonoscillatory, then for n sufficiently large, either
(a) $\operatorname{sgn} V_{n}=\operatorname{sgn} \Delta V_{n}=\operatorname{sgn} \Delta^{2} V_{n}=\operatorname{sgn} \Delta^{3} V_{n}=-\operatorname{sgn} \Delta^{4} V_{n}$, or
(b) $\operatorname{sgn} V_{n}=\operatorname{sgn} \Delta V_{n}=\operatorname{sgn} \Delta^{3} V_{n}=-\operatorname{sgn} \Delta^{2} V_{n}=-\operatorname{sgn} \Delta^{4} V_{n}$
and $\lim _{n \rightarrow \infty} \Delta^{2} V_{n}=\lim _{n \rightarrow \infty} \Delta^{3} V_{n}=0$. But $\left|\Delta^{2} V_{n}\right|>k>0$ as $n \rightarrow \infty$, so (b) is impossible. Therefore, V cannot be a Type I solution. Also, V cannot be a Type $\mathrm{II}(\mathrm{a})$ solution because Type $\mathrm{II}(\mathrm{a})$ solutions are oscillatory. Thus V can only be a Type II(b) solution.

By Theorems 2.2 and 2.4 , if a solution V of (E) is nonoscillatory, then ΔV_{n} is eventually increasing or decreasing; if ΔV_{n} is bounded, then V is Type I, and if ΔV_{n} is unbounded, then V is Type $\mathrm{II}(\mathrm{b})$.

3 - Oscillation results

Combining Theorem 1.3 and Lemma 2.3, we get the following theorem.
Theorem 3.1. If V is a Type $I I(a)$ solution of (E), then V is oscillatory and unbounded.

Whether Type II(a) solutions actually exist remains an open question.
Theorem 3.2. If $f(w, x, y, z) / w \geq r>0$ and $\sum^{\infty} b_{n}=\infty$, then (E) cannot have nonoscillatory solutions.

Proof: Suppose V is a nonoscillatory solution of (E) and V_{n} is eventually positive. The proof is similar if V_{n} is eventually negative. From (E), we have

$$
\begin{aligned}
\Delta^{4} V_{n} & =-b_{n+2} f\left(V_{n+2}, \Delta V_{n+2}, \Delta^{2} V_{n+2}, \Delta^{3} V_{n+2}\right) \\
& \leq-r b_{n+2} V_{n+2}<0
\end{aligned}
$$

According to Lemma 2.1, there exists N such that when $n>N, V_{n}>0, \Delta V_{n}>0$ and $\Delta^{3} V_{n}>0$. So V_{n} is eventually increasing. Therefore, there exist M and α such that when $n>M, V_{n}>\alpha>0$. Let $m=\max (N, M)$. Then for $n>m$,

$$
0<\Delta^{3} V_{n}=\sum_{i=m}^{n-1} \Delta^{4} V_{i}+\Delta^{3} V_{m} \leq-\sum_{i=m}^{n-1} r b_{i+2} V_{i+2}+\Delta^{3} V_{m}
$$

Hence,

$$
\sum_{i=m}^{n-1} r b_{i+2} V_{i+2}<\Delta^{3} V_{m}
$$

Thus,

$$
0<r \alpha \sum_{i=m}^{n-1} b_{i+2}<\Delta^{3} V_{m}
$$

Let $n \rightarrow \infty$, then $0<\sum_{i=m+2}^{\infty} b_{i} \leq \Delta^{3} V_{m} / r \alpha$. This contradicts $\sum^{\infty} b_{n}=\infty$. Therefore, V_{n} cannot be nonoscillatory.

Theorem 3.3. Equation (E) cannot have a quickly oscillatory solution.

Proof: Suppose $V_{n}=(-1)^{n} a_{n}$ is a solution of (E) where $a_{n}>0$. Then

$$
\Delta^{4} V_{n}=(-1)^{n}\left(a_{n+4}+4 a_{n+3}+6 a_{n+2}+4 a_{n+1}+a_{n}\right)
$$

(E) can be written

$$
\begin{aligned}
(-1)^{n}\left(a_{n+4}+4 a_{n+3}+\right. & \left.6 a_{n+2}+4 a_{n+1}+a_{n}\right)+ \\
& +b_{n+2} f\left(V_{n+2}, \Delta V_{n+2}, \Delta^{2} V_{n+2}, \Delta^{3} V_{n+2}\right)=0
\end{aligned}
$$

Thus,

$$
\begin{aligned}
b_{n+2} & =-(-1)^{n} \frac{\left(a_{n+4}+4 a_{n+3}+6 a_{n+2}+4 a_{n+1}+a_{n}\right)}{f\left(V_{n+2}, \Delta V_{n+2}, \Delta^{2} V_{n+2}, \Delta^{3} V_{n+2}\right)} \\
& =-\frac{a_{n+2}\left(a_{n+4}+4 a_{n+3}+6 a_{n+2}+4 a_{n+1}+a_{n}\right)}{V_{n+2} f\left(V_{n+2}, \Delta V_{n+2}, \Delta^{2} V_{n+2}, \Delta^{3} V_{n+2}\right)}<0
\end{aligned}
$$

This contradicts $b_{n}>0$. Thus (E) cannot have a quickly oscillatory solution.

4 - Examples

Example 1. $\quad V_{n}=n-(1 / 2)^{n}$ is a solution of (E), where

$$
\begin{gathered}
b_{n}=2^{2 n+8} /\left(5(n+2) 2^{n+2}-5\right) \\
f\left(V_{n+2}, \Delta V_{n+2}, \Delta^{2} V_{n+2}, \Delta^{3} V_{n+2}\right)=V_{n+2}\left(\left(\Delta^{2} V_{n+2}\right)^{2}+\left(\Delta^{3} V_{n+2}\right)^{2}\right)
\end{gathered}
$$

Then,

$$
\begin{aligned}
V_{n} & =n-(1 / 2)^{n}>0 \quad(\text { when } n>0) \\
\Delta V_{n} & =(1 / 2)^{n+1}+1>0 \\
\Delta^{2} V_{n} & =-(1 / 2)^{n+2}<0 \\
\Delta^{3} V_{n} & =(1 / 2)^{n+3}>0 \\
\Delta^{4} V_{n} & =-(1 / 2)^{n+4}<0
\end{aligned}
$$

Hence this is a nonoscillatory Type I solution. Also $\sum^{\infty}\left(\Delta^{2} V_{n}\right)^{2}<\infty$. Actually,

$$
\begin{aligned}
F\left(V_{n}\right) & =V_{n+1} \Delta^{3} V_{n}-\Delta V_{n} \Delta^{2} V_{n} \\
& =\left(n+1-(1 / 2)^{n+1}\right)(1 / 2)^{n+3}+\left((1 / 2)^{n+1}+1\right)(1 / 2)^{n+2}>0
\end{aligned}
$$

and $\lim _{n \rightarrow \infty} F\left(V_{n}\right)=0$. Also, $\sum^{\infty}\left(\Delta^{2} V_{n}\right)^{2}=\sum^{\infty}(1 / 2)^{2 n+4}<\infty$.

Example 2. $\quad V_{n}=n(n-1)-(1 / 2)^{n}$ is a solution of (E), where

$$
\begin{gathered}
b_{n}=2^{2 n+4} /\left(n(n-1) 2^{n}-1\right) \\
f\left(V_{n+2}, \Delta V_{n+2}, \Delta^{2} V_{n+2}, \Delta^{3} V_{n+2}\right)=V_{n+2}\left(\Delta^{3} V_{n+2}\right)^{2}
\end{gathered}
$$

Then

$$
\begin{aligned}
V_{n} & =n(n-1)-(1 / 2)^{n}>0 \quad(\text { when } n>1) \\
\Delta V_{n} & =2 n+(1 / 2)^{n+1}>0 \\
\Delta^{2} V_{n} & =2-(1 / 2)^{n+2}>0 \\
\Delta^{3} V_{n} & =(1 / 2)^{n+3}>0 \\
\Delta^{4} V_{n} & =-(1 / 2)^{n+4}<0
\end{aligned}
$$

Therefore, V_{n} is nonoscillatory Type $\operatorname{II}(\mathrm{b})$ solution. $\lim _{n \rightarrow \infty} \Delta^{2} V_{n}=2$, and $\lim _{n \rightarrow \infty} F\left(V_{n}\right)=-\infty$.

Example 3. $\quad V_{n}=(\sqrt{2}+1)^{n} \sin (n \pi / 4)$ is an oscillatory solution of (E), where

$$
\begin{aligned}
b_{n}= & 2\left[(\sqrt{2}+1)^{n+1} \sin (n \pi / 4+\pi / 4)-(\sqrt{2}+1)^{n} \sin (n \pi / 4)\right]^{-2} \\
& f\left(V_{n+2}, \Delta V_{n+2}, \Delta^{2} V_{n+2}, \Delta^{3} V_{n+2}\right)=V_{n+2}\left(\Delta V_{n+2}\right)^{2}
\end{aligned}
$$

Then,

$$
\begin{aligned}
\Delta^{2} V_{n}= & V_{n+2}-2 V_{n+1}+V_{n} \\
= & (1+\sqrt{2})^{n}[(3+2 \sqrt{2}) \sin (n \pi / 4+\pi / 2) \\
& -(2+2 \sqrt{2}) \sin (n \pi / 4+\pi / 4)+\sin (n \pi / 4)]
\end{aligned}
$$

When $n=8 i(i$ is a positive integer $)$,

$$
\begin{aligned}
\Delta^{2} V_{8 i} & =(1+\sqrt{2})^{8 i}(3+2 \sqrt{2}-\sqrt{2}-2) \\
& =(1+\sqrt{2})^{8 i+1}
\end{aligned}
$$

When $i \rightarrow \infty, \Delta^{2} V_{8 i} \rightarrow \infty$. According to Theorem 1.2 (4), V_{n} cannot be Type I or Type $\operatorname{II}(\mathrm{a})$. Therefore, this V_{n} is a Type II(b) solution.

Example 4. $\quad V_{n}=(\sqrt{2}-1)^{n} \sin (n \pi / 4)$ is an oscillatory solution of (E), where

$$
\begin{aligned}
b_{n}= & 2\left[(\sqrt{2}-1)^{n+1} \sin (n \pi / 4+\pi / 4)-(\sqrt{2}-1)^{n} \sin (n \pi / 4)\right]^{-2} \\
& f\left(V_{n+2}, \Delta V_{n+2}, \Delta^{2} V_{n+2}, \Delta^{3} V_{n+2}\right)=V_{n+2}\left(\Delta V_{n+2}\right)^{2}
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty} V_{n}=0$, according to Theorem 1.3, V cannot be Type II. Therefore, this V is a Type I solution.

REFERENCES

[1] Smith, B. and Taylor, Jr., W.E. - Oscillation and nonoscillation in nonlinear third order difference equations, Internat. J. Math. and Math. Sci., 13(2) (1990), 281-286.
[2] Taylor, Jr., W.E. - Oscillation properties of fourth order difference equations, Portugaliae Mathematica, 45(1) (1988), 105-114.

Willie E. Taylor, Jr. and Minghua Sun,
Dep. of Mathematics, Texas Southern Univ., Houston, Texas, 77004 - USA

[^0]: Received: April 3, 1992; Revised: April 16, 1993.

