PORTUGALIAE MATHEMATICA Vol. 52 Fasc. 1 – 1995

OSCILLATION PROPERTIES OF NONLINEAR DIFFERENCE EQUATIONS

WILLIE E. TAYLOR, JR. and MINGHUA SUN

0 – Introduction and preliminary results

This paper is concerned with the oscillation of solutions of the equation:

(E)
$$\Delta^4 V_n + b_{n+2} f \left(V_{n+2}, \Delta V_{n+2}, \Delta^2 V_{n+2}, \Delta^3 V_{n+2} \right) = 0$$
,

where Δ is the forward difference operation, i.e. $\Delta V_n = V_{n+1} - V_n$. It will be assumed throughout that the conditions below are satisfied:

- i) $b_n > 0$ for n > 1;
- ii) $f: \mathbb{R}^4 \to \mathbb{R}$ is continuous;
- iii) $wf(w, x, y, z) \ge 0$ and $f(w, x, y, z) \ne 0$ whenever $w x y z \ne 0$.

The results in this paper were motivated by the work of W.E. Taylor, Jr. [2] on the equation

(e)
$$\Delta^4 V_n + b_{n+2} V_{n+2} = 0 \; .$$

Many of the results herein extend results of [2]; however, some theorems are new since the order of (E) need not be four.

By a solution of (E) we mean a real sequence V satisfying equation (E) for n = 1, 2, 3, ... A solution V of (E) is called *nonoscillatory* if it is eventually positive or eventually negative. Otherwise, a solution V of (E) is called *oscillatory*. A solution V of (E) is called *quickly oscillatory* if $V_nV_{n+1} < 0$ for all n sufficiently large, or equivalently, $V_n = (-1)^n a_n$ where a_n is a sequence of positive numbers or negative numbers.

In this paper, we only concern the solutions of (E) which $\Delta^4 V_n \neq 0$ for all n sufficiently large.

Received: April 3, 1992; Revised: April 16, 1993.

We begin the study of this equation by considering a functional which plays a vital role in the investigation.

Lemma 1.1. If V_n is a solution of (E), define $F(V_n) = V_{n+1}\Delta^3 V_n - \Delta V_n \Delta^2 V_n$. Then $F(V_n)$ is nonincreasing for $n \ge 1$.

Proof: Let V be any solution of (E). Then

$$\Delta F(V_n) = V_{n+2} \Delta^4 V_n + \Delta V_{n+1} \Delta^3 V_n - \Delta V_{n+1} \Delta^3 V_n - (\Delta^2 V_n)^2$$

= $V_{n+2} \Delta^4 V_n - (\Delta^2 V_n)^2$
= $-b_{n+2} V_{n+2} f(V_{n+2}, \Delta V_{n+2}, \Delta^2 V_{n+2}, \Delta^3 V_{n+2}) - (\Delta^2 V_n)^2 \le 0$.

Therefore $F(V_n)$ is nonincreasing for all solutions of (E).

Because of this result, the limit of $F(V_n)$ as $n \to \infty$ exists of $F(V_n) \to -\infty$ as $n \to \infty$. If $\lim_{n\to\infty} F(V_n) \ge 0$, we call the solution V of (E) a Type I solution. If $\lim_{n\to\infty} F(V_n) < 0$, we call V a Type II solution. Furthermore, if $-\infty < \lim_{n\to\infty} F(V_n) < 0$, we call V a Type II(a) solution, and if $\lim_{n\to\infty} F(V_n) = -\infty$, we call V a Type II(b) solution.

Theorem 1.2. If V is a Type I or Type II(a) solution, then

(1) $\sum^{\infty} V_{n+2} b_{n+2} f(V_{n+2}, \Delta V_{n+2}, \Delta^2 V_{n+2}, \Delta^3 V_{n+2}) < \infty;$ (2) $\sum^{\infty} (\Delta^2 V_n)^2 < \infty;$ (3) $\sum^{\infty} (\Delta^3 V_n)^2 < \infty;$ (4) $\lim_{n \to \infty} \Delta^2 V_n = \lim_{n \to \infty} \Delta^3 V_n = 0.$

Proof: For Type I and Type II(a) solutions, $\lim_{n\to\infty} F(V_n) = k > -\infty$ and $F(V_n) \ge k$ for all $n = 0, 1, 2, 3, \dots$. Then,

$$F(V_m) = \sum_{n=0}^{m-1} \Delta F(V_n) + F(V_0)$$

= $-\sum_{n=0}^{m-1} V_{n+2} b_{n+2} f(V_{n+2}, \Delta V_{n+2}, \Delta^2 V_{n+2}, \Delta^3 V_{n+2}) - \sum_{n=0}^{m-1} (\Delta^2 V_n)^2 + F(V_0)$
 $\geq k$.

Since $V_{n+2} b_{n+2} f(V_{n+2}, \Delta V_{n+2}, \Delta^2 V_{n+2}, \Delta^3 V_{n+2}) \ge 0$ and $(\Delta^2 V_n)^2 \ge 0$, then

$$\sum_{n=0}^{m-1} V_{n+2} b_{n+2} f\left(V_{n+2}, \Delta V_{n+2}, \Delta^2 V_{n+2}, \Delta^3 V_{n+2}\right) \le F(V_0) - k < \infty$$

and

$$\sum_{n=0}^{m-1} (\Delta^2 V_n)^2 \le F(V_0) - k < \infty \; .$$

Let $m \to \infty$, then

$$\sum_{n=0}^{\infty} V_{n+2} b_{n+2} f\Big(V_{n+2}, \Delta V_{n+2}, \Delta^2 V_{n+2}, \Delta^3 V_{n+2}\Big) \le F(V_0) - k < \infty$$

and

$$\sum_{n=0}^{\infty} (\Delta^2 V_n)^2 \le F(V_0) - k < \infty .$$

Since $(\Delta^3 V_n)^2 \le 2(\Delta^2 V_{n+1})^2 + 2(\Delta^2 V_n)^2$, then

$$\sum_{n=0}^{\infty} (\Delta^3 V_n)^2 \le 2 \sum_{n=0}^{\infty} (\Delta^2 V_{n+1})^2 + 2 \sum_{n=0}^{\infty} (\Delta^2 V_n)^2 < \infty .$$

Since $\sum_{n=0}^{\infty} (\Delta^2 V_n)^2 < \infty$ and $\sum_{n=0}^{\infty} (\Delta^3 V_n)^2 < \infty$, then $(\Delta^2 V_n)^2 \to 0$ and $(\Delta^3 V_n)^2 \to 0$ as $n \to \infty$. Therefore $\lim_{n\to\infty} \Delta^2 V_n = \lim_{n\to\infty} \Delta^3 V_n = 0$.

Theorem 1.3. If V is a Type II solution of (E), then V_n is unbounded.

Proof: Consider $H(V_n) = V_n \Delta^2 V_n - (\Delta V_n)^2$.

$$\begin{split} \Delta H(V_n) &= \Delta (V_n \, \Delta^2 V_n) - \Delta (\Delta V_n)^2 \\ &= V_{n+1} \, \Delta^3 V_n + \Delta V_n \, \Delta^2 V_n - 2 \, \Delta V_n \, \Delta^2 V_n - (\Delta^2 V_n)^2 \\ &= F(V_n) - (\Delta^2 V_n)^2 \; . \end{split}$$

Since V is a Type II solution of (E), $F(V_n)$ is negative and bounded away from zero for all n sufficiently large; hence $\Delta H(V_n)$ is negative and bounded away from zero. So $H(V_n) \to -\infty$ as $n \to \infty$. Thus at least one of V_n , ΔV_n , $\Delta^2 V_n$ must be unbounded. If $\Delta^2 V_n$ is unbounded, then ΔV_n is unbounded. If ΔV_n is unbounded, then V_n is unbounded. Therefore V_n must be unbounded.

2 – Nonoscillation results

Now we discuss the behavior of nonoscillatory solutions.

Lemma 2.1. If V is a nonoscillatory solution of (E), then either

$$\operatorname{sgn} V_n = \operatorname{sgn} \Delta V_n = \operatorname{sgn} \Delta^2 V_n = \operatorname{sgn} \Delta^3 V_n = -\operatorname{sgn} \Delta^4 V_n$$

W.E. TAYLOR, JR. and M. SUN

for all n sufficiently large, or

$$\operatorname{sgn} V_n = \operatorname{sgn} \Delta V_n = \operatorname{sgn} \Delta^3 V_n = -\operatorname{sgn} \Delta^2 V_n = -\operatorname{sgn} \Delta^4 V_n$$

for all n sufficiently large, and $\lim_{n\to\infty} \Delta^2 V_n = \lim_{n\to\infty} \Delta^3 V_n = 0.$

Proof: Assume V is a nonoscillatory solution of (E), where $V_n > 0$ for all n sufficiently large. Since $wf(w, x, y, z) \ge 0$ and $b_n > 0$, then

$$V_{n+2} b_{n+2} f(V_{n+2}, \Delta V_{n+2}, \Delta^2 V_{n+2}, \Delta^3 V_{n+2}) \ge 0$$
.

For all n sufficiently large, $V_{n+2} > 0$, so we have

$$\Delta^4 V_n = -b_{n+2} f\left(V_{n+2}, \Delta V_{n+2}, \Delta^2 V_{n+2}, \Delta^3 V_{n+2}\right) \le 0$$

for all *n* sufficiently large. Then $\Delta^3 V_n$ is nonincreasing. For all *n* sufficiently large, since $\Delta^4 V_n \neq 0$, the following two cases must be considered: case I, $\Delta^3 V_n > 0$, case II, $\Delta^3 V_n < 0$.

In case I, $\Delta^2 V_n$ is increasing, then either $\Delta^2 V_n > 0$ or $\Delta^2 V_n < 0$ for all n sufficiently large.

If $\Delta^2 V_n > 0$, then $\Delta^2 V_n > k > 0$ for all *n* sufficiently large. This means $\Delta V_n \to +\infty$ and $V_n \to +\infty$ as $n \to \infty$; then for *n* sufficiently large,

$$V_n > 0, \quad \Delta V_n > 0, \quad \Delta^2 V_n > 0, \quad \Delta^3 V_n > 0 ,$$

and

$$f(V_{n+2}, \Delta V_{n+2}, \Delta^2 V_{n+2}, \Delta^3 V_{n+2}) \neq 0;$$

then $\Delta^4 V_n < 0$.

If $\Delta^2 V_n < 0$, $\lim_{n\to\infty} \Delta^2 V_n = r \leq 0$ because $\Delta^3 V_n > 0$. If r < 0, then $\Delta V_n \to -\infty$ and $V_n \to -\infty$ as $n \to \infty$. This contradicts $V_n > 0$. Therefore r = 0. Hence ΔV_n is decreasing. Since $V_n > 0$, then $\Delta V_n > 0$. Therefore for all n sufficiently large,

$$V_n > 0, \quad \Delta V_n > 0, \quad \Delta^2 V_n < 0, \quad \Delta^3 V_n > 0 ,$$

and

$$f(V_{n+2}, \Delta V_{n+2}, \Delta^2 V_{n+2}, \Delta^3 V_{n+2}) \neq 0;$$

then $\Delta^4 V_n < 0$. Since $\Delta^3 V_n > 0$, $\Delta^2 V_n < 0$, and $\lim_{n \to \infty} \Delta^2 V_n = 0$, then

$$\lim_{n \to \infty} \Delta^2 V_n = \lim_{n \to \infty} \Delta^3 V_n = 0 \; .$$

In case II, for *n* sufficiently large, there exists r < 0 such that $\Delta^3 V_n < r < 0$ because $\Delta^3 V_n$ is decreasing. This means $\Delta^2 V_n \to -\infty$, $\Delta V_n \to -\infty$, and $V_n \to -\infty$ as $n \to \infty$, which is impossible.

Similarly, when $V_n < 0$ for all *n* sufficiently large, then either

$$V_n < 0$$
, $\Delta V_n < 0$, $\Delta^2 V_n < 0$, $\Delta^3 V_n < 0$ and $\Delta^4 V_n > 0$

or

$$V_n < 0, \quad \Delta V_n < 0, \quad \Delta^2 V_n > 0, \quad \Delta^3 V_n < 0, \quad \Delta^4 V_n > 0$$

and $\lim_{n\to\infty} \Delta^2 V_n = \lim_{n\to\infty} \Delta^3 V_n = 0.$

Theorem 2.2. If V is a nonoscillatory solution of (E), then the following statements are equivalent:

- (1) V_n is a Type I solution;
- (2) $\sum^{\infty} (\Delta^2 V_n)^2 < \infty;$
- (3) $\operatorname{sgn} V_n = \operatorname{sgn} \Delta V_n = \operatorname{sgn} \Delta^3 V_n = -\operatorname{sgn} \Delta^2 V_n = -\operatorname{sgn} \Delta^4 V_n.$

Proof: First we prove (2) from (1). If V is a nonoscillatory Type I solution, by Theorem 1.2, $\sum_{n=0}^{\infty} (\Delta^2 V_n)^2 < \infty$.

Now we prove (3) from (2). Suppose V is nonoscillatory and $\sum_{n=1}^{\infty} (\Delta^2 V_n)^2 < \infty$. There are only two cases:

(a) $\operatorname{sgn} V_n = \operatorname{sgn} \Delta V_n = \operatorname{sgn} \Delta^2 V_n = \operatorname{sgn} \Delta^3 V_n = -\operatorname{sgn} \Delta^4 V_n;$

(b) $\operatorname{sgn} V_n = \operatorname{sgn} \Delta V_n = \operatorname{sgn} \Delta^3 V_n = -\operatorname{sgn} \Delta^2 V_n = -\operatorname{sgn} \Delta^4 V_n.$

Case (a) is impossible because $\lim_{n\to\infty} \Delta^2 V_n \neq 0$ and $\sum_{n\to\infty} (\Delta^2 V_n)^2 < \infty$. Thus (b) must be true.

We prove (1) from (3). Suppose V is nonoscillatory and satisfies $\operatorname{sgn} V_n = \operatorname{sgn} \Delta V_n = \operatorname{sgn} \Delta^3 V_n = -\operatorname{sgn} \Delta^2 V_n$; then

$$F(V_n) = V_{n+1} \Delta^3 V_n - \Delta V_n \Delta^2 V_n$$

= sgn V_{n+1} sgn $\Delta^3 V_n |V_{n+1} \Delta^3 V_n| - sgn \Delta V_n$ sgn $\Delta^2 V_n |\Delta V_n \Delta^2 V_n|$
= $|V_{n+1} \Delta^3 V_n| + |\Delta V_n \Delta^2 V_n| \ge 0$.

Therefore V is a Type I solution. \blacksquare

Lemma 2.3. If V is a Type II(a) solution of (E), then V cannot be nonoscillatory.

Proof: Assume a Type II(a) solution V is nonoscillatory and $V_n > 0$ for all n > N. The proof is similar if $V_n < 0$ for all n > N. According to Lemma 2.1, there are only two possibilities:

- (a) $\operatorname{sgn} V_n = \operatorname{sgn} \Delta V_n = \operatorname{sgn} \Delta^2 V_n = \operatorname{sgn} \Delta^3 V_n = -\operatorname{sgn} \Delta^4 V_n$,
- (b) $\operatorname{sgn} V_n = \operatorname{sgn} \Delta V_n = \operatorname{sgn} \Delta^3 V_n = -\operatorname{sgn} \Delta^2 V_n = -\operatorname{sgn} \Delta^4 V_n.$

According to Theorem 1.2, $\lim_{n\to\infty} \Delta^2 V_n = \lim_{n\to\infty} \Delta^3 V_n = 0$, so only (b) can occur. By Theorem 2.2, V is a Type I solution; this contradicts V is a Type II(a) solution. Therefore V is oscillatory.

Therefore, if V is a nonoscillatory solution of (E), V is either a Type I solution or a Type II(b) solution.

Theorem 2.4. If V is a nonoscillatory solution of (E), then the following are equivalent:

- (1) V is a Type II(b) solution;
- (2) $\operatorname{sgn} V_n = \operatorname{sgn} \Delta V_n = \operatorname{sgn} \Delta^2 V_n = \operatorname{sgn} \Delta^3 V_n = -\operatorname{sgn} \Delta^4 V_n$ for all n sufficiently large;
- (3) There exists k > 0 such that $|\Delta^2 V_n| \ge k$ for all n sufficiently large.

Proof: First we prove (2) from (1). Since V is nonoscillatory, then for n sufficiently large, either

(a) $\operatorname{sgn} V_n = \operatorname{sgn} \Delta V_n = \operatorname{sgn} \Delta^2 V_n = \operatorname{sgn} \Delta^3 V_n = -\operatorname{sgn} \Delta^4 V_n$,

or

(b)
$$\operatorname{sgn} V_n = \operatorname{sgn} \Delta V_n = \operatorname{sgn} \Delta^3 V_n = -\operatorname{sgn} \Delta^2 V_n = -\operatorname{sgn} \Delta^4 V_n$$
.

By Theorem 2.3, (b) implies that V is a Type I solution. Therefore, (a) must be true.

Now we prove (3) from (2). Assume $V_n > 0$ for $n \ge N$. Since $\operatorname{sgn} V_n = \operatorname{sgn} \Delta V_n = \operatorname{sgn} \Delta^2 V_n = \operatorname{sgn} \Delta^3 V_n = -\operatorname{sgn} \Delta^4 V_n$ for $n \ge N$, then $\Delta^2 V_n > 0$ and $\Delta^3 V_n > 0$ for $n \ge N$. So $\Delta^2 V_n$ is increasing when $n \ge N$. Let $k = \Delta^2 V_N > 0$, then $\Delta^2 V_n > k > 0$ for all $n \ge N$. Similarly, when $V_n < 0$ for $n \ge N$, $\Delta^2 V_n < \Delta^2 V_N < 0$ for n > N. (3) is proved.

We prove (1) from (3). Since V is nonoscillatory, then for n sufficiently large, either

(a)
$$\operatorname{sgn} V_n = \operatorname{sgn} \Delta V_n = \operatorname{sgn} \Delta^2 V_n = \operatorname{sgn} \Delta^3 V_n = -\operatorname{sgn} \Delta^4 V_n$$
,

or

(b) $\operatorname{sgn} V_n = \operatorname{sgn} \Delta V_n = \operatorname{sgn} \Delta^3 V_n = -\operatorname{sgn} \Delta^2 V_n = -\operatorname{sgn} \Delta^4 V_n$

and $\lim_{n\to\infty} \Delta^2 V_n = \lim_{n\to\infty} \Delta^3 V_n = 0$. But $|\Delta^2 V_n| > k > 0$ as $n \to \infty$, so (b) is impossible. Therefore, V cannot be a Type I solution. Also, V cannot be a Type II(a) solution because Type II(a) solutions are oscillatory. Thus V can only be a Type II(b) solution.

By Theorems 2.2 and 2.4, if a solution V of (E) is nonoscillatory, then ΔV_n is eventually increasing or decreasing; if ΔV_n is bounded, then V is Type I, and if ΔV_n is unbounded, then V is Type II(b).

3 – Oscillation results

Combining Theorem 1.3 and Lemma 2.3, we get the following theorem.

Theorem 3.1. If V is a Type II(a) solution of (E), then V is oscillatory and unbounded.

Whether Type II(a) solutions actually exist remains an open question.

Theorem 3.2. If $f(w, x, y, z)/w \ge r > 0$ and $\sum_{n \to \infty} b_n = \infty$, then (E) cannot have nonoscillatory solutions.

Proof: Suppose V is a nonoscillatory solution of (E) and V_n is eventually positive. The proof is similar if V_n is eventually negative. From (E), we have

$$\Delta^4 V_n = -b_{n+2} f \left(V_{n+2}, \Delta V_{n+2}, \Delta^2 V_{n+2}, \Delta^3 V_{n+2} \right)$$

$$\leq -r \, b_{n+2} \, V_{n+2} < 0 \; .$$

According to Lemma 2.1, there exists N such that when n > N, $V_n > 0$, $\Delta V_n > 0$ and $\Delta^3 V_n > 0$. So V_n is eventually increasing. Therefore, there exist M and α such that when n > M, $V_n > \alpha > 0$. Let $m = \max(N, M)$. Then for n > m,

$$0 < \Delta^3 V_n = \sum_{i=m}^{n-1} \Delta^4 V_i + \Delta^3 V_m \le -\sum_{i=m}^{n-1} r \, b_{i+2} \, V_{i+2} + \Delta^3 V_m$$

Hence,

$$\sum_{i=m}^{n-1} r \, b_{i+2} \, V_{i+2} < \Delta^3 V_m \; .$$

Thus,

$$0 < r \alpha \sum_{i=m}^{n-1} b_{i+2} < \Delta^3 V_m \; .$$

Let $n \to \infty$, then $0 < \sum_{i=m+2}^{\infty} b_i \leq \Delta^3 V_m / r \alpha$. This contradicts $\sum^{\infty} b_n = \infty$. Therefore, V_n cannot be nonoscillatory.

Theorem 3.3. Equation (E) cannot have a quickly oscillatory solution.

W.E. TAYLOR, JR. and M. SUN

Proof: Suppose $V_n = (-1)^n a_n$ is a solution of (E) where $a_n > 0$. Then

$$\Delta^4 V_n = (-1)^n \left(a_{n+4} + 4a_{n+3} + 6a_{n+2} + 4a_{n+1} + a_n \right)$$

(E) can be written

$$(-1)^{n} \left(a_{n+4} + 4a_{n+3} + 6a_{n+2} + 4a_{n+1} + a_{n} \right) + b_{n+2} f \left(V_{n+2}, \Delta V_{n+2}, \Delta^{2} V_{n+2}, \Delta^{3} V_{n+2} \right) = 0 .$$

Thus,

$$b_{n+2} = -(-1)^n \frac{\left(a_{n+4} + 4a_{n+3} + 6a_{n+2} + 4a_{n+1} + a_n\right)}{f\left(V_{n+2}, \Delta V_{n+2}, \Delta^2 V_{n+2}, \Delta^3 V_{n+2}\right)}$$
$$= -\frac{a_{n+2}\left(a_{n+4} + 4a_{n+3} + 6a_{n+2} + 4a_{n+1} + a_n\right)}{V_{n+2} f\left(V_{n+2}, \Delta V_{n+2}, \Delta^2 V_{n+2}, \Delta^3 V_{n+2}\right)} < 0$$

This contradicts $b_n > 0$. Thus (E) cannot have a quickly oscillatory solution.

4 - Examples

Example 1. $V_n = n - (1/2)^n$ is a solution of (E), where

$$b_n = 2^{2n+8} / \left(5(n+2) 2^{n+2} - 5 \right) ,$$

$$f\left(V_{n+2}, \Delta V_{n+2}, \Delta^2 V_{n+2}, \Delta^3 V_{n+2} \right) = V_{n+2} \left((\Delta^2 V_{n+2})^2 + (\Delta^3 V_{n+2})^2 \right) .$$

Then,

$$V_n = n - (1/2)^n > 0 \quad \text{(when } n > 0\text{)} ,$$

$$\Delta V_n = (1/2)^{n+1} + 1 > 0 ,$$

$$\Delta^2 V_n = -(1/2)^{n+2} < 0 ,$$

$$\Delta^3 V_n = (1/2)^{n+3} > 0 ,$$

$$\Delta^4 V_n = -(1/2)^{n+4} < 0 .$$

Hence this is a nonoscillatory Type I solution. Also $\sum_{n=1}^{\infty} (\Delta^2 V_n)^2 < \infty$. Actually,

$$F(V_n) = V_{n+1} \Delta^3 V_n - \Delta V_n \Delta^2 V_n$$

= $\left(n + 1 - (1/2)^{n+1}\right) (1/2)^{n+3} + \left((1/2)^{n+1} + 1\right) (1/2)^{n+2} > 0$,

and $\lim_{n \to \infty} F(V_n) = 0$. Also, $\sum_{n=0}^{\infty} (\Delta^2 V_n)^2 = \sum_{n=0}^{\infty} (1/2)^{2n+4} < \infty$.

Example 2. $V_n = n(n-1) - (1/2)^n$ is a solution of (E), where

$$b_n = 2^{2n+4} / \left(n(n-1)2^n - 1 \right)$$

$$f(V_{n+2}, \Delta V_{n+2}, \Delta^2 V_{n+2}, \Delta^3 V_{n+2}) = V_{n+2}(\Delta^3 V_{n+2})^2$$
.

Then

$$\begin{split} V_n &= n(n-1) - (1/2)^n > 0 \quad \text{(when } n > 1\text{)} \ , \\ \Delta V_n &= 2n + (1/2)^{n+1} > 0 \ , \\ \Delta^2 V_n &= 2 - (1/2)^{n+2} > 0 \ , \\ \Delta^3 V_n &= (1/2)^{n+3} > 0 \ , \\ \Delta^4 V_n &= -(1/2)^{n+4} < 0 \ . \end{split}$$

Therefore, V_n is nonoscillatory Type II(b) solution. $\lim_{n\to\infty} \Delta^2 V_n = 2$, and $\lim_{n\to\infty} F(V_n) = -\infty$.

Example 3. $V_n = (\sqrt{2} + 1)^n \sin(n\pi/4)$ is an oscillatory solution of (E), where

$$b_n = 2 \left[(\sqrt{2} + 1)^{n+1} \sin(n\pi/4 + \pi/4) - (\sqrt{2} + 1)^n \sin(n\pi/4) \right]^{-2},$$

$$f \left(V_{n+2}, \Delta V_{n+2}, \Delta^2 V_{n+2}, \Delta^3 V_{n+2} \right) = V_{n+2} (\Delta V_{n+2})^2.$$

Then,

$$\Delta^2 V_n = V_{n+2} - 2V_{n+1} + V_n$$

= $(1 + \sqrt{2})^n \left[(3 + 2\sqrt{2}) \sin(n\pi/4 + \pi/2) - (2 + 2\sqrt{2}) \sin(n\pi/4 + \pi/4) + \sin(n\pi/4) \right].$

When n = 8i (*i* is a positive integer),

$$\Delta^2 V_{8i} = (1 + \sqrt{2})^{8i} (3 + 2\sqrt{2} - \sqrt{2} - 2)$$
$$= (1 + \sqrt{2})^{8i+1} .$$

When $i \to \infty$, $\Delta^2 V_{8i} \to \infty$. According to Theorem 1.2 (4), V_n cannot be Type I or Type II(a). Therefore, this V_n is a Type II(b) solution.

Example 4. $V_n = (\sqrt{2} - 1)^n \sin(n\pi/4)$ is an oscillatory solution of (E), where

$$b_n = 2 \left[(\sqrt{2} - 1)^{n+1} \sin(n\pi/4 + \pi/4) - (\sqrt{2} - 1)^n \sin(n\pi/4) \right]^{-2},$$

$$f \left(V_{n+2}, \Delta V_{n+2}, \Delta^2 V_{n+2}, \Delta^3 V_{n+2} \right) = V_{n+2} (\Delta V_{n+2})^2.$$

W.E. TAYLOR, JR. and M. SUN

Since $\lim_{n\to\infty} V_n = 0$, according to Theorem 1.3, V cannot be Type II. Therefore, this V is a Type I solution.

REFERENCES

- [1] SMITH, B. and TAYLOR, JR., W.E. Oscillation and nonoscillation in nonlinear third order difference equations, *Internat. J. Math. and Math. Sci.*, 13(2) (1990), 281–286.
- [2] TAYLOR, JR., W.E. Oscillation properties of fourth order difference equations, *Portugaliae Mathematica*, 45(1) (1988), 105–114.

Willie E. Taylor, Jr. and Minghua Sun, Dep. of Mathematics, Texas Southern Univ., Houston, Texas, 77004 – USA