PORTUGALIAE MATHEMATICA Vol. 51 Fasc. 4 – 1994

CONVOLUTION OPERATORS IN INFINITE DIMENSION

NGUYEN VAN KHUE and NGUYEN DINH SANG

1 – Introduction

Let E be a complete convex bornological vector space (denoted by the letters b.v.s.). This means that E is an injective algebraic inductive limit of a family $\{E_i\}_{i\in I}$ of Banach spaces E_i , $i \in I$, such that for i < j the canonical linear map from E_i to E_j is continuous. A subset of E is called bounded if it is contained and bounded in a Banach space E_i . We say that E is a Schwartz (resp. weak Schwartz) b.v.s. if the canonical map from E_i to E_j is compact (resp. weakly compact) for every i < j.

Given D a subset of E such that $D_i := D \cap E_i$ is open in E_i for every $i \in I$. A function f on D is said to be holomorphic if $f \mid D_i$ is holomorphic for every $i \in I$. By H(D) we denote the space of holomorphic functions on D equipped with the compact-open topology, where as above a subset K of D is called compact if $K_i := K \cap E_i$ is compact. Consider the Fourier-Borel transformation

$$\mathcal{F}_D \colon H'(D) \to H(E^+)$$

given by

$$\mathcal{F}_D(\mu)(x^*) = \mu(\exp x^*)$$
 for $\mu \in H'(D)$ and $x^* \in E$

where H'(D) denotes the dual space of H(D) equipped with the compact-open topology and

$$E^+ = \left\{ f \in H(E) \colon f \text{ is linear} \right\}$$

Equip Im \mathcal{F}_D the quotient topology via \mathcal{F}_D . For each $\alpha \in E^+$ define the translation operator τ_{α} on $H(E^+)$ by the form

$$\tau_{\alpha}(\phi)(x^*) = \phi(x^* + \alpha)$$

for $x^* \in E^+$ and $\phi \in H(E^+)$.

Received: June 26, 1992; Revised: September 17, 1993.

Since

588

$$\mathcal{F}_D \,\widetilde{\tau}_\alpha = \tau_\alpha \, \mathcal{F}_D \,\,,$$

where $\tilde{\tau}_{\alpha} \colon H'(D) \to H'(D)$ given by

$$(\tilde{\tau}_{\alpha}\mu)(\varphi) = \mu(\varphi \exp \alpha)$$

for $\varphi \in H(D)$ and $\mu \in H'(D)$, it follows that

$$\tau_{\alpha} \colon \operatorname{Im} \mathcal{F}_{D} \to \operatorname{Im} \mathcal{F}_{D}$$

is continuous.

Now a continuous linear map θ : Im $\mathcal{F}_D \to \text{Im } \mathcal{F}_D$ is called a convolution operator if it commutes with every translation.

2 – Statement of the results

In this note we always assume that E is a b.v.s. which is separated by E^+ and D is a subset of E such that $D \cap E_i$ is connected and open in E_i for every $i \in I$.

Existence Theorem. Every non-zero convolution operator on $\text{Im } \mathcal{F}_D$ is surjective.

Approximation Theorem. Let hold one of the following two conditions

- \mathbf{i}) D is balanced;
- ii) D is polynomially convex and E is a weak Schwartz b.v.s. such that every E_i has the approximation property.

Then every solution u of the homogeneous equation $\theta u = 0$ is a limit for the topology of Im \mathcal{F}_D of solutions in $\mathcal{P}(E) \mathcal{E}xp(D)$, where $\mathcal{P}(E)$ denotes the set of all continuous polynomials on E and $\mathcal{E}xp(D) = \operatorname{span}\{\exp(x) \colon x \in D\}$.

In the case E is a Schwartz b.v.s. such that every space E_i has the approximation property and D is a balanced convex open subset of E the above results have established by Colombeau and Perrot [3]. Some particular cases were proved by Boland [1], Dwyer [4], [5], [6] and Gupta [8].

3 - Proof

Let $T \in (\operatorname{Im} \mathcal{F}_D)'$, the dual space of $\operatorname{Im} \mathcal{F}_D$, equipped with the strong topology, and let $T^* \colon \operatorname{Im} \mathcal{F}_D \to \operatorname{Im} \mathcal{F}_D$ given by the form

$$(T^*\phi)(\alpha) = T(\tau_\alpha \phi)$$
 for $\phi \in \operatorname{Im} \mathcal{F}_D$ and $\alpha \in E^+$.

Lemma 1. T^* is a convolution operator on Im \mathcal{F}_D and conversely each convolution operator on Im \mathcal{F}_D is a T^* for some T.

Proof: First observe that \mathcal{F}'_D : $(\operatorname{Im} \mathcal{F}_D)' \to H''(D) = H(D)$ (algebraically). Define the continuous linear map U_T from H'(D) to H'(D) by

$$U_T(\mu)(\psi) = \mu(\mathcal{F}'_D(T)\,\psi)$$

for $\mu \in H'(D)$ and $\psi \in H(D)$.

We have

$$(T^*\mathcal{F}_D)(\mu)(\alpha) = (T^*\mathcal{F}_D(\mu))(\alpha) = T(\tau_\alpha \mathcal{F}_D(\mu))$$

= $T(\mathcal{F}_D \tilde{\tau}_\alpha(\mu)) = \mathcal{F}'_D(T)(\tilde{\tau}_\alpha(\mu))$
= $\mu(\mathcal{F}'_D(T) \exp \alpha) = (\mathcal{F}_D U_T(\mu))(\alpha)$

for all $\mu \in H'(D)$ and $\alpha \in E^+$.

Thus

$$T^* \mathcal{F}_D = \mathcal{F}_D U_T$$
.

This yields the continuity of T^* .

Let \mathcal{M} denote the algebra of all convolution operators on $\operatorname{Im} \mathcal{F}_D$ and let γ be the map from \mathcal{M} to $(\operatorname{Im} \mathcal{F}_D)'$ given by

$$\gamma \colon \theta \mapsto (\phi \mapsto \theta^{\phi}(0))$$
.

It is easy to see that

$$\gamma(T^*) = T$$
 and $(\gamma \theta)^* = \theta$.

Hence the map $T \mapsto T^*$ is a bijection between $(\operatorname{Im} \mathcal{F}_D)'$ and \mathcal{M} .

Lemma 2. Let F be a Fréchet space and let C(F) denote the set consisting of all compact balanced convex subsets of F. Then for every $K \in C(F)$ there exists $L \in C(F)$ such that the canonical map from the canonical Banach space F(K) spanned by K to F(L) is compact.

Proof: Let H be a closed separated subspace of F containing K. From a result of Geijler [7] we can find a continuous linear map η from a Fréchet–Montel space Q onto H. Since K is compact in H there exists $B \in C(Q)$ such that $\eta(B) = K$. Observe that the map $\tilde{\eta}: Q(B) \to F(K)$ induced by η is open. Thus it suffices to show that there exists $\tilde{B} \in C(Q)$ such that $B \leq \tilde{B}$ and the canonical map $e(B, \tilde{B})$ from Q(B) to $Q(\tilde{B})$ is compact.

Let $\{\|\cdot\|_n\}$ be an increasing sequence of continuous semi-norms defining the topology of Q and let Q_n be the canonical Banach space associated to $\|\cdot\|_n$. Since

Q is reflexive, Q' is bornological [10]. Hence $Q' = \liminf Q'_n$. Put $P = \bigoplus_{n \ge 1} Q'_n$. Let α be the canonical map from P onto Q'.

First we find a continuous semi-norm ρ on P such that the map $\tilde{\alpha}: P_{\rho} \to Q'_{p(K)}$ induced by α is compact, where p(K) denotes the sup-norm on B. Take a sequence $\lambda_j \downarrow 0$ such that $\sum_j \lambda_j \leq 1$ and such that for the unit open ball U_j in Q_j we have $\lambda_j B \subseteq U_j$. Consider the semi-norm ρ on P given by

$$\rho(\{u_j\}) = \sum_j \|u_j\|_j / \lambda_j^2,$$

where $u_j \in Q'_j$ and $\|\cdot\|_j$ is the sup-norm on U_j .

Obviously α induces a continuous linear map $\tilde{\alpha}$ from P_{ρ} to $Q'_{p(B)}$.

We show that $\tilde{\alpha}$ is compact.

Indeed let $\{u^{(n)}\}$ be a sequence in P such that

$$M = \sup\{\rho(u^{(n)}) \colon n \ge 1\} < \infty$$

Then for every $m \ge 1$ and for every $x \in B$ we have

$$\sum_{j \ge m} |u_j^{(n)}(x)| = \sum_{j \ge m} \lambda_j |u_j^{(n)}(\lambda_j x)| / \lambda_j^2 \le M \sum_{j \ge m} \lambda_j$$

and

590

$$\sup\{\|u_j^{(n)}\|_j: n \ge 1\} \le M \lambda_j^2 \quad \text{for every } j \ge 1 .$$

These inequalities show that $\{\tilde{\alpha}(u_j^{(n)})\}$ is equicontinuous on *B*. Since *B* is compact it follows that $\{u^{(n)}\}$ is relatively compact in $Q'_{p(B)}$.

Now by the openness of $\alpha: P \to Q'$ there exists $\tilde{B} \in C(Q)$ containing B such that the canonical map induced by α from P_{ρ} onto $Q'_{p(B)}$ is open. Hence the canonical map from $Q'_{p(\tilde{B})}$ to $Q'_{p(B)}$ is compact. This yields from the commutativity of the diagram

$$\begin{array}{cccc} Q(B) & \longrightarrow & Q(B) \\ & & & & & & \\ & & & & & \\ [Q'_{p(B)}]' & \longrightarrow & [Q'_{p(B)}]' \end{array}$$

in which the maps $Q(B) \hookrightarrow [Q'_{p(B)}]'$ and $Q(\widetilde{B}) \hookrightarrow [Q'_{p(\widetilde{B})}]'$ are canonical embeddings, the compactness of $e(B, \widetilde{B})$.

Lemma 3. Let θ be a non-zero convolution operator on Im \mathcal{F}_D . Then U_T with $T = \gamma \theta$, is surjective.

Proof: i) Let $\psi \in H(D)$ with $U'_T(\psi) = 0$. Then

$$\mu(\mathcal{F}'_D(T)\,\psi) = (U'_T\,\mu)(\psi) = 0$$

for every $\mu \in H'(D)$.

By the Hahn–Banach Theorem we have $\mathcal{F}'_D(T) \psi = 0$. Since $\mathcal{F}'_D(T) \neq 0$ it follows that $\psi = 0$. Thus U'_T is injective.

Assume now that $\{\psi_{\alpha}\} \subset \operatorname{Im} U'_{T}$ which is weakly convergent to φ in H(D). Then for every finite dimensional subspace F of E, the sequence $\{\mathcal{F}'_{D}(T)\psi_{\alpha} \mid F \cap D\}$ is weakly convergent to $\varphi \mid F \cap D$. Since the ideal in $H(F \cap D)$ generated by $\mathcal{F}'_{D}(T) \mid F \cap D$ is weakly closed in $H(F \cap D)$ it follows that $\varphi \mid F \cap D = \mathcal{F}'_{D}(T) \mid_{F \cap D} \psi_{F}$ for some $\psi_{F} \in H(F \cap D)$. By the unique principle the family $\{\psi_{F}\}$ defines a Gateaux holomorphic function ψ on D such that $\mathcal{F}'_{D}(T)^{\psi} = \varphi$. This relation yields by the Zorn Theorem the holomorphicity of ψ on D. Hence U'_{T} has the weakly closed image in H(D).

ii) Let $\phi \in H'(D)$ with $U_T(\phi) \neq 0$ and let μ be an arbitrary element of H'(D). Take $i_0 \in I$ such that $\phi, \mu \in H'(D_{i_0})$. Let us note that the canonical map from $H'(D_{i_0})$ to H'(D) induces a continuous linear map from $\operatorname{Im} \mathcal{F}_{D_{i_0}}$ to $\operatorname{Im} \mathcal{F}_D$ for which the following diagram is commutative

where $T_0 \in (\operatorname{Im} \mathcal{F}_{D_{i_0}})'$ is induced by T.

Hence by Lemma 2 without loss of generality we may assume that E is a Schwartz b.v.s. Take a strictly increasing sequence $\{i_j\}_{j\geq 0}$ in I. Put

$$F = \liminf E_{i_i}, \quad D_0 = D \cap F$$

and

$$T_0 = T \mid \operatorname{Im} \mathcal{F}_{D_0} \; .$$

Consider the commutative diagram (1) in which D_{i_0} is replaced by D_0 with $\phi, \mu \in H'(D_{i_0})$. By i) U'_{T_0} is injective and has the weakly closed image. This implies that $U_{T_0} = U''_{T_0}$ is surjective. Thus $\mu = U_T(\beta)$ for some $\beta \in H'(D)$.

Proof of Existence Theorem: By the relation $T^* \mathcal{F}_D = \mathcal{F}_D U_T$ we infer that Existence Theorem is an immediate consequence of Lemma 3.

To prove Approximation Theorem we need the following five lemmas.

Lemma 4. $\mathcal{E}xp(D)$ is dense in Im \mathcal{F}_D .

Proof: Let $S \in (\operatorname{Im} \mathcal{F}_D)'$ such that $S(\exp x) = 0$ for every $x \in D$. Then

$$\mathcal{F}'_D(S)(x) = 0$$
 for every $x \in D$.

Since \mathcal{F}'_D is injective, it follows that S = 0.

Lemma 5. Let $f, g \in H(D)$ such that for every finite dimensional subspace F of E on which $g \neq 0$, the function $f | F \cap D$ is divisible by $g | F \cap D$. Then f is divisible by g.

Proof: By the unique principle there exists a Gateaux holomorphic function h on D such that f = h g. Since h is holomorphic at every $x \in D$ with $g(x) \neq 0$, by the Zorn Theorem h is holomorphic on D.

Lemma 6. Let $X, T \in (\operatorname{Im} \mathcal{F}_D)', T \neq 0$, such that

$$\forall x \in D, \ \forall P \in \mathcal{P}(E): \quad T^* P \exp(x) = 0 \ \Rightarrow \ X(P \exp(x)) = 0 \ .$$

Then $\mathcal{F}'_D(X)$ is divisible by $\mathcal{F}'_D(T)$.

Proof: By hypothesis we have

$$\forall x \in D \colon \mathcal{F}'_D(T)(x) = 0 \Rightarrow \mathcal{F}'_D(X)(x) = 0.$$

This implies that $\mathcal{F}'_D(X) | F \cap D$ is divisible by $\mathcal{F}'_D(T) | F \cap D$ for every finite dimensional subspace F of E on which $\mathcal{F}'_D(T) \neq 0$. Lemma 5 yields that $\mathcal{F}'_D(X)$ is divisible by $\mathcal{F}'_D(T)$.

Lemma 7. Let E be a weak Schwartz b.v.s. and let i < j < k. Then E^+ is dense in $E'_k | E_i$.

Proof: Denote by E_i^+ the completion of $E^+/\operatorname{Ker} \|\cdot\|_i$, where $\|\cdot\|_i$ is the semi-norm on E^+ defined by the unit open ball U_i in E_i . Since E^+ separates the points of E, it follows that $E^+ \subseteq \liminf E_i^+$ (algebraically). On the other hand, by the weak compactness of the canonical map ω_{ij} from E_i to E_j for every i < j and since U_i is $\sigma(E_i^{+\prime}, E_i^+)$ -dense in the unit open ball $U_i^{+\prime}$ in $E_i^{+\prime}$ we have

$$\operatorname{Cl}\omega_{ij}^{+\prime}(U_i^{+\prime}) = \operatorname{Cl}\omega_{ij}^{+\prime}(\operatorname{Cl}_{\sigma(E_i^{+\prime}, E_i^{+})}U_i) \le \operatorname{Cl}_{\sigma(E_j^{+\prime}, E_j^{+})}\omega_{ij}^{+\prime}(U_i) = \operatorname{Cl}\omega_{ij}(U_i) \le E_j ,$$

where ω_{ij}^+ is the restriction map from E_j^+ to E_i^+ and U_i^+ is the unit open in E_i^+ .

Thus for i < j < k we have by the weak compactness of ω_{ij}^+ the following two commutative diagrams

592

This implies that E^+ is dense in $E'_k | E_i$.

Put

 $H_0(D) = \left\{ f \in H(D) \colon D^n f(x) \text{ can be approximated} \right.$

by elements of $E^{\otimes n}$ for every $x \in D$.

Lemma 8. Ker $\mathcal{F}_D = [H_0(D)]^{\perp}$ and hence Im $\mathcal{F}_D \subseteq H_0(D)$.

Proof: Let $\mu \in [H_0(D)]^{\perp}$. Then

$$(\mathcal{F}_D \mu)(x^*) = \mu(\exp x^*) = \sum_{k \ge 0} (1/k!) \, \mu(x^{*^k}) = 0$$

for every $x^* \in E^+$.

Hence $\mu \in \text{Ker } \mathcal{F}_D$. Conversely, assume that $\mathcal{F}_D \mu = 0$. By hypothesis on D and on E it follows that $H_0(E)$ is dense in $H_0(D)$.

Proof of Approximation Theorem: If $\theta = 0$, the result is true since $\mathcal{P}(E)\mathcal{E}xp(D)$ is dense in $\operatorname{Im}\mathcal{F}_D$. Let $\theta \neq 0$ and let $X \in (\operatorname{Im}\mathcal{F}_D)'$, $X | \mathcal{P}(E)\mathcal{E}xp(D) \cap \operatorname{Ker}\theta = 0$. This means that

$$\forall P \in \mathcal{P}(E), \ \forall x \in D: \quad T^* P \exp(x) = 0 \ \Rightarrow \ X(P \exp(x)) = 0$$

where $T^* = \theta$.

Lemma 6 implies that $\mathcal{F}'_D(X) = h \mathcal{F}'_D(T)$ for some $h \in H(D)$. From the relations $\mathcal{F}'_D(X) \in H_0(D)$ and $\mathcal{F}'_D(T) \in H_0(D)$, it is easy to see that $h \in H_0(D) = (\operatorname{Ker} \mathcal{F}_D)^{\perp}$. Thus $h = \mathcal{F}'_D(Q)$ for some $Q \in (\operatorname{Im} \mathcal{F}_D)'$. Hence $\mathcal{F}'_D(X) = \mathcal{F}'_D(Q) \mathcal{F}'_D(T) = \mathcal{F}'_D(Q^*T)$. From the injectivity of \mathcal{F}'_D we have

$$X = Q^* T = T^* Q = (T^*)' Q = \theta'(Q)$$
.

These equalities imply X = 0 on $\operatorname{Ker} \theta$.

REFERENCES

- BOLAND, P.J. Malgrange Theorem for entire functions on nuclear spaces, *Lecture Notes in Math.*, 364 (1974), 135–144.
- [2] COLOMBEAU, J.F. and PERROT, B. Transformation de Fourier–Borel et noyeaux en dimension infinie, C.R. Acad. Sci. Paris. Ser. A, 284 (1977), 963–966.
- [3] COLOMBEAU, J.F. and PERROT, B. Convolution equation in spaces of infinite dimensional entire functions of exponential and related types, *Trans. Amer. Math.* Soc., 258 (1980), 191–198.

- [4] DWYER, T.A.W. Equations differentielles d'ordre infinie dans des localement convexes, C.R. Acad. Sci. Paris. Ser. A, 218 (1975), 163–166.
- [5] DWYER, T.A.W. Differential operators of infinite order on locally convex spaces I, *Rend. Math.*, 10 (1977), 149–179.
- [6] DWYER, T.A.W. Differential operators of infinite order on locally convex spaces II, Rend. Math., 10 (1978), 273–293.
- [7] GEIJLER, W. Extending and lifting continuous linear mappings in topological vector spaces, *Studia Math.*, 62 (1978), 295–303.
- [8] GUPTA, C. Malgrange Theorem for nuclear entire functions of bounded type on a Banach space, *Idag. Math.*, 32 (1970), 356–358.
- [9] NOVERRAZ, PH. Pseudo-Convexite, Convexite Polynomiale et Domaines d'Holomorphie en Dimension Infinie, North-Holland Math. Stud., 3, 1973.
- [10] SCHAEFER, H. Topological Vector Spaces, Springer-Verlag, 1971.

Nguyen Van Khue and Nguyen Dinh Sang, Department of Mathematics, Pedagogical Institute Hanoi I, Hanoi – VIETNAM

594