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A GENERALIZATION OF A THEOREM OF CARLITZ

Mireille Car

Abstract: Extending Carlitz’s theorem on sums of two squares, we study the number

of representations of a polynomial in IFq[T ] as a norm in the extension IFqh [T ] of IFq[T ]

of a polynomial in IFqh [T ].

Généralisant un théorème de Carlitz sur les sommes de deux carrés, nous étudions

le nombre de représentations d’un polynôme de IFq[T ] comme norme dans l’extension

IFqh [T ] de IFq[T ] d’un polynôme de IFqh [T ].

1 – Introduction

Let IFq be the finite field with q elements. If q is odd, sums of squares in
IFq[T ] are well known, cf. [2], [3], [4], [5], [6], [7], [8]. In these papers, one can
find formulas which give the number rk(M) of representations of a polynomial
M ∈ IFq[T ] as a sum of k squares. As a corollary to the general result proved by
Carlitz in [1], one may deduce that

r2(M) = (q + 1)
∗
∑

D|M

(−1)degD ,

if −1 is not a square in IFQ, the symbol ∗ being used to indicate that all polyno-
mials D in the sum are monic. This is not true if −1 is a square in IFq. When −1
is not a square in IFq, a sum of two squares in IFq[T ] is a norm of a polynomial
of the extension IFq2 [T ] of IFq[T ]. We shall prove that the above formula is true
in all cases if r2(M) is defined as the number n2(M) of polynomials B ∈ IFq2 [T ],
such thatM is the norm of B in the extension IFq2 [T ] of IFq[T ] and that the num-
ber nh(M) of polynomials B ∈ IFqh [T ], such that M is the norm of a polynomial
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B in the extension IFqh [T ] of IFq[T ] is given by a formula of the same type:

nh(M) =
qh − 1

q − 1

∗
∑

D|M

ε(D) ,

where ε is a multiplicative function to be defined later on.

2 – Notation

If F is any field, we denote by F∗ the set of the non zero elements of F.
Let h be an integer such that h ≥ 2. We denote by N the norm of the

extension IFqh [T ] of IFq[T ]. Let θ ∈ IFqh such that IFqh = IFq(θ). We denote by
θ1 = θ, . . . , θh all the roots of the minimal polynomial of θ over IF. Obviously,
every polynomial A ∈ IFqh [T ] admits an unique representation as a sum

(2.1) A = A0 +A1θ + . . .+Ah−1θ
h−1 ,

and the h conjugates of A are the polynomials

Ai = A0 +A1θi + . . .+Ah−1θ
h−1
i , 1 ≤ i ≤ h .

Since
NA = A1 ×A2 × . . .×Ah ,

there is an homogeneous polynomial Φ ∈ IFq[Y0, . . . , Yh−1], only depending on h,
such for every A = A0 +A1θ + . . .+Ah−1θ

h−1 belonging to IFqh [T ],

(2.2) N(A) = Φ(A0, . . . , Ah−1) ,

and the number nh(A) may be seen as the number of solutions (A0, . . . , Ah−1) ∈
IFh

q of the equation

(2.3) A = Φ(A0, . . . , Ah−1) ,

Let A ∈ IFq[T ]. If there exists A ∈ IFqh [T ] such that A = N(A), we shall say
simply that A is a norm.
Let A ∈ IFQ[T ], resp. A ∈ IFqh [T ] be different from 0. We denote by sgn(A),

resp. sgn(A), the coefficient of the highest degree term in A, resp. in A.
If E is a finite set, we denote by #(E) the number of elements of E.
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3 – The set of norms

Proposition 3.1. If A ∈ IFqh [T ] is monic, then NA) is monic and

deg(N(A)) = h degA.

Proof: Since N(1) = 1, it suffices to prove the proposition for a monic
polynomial A ∈ IFqh [T ] whose degree is positive. Let

A = Tn +
n
∑

i=1

αi T
n−i , αi ∈ IFqh , n ≥ 1 ,

be such a polynomial. For every i = 1, . . . , n, let ai,0, . . . , ai,h−1 ∈ IFq, such that

αi =
h−1
∑

k=0

ai,k θ
k .

If we write A as a sum

(3.1) A = A0 +A1θ + . . .+Ah−1θ
h−1 ,

then

A0 = Tn +
n
∑

i=1

ai,0 T
n−i ,

and, for k = 1, . . . , h− 1,

Ak =
n
∑

i=1

ai,k T
n−i .

From (3.1), we get that

N(A) = Ah
0 + ψ(A0, . . . , Ah−1)

where ψ is a polynomial in IFq[Y0, . . . , Yh−1] which does not contain the monomial
Y h

0 . Whence,

deg
(

ψ(A0, . . . , Ah−1)
)

< hn = deg(Ah
0) ,

deg(N(A)) = hn and the leading term in N(A) is the leading term in Ah
0 , that

is to say T hn.

Proposition 3.2. Let A ∈ IFq[T ] be different from 0. Then, A is a norm if

and only if sgn(A)−1A is a norm. In that case, h divides degA.

Proof: According to Hilbert’s theorem, every non zero element in IFq is
the norm of an element of IFqh , (cf. [1], §11). There exists α ∈ IFqh such that
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sgn(A) = N(α). If sgn(A)−1A is a norm, then A is a norm, and conversely.
Let A ∈ IFqh [T ], A = N(A), H ∈ IFq[T ] and H ∈ IFqh [T ] monic such that
A = sgn(A)H and A = sgn(A)H. Then, sgn(A)H = N(A) = N(sgn(A))N(H).
Since N(H) is monic, H = N(H) and degA = degH = h degH.

Proposition 3.3. Let P ∈ IFq[T ] be monic and irreducible. Then, P is the

norm of a monic polynomial P ∈ IFqh [T ] if and only if h divides degP . In that

case, P is irreducible and its degree is degP
h .

Proof: We suppose P = N(P), where P ∈ IFqh [T ] is monic. Proposition 3.1
says that degP = h degP. It remains to prove that P is irreducible. We suppose
that there exists an integer r ≥ 1, monic irreducible polynomials P1, . . . ,Pr in
IFqh [T ], positive integers e1, . . . , er, such that

P = Pe1
1 × . . .× Per

r .

Then,

P = N(P) = N(Pe1
1 × . . .× Per

r ) = N(P1)
e1 × . . .×N(Pr)

er .

Then, r = 1, e1 = 1 and P = P1 is irreducible.

We suppose that h divides degP . Let

(i) m =
degP

h
.

Let L ∈ IFqh [T ] be monic, irreducible, and such that deg(L) = m. It is well
known that such L exists. A proof of this may be provided by theorem 3.25 of
[9]. Then,

IFqh [T ]/(L) = IFqh deg(L) = IFqdegP = IFq[T ]/(P ) ,

where (L) denotes the ideal generated by L in IFqh [T ], and (P ) the ideal generated
by P in IFq[T ]. In the ring IFqh [T ], L divises P . We put

P = LH ,

with L ∈ IFqh [T ].

Let d be the least integer such that L ∈ IFqd [T ]. Then d divides h and
H ∈ IFqd [T ]. Let L1, . . . ,Ld be the d different conjugates of L in the extension
Fqd [T ] of IFq[T ], and H1, . . . ,Hd be the d conjugates of H in the same extension.
Then, for each index i,

P = LiHi .
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Since L1, . . . ,Ld are distinct irreducible polynomials, the product L1 × . . . × Ld

divides P . Since P is irreducible

(ii)
P = L1 × . . .× Ld ,

degP = d degL1 = d degL .

With (i) we get that h = d and (ii) shows that P is the norm of L1 = L.

Proposition 3.4. Let P ∈ IFq[T ] be monic and irreducible, let

d = G.C.D.(h, degP ) ,

and let a be a non negative integer. Then

(1) There exist d monic irreducible polynomials P1, . . . ,Pd in IFqd [T ] which
remain irreducible in IFqh [T ] such that

P = P1 × . . .× Pd ;

(2) P a is a norm if and only if h
d divides a;

(3) If P a is norm of a polynomial H ∈ IFqh [T ], then,

– If d = 1, H ∈ IFq[T ],

– If d > 1, there exist non negative integers a1, . . . , ad such that

H = Pa1
1 × . . .× Pad

d and
ad

h
= a1 + . . .+ ad .

Proof: Let

k =
h

d
, m =

degP

d
.

Then, k and m are coprime. According to proposition 3.3, there exist d monic
irreducible polynomials P1, . . . ,Pd in IFqd [T ] such that

(i) P = P1 × . . .× Pd .

Let N1 be the norm of the extension IFqd [T ] of IFq[T ]. Let P = P1. Then,

P = N1(P) .

If P is not irreducible in IFqh [T ], then P admits in Fqh [T ] an irreducible factor
L. Since P is irreducible in IFqd [T ], we prove as in proposition 3.3, that P is
the product of the k conjugates of L in the extension IFqh [T ] of IFqd [T ]. Then,
k divides deg(P), so, h divides degP and h = d. If h 6= d, all the Pi remain
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irreducible in IFqh [T ], if h = d, all the Pi are irreducible polynomials in IFqh [T ],
whence (1) is proved.
If P a is a norm, h = kd divides deg(P a) = a degP = amd, so k divides a

and the “if” part of (2) is proved. Let N1 be the norm of the extension IFqd [T ] of
IFq[T ]. Let N2 be the norm of the extension IFqh [T ] of IFqd [T ]. Since P remains
irreducible in IFqh [T ],

N2(P) = P
k ,

whence,
P k = N1(P)

k = N1(P
k) = N1(N2(P)) = N(P) .

Since P k is a norm, every power of P k is a norm, and the “only if” part of (2) is
proved.
Suppose that P a = N(H), with H ∈ IFqh [T ], then a = hb. Let L be an

irreducible factor of H in IFqh [T ] which does not belong to IFq[T ], let δ be the
least integer such that L ∈ IFqδ [T ] and let L1, . . . ,Lδ be the conjugates of L in
the extension Fqδ [T ] of Fq[T ]. They are irreducible in IFqh [T ] and L1 × . . .× Lδ

is an irreducible polynomial in IFq[T ] dividing P
a, so,

(ii) P = L1 × . . .× Lδ .

Since the factorizations (i) and (ii) of P must be the same, d = δ, and the set
{L1, . . .Ld} is equal to the set {P1, . . . ,Pd}. There exist non negative integers
a1, . . . , ad such that H = P

a1
1 × . . .× Pad

d . We have

P a = N(H) = (P k)a1 × . . .× (P k)ad ,

and
a

k
= a1 + . . .+ ad .

If d = 1, P remains irreducible in IFqh [T ] and is the only irreducible divisor of H,

then, H = P b.

Theorem 3.5. Let P1, . . . , Pr, be monic irreducible paiwise distinct polyno-

mials in IFq[T ], let a1, . . . , ar be positive integers, and let

A = P a1
1 × . . .× P ar

r .

Then, A is a norm in the extension IFqh [T ] of IFqd [T ] if and only if for every

i ∈ {1, . . . , r}, h divides ai degPi.

Proof: The above results prove that the condition is sufficient. Let A ∈
IFqh [T ] be monic, such that

A = N(A) .
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We write
A =

∏

d|h

Ad ,

where Ad is the product of all monic irreducible divisors L of A such that L ∈
IFqd [T ] and L /∈ IFqδ [T ] for any δ smaller than d, these divisors being counted
with multiplicity. Let L be an irreducible factor of Ad. Let vL be the L-adic
valuation of A. Let N1 be the norm of the extension IFqd [T ] of IFq[T ], and N2

be the norm of the extension IFqh [T ] of IFqd [T ]. Then, N1(L) is an irreducible
polynomial in IFq[T ], and

N(L) = N1(N2(L)) = N1(L
h/d) = N1(L)

h/d .

So N1(L) is an irreducible divisor of A and it occurs in A with the exponent
h
dvL.

Each term P ai
i is equal to one of the terms N1(L)

vLh/d occuring in A, and

ai degPi = vLh/d deg(N1(L)) .

Since d divides deg(N1(L)), h divides ai degPi.

4 – The functions nh and U

Definition. For every monic polynomial A ∈ IFq[T ], we denote by U(h,A)
the number of monic polynomials A ∈ IFqh [T ] such that A = N(A).

We notice that U(h,A) is the number of principal ideals (A) of IFqh [T ] whose
norm is the principal ideal (A).

Proposition 4.1. Let A ∈ IFq[T ], different from 0. Then

nh(A) =
qh − 1

q − 1
U

(

U,
A

sign(A)

)

.

Proof: Let Y (A), resp. V (A), be the set of polynomials A ∈ IFqh [T ] such

that A = N(A), resp. the set of monic polynomials A ∈ IFqh [T ] such that
A

sgn(A) =

N(A). Then

(i) nh(A) = #Y (A) , U

(

h,
A

sgn(A)

)

= #V (A) .

Let A ∈ Y (A). Then

sgn(A)
A

sgn(A)
= A = N

(

sgn(A)
A

sgn(A)

)

= N(sgn(A))N

(

A

sgn(A)

)

.



578 MIREILLE CAR

Since A
sgn(A) and N(

A
sgn(A)) are monic polynomials in IFq[T ],

sgn(A) = N(sgn(A)) ,
A

sgn(A)
= N

(

A

sgn(A)

)

,

and sgn(A) ∈ Y (sgn(A)), A
sgn(A) ∈ V (

A
sgn(A)). Conversely, if H ∈ V ( A

sgn(A)), and

if α ∈ IFqh is such that N(α) = sgn(A), then αH ∈ Y (A). Whence,

(ii) #Y (A) = #Y (sgn(A))#V

(

A

sgn(A)

)

.

According to Hilbert’s theorem, every b ∈ IF∗
q is norm of an element of IF∗

qh

(cf. [1], §11). So, when b runs through IF∗
q , all the sets Y (b) have the same

cardinality equal to qh−1
q−1 . We may conclude with (i) and (ii).

Proposition 4.2. The function A 7→ U(h,A) is a multiplicative.

Proof: Let A and B be monic and coprime polynomials.

• If U(h,A) = 0, A is not a norm, and, according to theorem 3.5, there exists
an irreducible polynomial P dividing A with an exponent a such that h does not
divide a degP . Since A and B are coprime, P does not divide B, and P divides
AB with the same exponent a, AB is not a norm, and U(h,AB) = 0.

• We suppose U(h,A) = r > 0 and U(h,B) = s > 0. Let A1, . . . ,Ar,
B1, . . . ,Bs, be the different polynomials in IFqh [T ] such that

A = N(A1) = . . . = N(Ar) ,

B = N(B1) = . . . = N(Bs) ,

then,
AB = N(AiBj) , 1 ≤ i ≤ r, 1 ≤ j ≤ s .

Since A and B are coprime, for every i = 1, . . . , r, every j = 1, . . . , s, Ai and Bj

are coprime. Let i ∈ {1, . . . , r}, k ∈ {1, . . . , r}, j ∈ {1, . . . , s}, ` ∈ {1, . . . , s} with
k 6= i. We may suppose that there exists an irreducible polynomial P dividing
Ai such that vP(Ai) 6= vP(Ak), vP being the P-adic valuation. Then, P does not
divide Bj or B`, vP(AiBj) = vP(Ai), vP(AkB`) = vP(Ak) and AiBj 6= AkB`.
Conversely, if H ∈ IFqh [T ] is such that N(H) = AB, every irreducible divisor

of H divides AB. Since A and B are coprime, we may write H as a product

H = HAHB ,

where the irreducible factors of HA, resp. HB are those of A, resp. B,

A = N(HA) , B = N(HB) ,



A GENERALIZATION OF A THEOREM OF CARLITZ 579

and HA, resp. HB is one of the Ai’s, resp. one of the Bi’s. Whence,

U(h,AB) = r s .

Proposition 4.3. Let P be monic and irreducible. Let m be a positive

integer. Then,

(1) If h
G.C.D.(h,degP ) does not divide m, U(h, P

m) = 0,

(2) If h
G.C.D.(h,degP ) divides m, U(h, P

m) = pd

(

mG.C.D.(h,degP )
h

)

,

where pd(b) denotes the number of partitions of the integer b in d parts, that is to
say the number of solutions (b1, . . . , bd) in non negative integers of the equation

b = b1 + . . .+ bd .

Proof: This is a corollary to proposition 3.4.

We define the multiplicative function ε which will be used to generalize Car-
litz’s theorem.

Definition. Let ε be the multiplicative function defined on the set of monic
polynomials by the following conditions. Let P be a monic and irreducible poly-
nomial. Let b, s, r be positive integers. Then,

(1) If G.C.D.(h degP ) = 1,

ε(P hb) = 1 ,

ε(P hb+1) = −1 ,

ε(P hb+r) = 0 if 1 < r < b ,

(2) If G.C.D.(h, degP ) = h,

ε(P b) =

(

b+ h− 2
h− 2

)

,

(3) If G.C.D.(h, degP ) = d > 1, if h
d = k > 1,

ε(P kb) =

(

b+ d− 1
d− 1

)

,

ε(P kb+1) = −

(

b+ d− 1
d− 1

)

,

ε(P kb+r) = 0 if 1 < r < k .
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Theorem 4.4. For any non zero polynomial A, one has

nh(A) =
qh − 1

q − 1

∗
∑

D|A

ε(D) .

Proof: Let

(i) S(A) =
∗
∑

D|A

ε(D) .

According to proposition 4.1, we have to prove that

(ii) S(A) = U(h,A) ,

for every monic polynomial A. Since the functions A 7→ S(A) and A 7→ U(h,A)
are multiplicative, it is sufficient to prove (2) when A is the power Pm of a monic
irreducible polynomial P , i.e., to prove that

(iii) ε(Pm) = U(h, Pm)− U(h, Pm−1) .

We notice that p1(b) = 1 for every integer b. From the identity

(1− x)−d =
∞
∑

j=0

pd(j)x
j ,

we deduce that pd(j) =

(

j + d− 1
d− 1

)

. The above proposition gives the following

results:

• If h and degP are coprime,

U(h, Pm)− U(h, Pm−1) =











1 if h divides m,
−1 if h divides m− 1,
0 otherwise ;

• If h divides degP ,

U(h, Pm)− U(h, Pm−1) = ph(m)− ph(m− 1)

=

(

m+ h− 1
h− 1

)

−

(

m+ h− 2
h− 1

)

,

U(h, Pm)− U(h, Pm−1) =

(

m+ h− 2
h− 2

)

;
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• If G.C.D.(h, degP ) = d > 1, if k = h
d > 1,

U(h, Pm)−U(h, Pm−1) =































pd

(

m

k

)

=

(

m+d−1
d−1

)

if k divides m,

−pd

(

m−1

k

)

=−

(

m+d−1
d−1

)

if k divides m−1,

0 otherwise .

In both cases (iii) is true.
We notice that, if h = 2, ε(H) = (−1)degH for every monic polynomial H, so

theorem 4.4 contains Carlitz’s formula.
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