A GENERALIZATION OF A THEOREM OF CARLITZ

Mireille Car

Abstract

Extending Carlitz's theorem on sums of two squares, we study the number of representations of a polynomial in $\mathbb{F}_{q}[T]$ as a norm in the extension $\mathbb{F}_{q^{h}}[T]$ of $\mathbb{F}_{q}[T]$ of a polynomial in $\mathbb{F}_{q^{h}}[T]$.

Généralisant un théorème de Carlitz sur les sommes de deux carrés, nous étudions le nombre de représentations d'un polynôme de $\mathbb{F}_{q}[T]$ comme norme dans l'extension $\mathbb{F}_{q^{h}}[T]$ de $\mathbb{F}_{q}[T]$ d'un polynôme de $\mathbb{F}_{q^{h}}[T]$.

1 - Introduction

Let \mathbb{F}_{q} be the finite field with q elements. If q is odd, sums of squares in $\mathbb{F}_{q}[T]$ are well known, cf. [2], [3], [4], [5], [6], [7], [8]. In these papers, one can find formulas which give the number $r_{k}(M)$ of representations of a polynomial $M \in \mathbb{F}_{q}[T]$ as a sum of k squares. As a corollary to the general result proved by Carlitz in [1], one may deduce that

$$
r_{2}(M)=(q+1) \sum_{D \mid M}^{*}(-1)^{\operatorname{deg} D}
$$

if -1 is not a square in \mathbb{F}_{Q}, the symbol $*$ being used to indicate that all polynomials D in the sum are monic. This is not true if -1 is a square in \mathbb{F}_{q}. When -1 is not a square in \mathbb{F}_{q}, a sum of two squares in $\mathbb{F}_{q}[T]$ is a norm of a polynomial of the extension $\mathbb{F}_{q^{2}}[T]$ of $\mathbb{F}_{q}[T]$. We shall prove that the above formula is true in all cases if $r_{2}(M)$ is defined as the number $\mathrm{n}_{2}(M)$ of polynomials $\mathcal{B} \in \mathbb{F}_{q^{2}}[T]$, such that M is the norm of \mathcal{B} in the extension $\mathbb{F}_{q^{2}}[T]$ of $\mathbb{F}_{q}[T]$ and that the number $\mathrm{n}_{h}(M)$ of polynomials $\mathcal{B} \in \mathbb{F}_{q^{h}}[T]$, such that M is the norm of a polynomial

[^0]\mathcal{B} in the extension $\mathbb{F}_{q^{h}}[T]$ of $\mathbb{F}_{q}[T]$ is given by a formula of the same type:
$$
\mathrm{n}_{h}(M)=\frac{q^{h}-1}{q-1} \sum_{D \mid M}^{*} \epsilon(D),
$$
where ϵ is a multiplicative function to be defined later on.

2 - Notation

If \mathbf{F} is any field, we denote by \mathbf{F}^{*} the set of the non zero elements of \mathbf{F}.
Let h be an integer such that $h \geq 2$. We denote by N the norm of the extension $\mathbb{F}_{q^{h}}[T]$ of $\mathbb{F}_{q}[T]$. Let $\theta \in \mathbb{F}_{q^{h}}$ such that $\mathbb{F}_{q^{h}}=\mathbb{F}_{q}(\theta)$. We denote by $\theta_{1}=\theta, \ldots, \theta_{h}$ all the roots of the minimal polynomial of θ over \mathbb{F}. Obviously, every polynomial $\mathcal{A} \in \mathbb{F}_{q^{h}}[T]$ admits an unique representation as a sum

$$
\begin{equation*}
\mathcal{A}=A_{0}+A_{1} \theta+\ldots+A_{h-1} \theta^{h-1}, \tag{2.1}
\end{equation*}
$$

and the h conjugates of \mathcal{A} are the polynomials

$$
\mathcal{A}_{i}=A_{0}+A_{1} \theta_{i}+\ldots+A_{h-1} \theta_{i}^{h-1}, \quad 1 \leq i \leq h .
$$

Since

$$
N \mathcal{A}=\mathcal{A}_{1} \times \mathcal{A}_{2} \times \ldots \times \mathcal{A}_{h},
$$

there is an homogeneous polynomial $\Phi \in \mathbb{F}_{q}\left[Y_{0}, \ldots, Y_{h-1}\right]$, only depending on h, such for every $\mathcal{A}=A_{0}+A_{1} \theta+\ldots+A_{h-1} \theta^{h-1}$ belonging to $\mathbb{F}_{q^{h}}[T]$,

$$
\begin{equation*}
N(\mathcal{A})=\Phi\left(A_{0}, \ldots, A_{h-1}\right) \tag{2.2}
\end{equation*}
$$

and the number $\mathrm{n}_{h}(A)$ may be seen as the number of solutions $\left(A_{0}, \ldots, A_{h-1}\right) \in$ \mathbb{F}_{q}^{h} of the equation

$$
\begin{equation*}
A=\Phi\left(A_{0}, \ldots, A_{h-1}\right), \tag{2.3}
\end{equation*}
$$

Let $A \in \mathbb{F}_{q}[T]$. If there exists $\mathcal{A} \in \mathbb{F}_{q^{h}}[T]$ such that $A=N(\mathcal{A})$, we shall say simply that A is a norm.

Let $A \in \mathbb{F}_{Q}[T]$, resp. $\mathcal{A} \in \mathbb{F}_{q^{h}}[T]$ be different from 0 . We denote by $\operatorname{sgn}(A)$, resp. $\operatorname{sgn}(\mathcal{A})$, the coefficient of the highest degree term in A, resp. in \mathcal{A}.

If E is a finite set, we denote by $\#(E)$ the number of elements of E.

3 - The set of norms

Proposition 3.1. If $\mathcal{A} \in \mathbb{F}_{q^{h}}[T]$ is monic, then $N \mathcal{A}$) is monic and $\operatorname{deg}(N(\mathcal{A}))=h \operatorname{deg} \mathcal{A}$.

Proof: Since $N(1)=1$, it suffices to prove the proposition for a monic polynomial $\mathcal{A} \in \mathbb{F}_{q^{h}}[T]$ whose degree is positive. Let

$$
\mathcal{A}=T^{n}+\sum_{i=1}^{n} \alpha_{i} T^{n-i}, \quad \alpha_{i} \in \mathbb{F}_{q^{h}}, \quad n \geq 1
$$

be such a polynomial. For every $i=1, \ldots, n$, let $a_{i, 0}, \ldots, a_{i, h-1} \in \mathbb{F}_{q}$, such that

$$
\alpha_{i}=\sum_{k=0}^{h-1} a_{i, k} \theta^{k} .
$$

If we write \mathcal{A} as a sum

$$
\begin{equation*}
\mathcal{A}=A_{0}+A_{1} \theta+\ldots+A_{h-1} \theta^{h-1}, \tag{3.1}
\end{equation*}
$$

then

$$
A_{0}=T^{n}+\sum_{i=1}^{n} a_{i, 0} T^{n-i},
$$

and, for $k=1, \ldots, h-1$,

$$
A_{k}=\sum_{i=1}^{n} a_{i, k} T^{n-i} .
$$

From (3.1), we get that

$$
N(\mathcal{A})=A_{0}^{h}+\psi\left(A_{0}, \ldots, A_{h-1}\right)
$$

where ψ is a polynomial in $\mathbb{F}_{q}\left[Y_{0}, \ldots, Y_{h-1}\right]$ which does not contain the monomial Y_{0}^{h}. Whence,

$$
\operatorname{deg}\left(\psi\left(A_{0}, \ldots, A_{h-1}\right)\right)<h n=\operatorname{deg}\left(A_{0}^{h}\right)
$$

$\operatorname{deg}(N(\mathcal{A}))=h n$ and the leading term in $N(\mathcal{A})$ is the leading term in A_{0}^{h}, that is to say $T^{h n}$.

Proposition 3.2. Let $A \in \mathbb{F}_{q}[T]$ be different from 0 . Then, A is a norm if and only if $\operatorname{sgn}(A)^{-1} A$ is a norm. In that case, h divides $\operatorname{deg} A$.

Proof: According to Hilbert's theorem, every non zero element in \mathbb{F}_{q} is the norm of an element of $\mathbb{F}_{q^{h}}$, (cf. [1], §11). There exists $\alpha \in \mathbb{F}_{q^{h}}$ such that
$\operatorname{sgn}(A)=N(\alpha)$. If $\operatorname{sgn}(A)^{-1} A$ is a norm, then A is a norm, and conversely. Let $\mathcal{A} \in \mathbb{F}_{q^{h}}[T], A=N(\mathcal{A}), H \in \mathbb{F}_{q}[T]$ and $\mathcal{H} \in \mathbb{F}_{q^{h}}[T]$ monic such that $A=\operatorname{sgn}(A) H$ and $\mathcal{A}=\operatorname{sgn}(\mathcal{A}) \mathcal{H}$. Then, $\operatorname{sgn}(A) H=N(\mathcal{A})=N(\operatorname{sgn}(\mathcal{A})) N(\mathcal{H})$. Since $N(\mathcal{H})$ is monic, $H=N(\mathcal{H})$ and $\operatorname{deg} A=\operatorname{deg} H=h \operatorname{deg} \mathcal{H}$.

Proposition 3.3. Let $P \in \mathbb{F}_{q}[T]$ be monic and irreducible. Then, P is the norm of a monic polynomial $\mathcal{P} \in \mathbb{F}_{q^{h}}[T]$ if and only if h divides $\operatorname{deg} P$. In that case, \mathcal{P} is irreducible and its degree is $\frac{\operatorname{deg} P}{h}$.

Proof: We suppose $P=N(\mathcal{P})$, where $\mathcal{P} \in \mathbb{F}_{q^{h}}[T]$ is monic. Proposition 3.1 says that $\operatorname{deg} P=h \operatorname{deg} \mathcal{P}$. It remains to prove that \mathcal{P} is irreducible. We suppose that there exists an integer $r \geq 1$, monic irreducible polynomials $\mathcal{P}_{1}, \ldots, \mathcal{P}_{r}$ in $\mathbb{F}_{q^{h}}[T]$, positive integers e_{1}, \ldots, e_{r}, such that

$$
\mathcal{P}=\mathcal{P}_{1}^{e_{1}} \times \ldots \times \mathcal{P}_{r}^{e_{r}} .
$$

Then,

$$
P=N(\mathcal{P})=N\left(\mathcal{P}_{1}^{e_{1}} \times \ldots \times \mathcal{P}_{r}^{e_{r}}\right)=N\left(\mathcal{P}_{1}\right)^{e_{1}} \times \ldots \times N\left(\mathcal{P}_{r}\right)^{e_{r}}
$$

Then, $r=1, e_{1}=1$ and $\mathcal{P}=\mathcal{P}_{1}$ is irreducible.
We suppose that h divides $\operatorname{deg} P$. Let

$$
\begin{equation*}
m=\frac{\operatorname{deg} P}{h} . \tag{i}
\end{equation*}
$$

Let $\mathcal{L} \in \mathbb{F}_{q^{h}}[T]$ be monic, irreducible, and such that $\operatorname{deg}(\mathcal{L})=m$. It is well known that such \mathcal{L} exists. A proof of this may be provided by theorem 3.25 of [9]. Then,

$$
\mathbb{F}_{q^{h}}[T] /(\mathcal{L})=\mathbb{F}_{q^{h \operatorname{deg}(\mathcal{L})}}=\mathbb{F}_{q^{\operatorname{deg} P}}=\mathbb{F}_{q}[T] /(P)
$$

where (\mathcal{L}) denotes the ideal generated by \mathcal{L} in $\mathbb{F}_{q^{h}}[T]$, and (P) the ideal generated by P in $\mathbb{F}_{q}[T]$. In the ring $\mathbb{F}_{q^{h}}[T], \mathcal{L}$ divises P. We put

$$
P=\mathcal{L} \mathcal{H},
$$

with $\mathcal{L} \in \mathbb{F}_{q^{h}}[T]$.
Let d be the least integer such that $\mathcal{L} \in \mathbb{F}_{q^{d}}[T]$. Then d divides h and $\mathcal{H} \in \mathbb{F}_{q^{d}}[T]$. Let $\mathcal{L}_{1}, \ldots, \mathcal{L}_{d}$ be the d different conjugates of \mathcal{L} in the extension $\mathcal{F}_{q^{d}}[T]$ of $\mathbb{F}_{q}[T]$, and $\mathcal{H}_{1}, \ldots, \mathcal{H}_{d}$ be the d conjugates of \mathcal{H} in the same extension. Then, for each index i,

$$
P=\mathcal{L}_{i} \mathcal{H}_{i} .
$$

Since $\mathcal{L}_{1}, \ldots, \mathcal{L}_{d}$ are distinct irreducible polynomials, the product $\mathcal{L}_{1} \times \ldots \times \mathcal{L}_{d}$ divides P. Since P is irreducible

$$
\begin{align*}
P & =\mathcal{L}_{1} \times \ldots \times \mathcal{L}_{d}, \\
\operatorname{deg} P & =d \operatorname{deg} \mathcal{L}_{1}=d \operatorname{deg} \mathcal{L} . \tag{ii}
\end{align*}
$$

With (i) we get that $h=d$ and (ii) shows that P is the norm of $\mathcal{L}_{1}=\mathcal{L}$.
Proposition 3.4. Let $P \in \mathbb{F}_{q}[T]$ be monic and irreducible, let

$$
d=\text { G.C.D. }(h, \operatorname{deg} P),
$$

and let a be a non negative integer. Then
(1) There exist d monic irreducible polynomials $\mathcal{P}_{1}, \ldots, \mathcal{P}_{d}$ in $\mathbf{F}_{q^{d}}[T]$ which remain irreducible in $\mathbb{F}_{q^{h}}[T]$ such that

$$
P=\mathcal{P}_{1} \times \ldots \times \mathcal{P}_{d}
$$

(2) P^{a} is a norm if and only if $\frac{h}{d}$ divides a;
(3) If P^{a} is norm of a polynomial $\mathcal{H} \in \mathbb{F}_{q^{h}}[T]$, then,

- If $d=1, \mathcal{H} \in \mathbb{F}_{q}[T]$,
- If $d>1$, there exist non negative integers a_{1}, \ldots, a_{d} such that

$$
\mathcal{H}=\mathcal{P}_{1}^{a_{1}} \times \ldots \times \mathcal{P}_{d}^{a_{d}} \quad \text { and } \quad \frac{a d}{h}=a_{1}+\ldots+a_{d}
$$

Proof: Let

$$
k=\frac{h}{d}, \quad m=\frac{\operatorname{deg} P}{d} .
$$

Then, k and m are coprime. According to proposition 3.3, there exist d monic irreducible polynomials $\mathcal{P}_{1}, \ldots, \mathcal{P}_{d}$ in $\mathbb{F}_{q^{d}}[T]$ such that

$$
\begin{equation*}
P=\mathcal{P}_{1} \times \ldots \times \mathcal{P}_{d} \tag{i}
\end{equation*}
$$

Let N_{1} be the norm of the extension $\mathbb{F}_{q^{d}}[T]$ of $\mathbb{F}_{q}[T]$. Let $\mathcal{P}=\mathcal{P}_{1}$. Then,

$$
P=N_{1}(\mathcal{P})
$$

If \mathcal{P} is not irreducible in $\mathbb{F}_{q^{h}}[T]$, then \mathcal{P} admits in $\mathcal{F}_{q^{h}}[T]$ an irreducible factor \mathcal{L}. Since \mathcal{P} is irreducible in $\mathbb{F}_{q^{d}}[T]$, we prove as in proposition 3.3, that \mathcal{P} is the product of the k conjugates of \mathcal{L} in the extension $\mathbb{F}_{q^{h}}[T]$ of $\mathbb{F}_{q^{d}}[T]$. Then, k divides $\operatorname{deg}(\mathcal{P})$, so, h divides $\operatorname{deg} P$ and $h=d$. If $h \neq d$, all the \mathcal{P}_{i} remain
irreducible in $\mathbb{F}_{q^{h}}[T]$, if $h=d$, all the \mathcal{P}_{i} are irreducible polynomials in $\mathbb{F}_{q^{h}}[T]$, whence (1) is proved.

If P^{a} is a norm, $h=k d$ divides $\operatorname{deg}\left(P^{a}\right)=a \operatorname{deg} P=a m d$, so k divides a and the "if" part of (2) is proved. Let N_{1} be the norm of the extension $\mathbb{F}_{q^{d}}[T]$ of $\mathbb{F}_{q}[T]$. Let N_{2} be the norm of the extension $\mathbb{F}_{q^{h}}[T]$ of $\mathbb{F}_{q^{d}}[T]$. Since \mathcal{P} remains irreducible in $\mathbb{F}_{q^{h}}[T]$,

$$
N_{2}(\mathcal{P})=\mathcal{P}^{k}
$$

whence,

$$
P^{k}=N_{1}(\mathcal{P})^{k}=N_{1}\left(\mathcal{P}^{k}\right)=N_{1}\left(N_{2}(\mathcal{P})\right)=N(\mathcal{P})
$$

Since P^{k} is a norm, every power of P^{k} is a norm, and the "only if" part of (2) is proved.

Suppose that $P^{a}=N(\mathcal{H})$, with $\mathcal{H} \in \mathbb{F}_{q^{h}}[T]$, then $a=h b$. Let \mathcal{L} be an irreducible factor of \mathcal{H} in $\mathbb{F}_{q^{h}}[T]$ which does not belong to $\mathbb{F}_{q}[T]$, let δ be the least integer such that $\mathcal{L} \in \mathbb{F}_{q^{\delta}}[T]$ and let $\mathcal{L}_{1}, \ldots, \mathcal{L}_{\delta}$ be the conjugates of \mathcal{L} in the extension $\mathcal{F}_{q^{s}}[T]$ of $\mathcal{F}_{q}[T]$. They are irreducible in $\mathbb{F}_{q^{h}}[T]$ and $\mathcal{L}_{1} \times \ldots \times \mathcal{L}_{\delta}$ is an irreducible polynomial in $\mathbb{F}_{q}[T]$ dividing P^{a}, so,

$$
\begin{equation*}
P=\mathcal{L}_{1} \times \ldots \times \mathcal{L}_{\delta} \tag{ii}
\end{equation*}
$$

Since the factorizations (i) and (ii) of P must be the same, $d=\delta$, and the set $\left\{\mathcal{L}_{1}, \ldots \mathcal{L}_{d}\right\}$ is equal to the set $\left\{\mathcal{P}_{1}, \ldots, \mathcal{P}_{d}\right\}$. There exist non negative integers a_{1}, \ldots, a_{d} such that $\mathcal{H}=\mathcal{P}_{1}^{a_{1}} \times \ldots \times \mathcal{P}_{d}^{a_{d}}$. We have

$$
P^{a}=N(\mathcal{H})=\left(P^{k}\right)^{a_{1}} \times \ldots \times\left(P^{k}\right)^{a_{d}}
$$

and

$$
\frac{a}{k}=a_{1}+\ldots+a_{d} .
$$

If $d=1, P$ remains irreducible in $\mathbb{F}_{q^{h}}[T]$ and is the only irreducible divisor of \mathcal{H}, then, $\mathcal{H}=P^{b}$.

Theorem 3.5. Let P_{1}, \ldots, P_{r}, be monic irreducible paiwise distinct polynomials in $\mathbb{F}_{q}[T]$, let a_{1}, \ldots, a_{r} be positive integers, and let

$$
A=P_{1}^{a_{1}} \times \ldots \times P_{r}^{a_{r}}
$$

Then, A is a norm in the extension $\mathbb{F}_{q^{h}}[T]$ of $\mathbb{F}_{q^{d}}[T]$ if and only if for every $i \in\{1, \ldots, r\}, h$ divides $a_{i} \operatorname{deg} P_{i}$.

Proof: The above results prove that the condition is sufficient. Let $\mathcal{A} \in$ $\mathbb{F}_{q^{h}}[T]$ be monic, such that

$$
A=N(\mathcal{A})
$$

We write

$$
\mathcal{A}=\prod_{d \mid h} \mathcal{A}_{d}
$$

where \mathcal{A}_{d} is the product of all monic irreducible divisors \mathcal{L} of \mathcal{A} such that $\mathcal{L} \in$ $\mathbb{F}_{q^{d}}[T]$ and $\mathcal{L} \notin \mathbb{F}_{q^{\delta}}[T]$ for any δ smaller than d, these divisors being counted with multiplicity. Let \mathcal{L} be an irreducible factor of \mathcal{A}_{d}. Let $v_{\mathcal{L}}$ be the \mathcal{L}-adic valuation of \mathcal{A}. Let N_{1} be the norm of the extension $\mathbb{F}_{q^{d}}[T]$ of $\mathbb{F}_{q}[T]$, and N_{2} be the norm of the extension $\mathbb{F}_{q^{h}}[T]$ of $\mathbb{F}_{q^{d}}[T]$. Then, $N_{1}(\mathcal{L})$ is an irreducible polynomial in $\mathbb{F}_{q}[T]$, and

$$
N(\mathcal{L})=N_{1}\left(N_{2}(\mathcal{L})\right)=N_{1}\left(\mathcal{L}^{h / d}\right)=N_{1}(\mathcal{L})^{h / d}
$$

So $N_{1}(\mathcal{L})$ is an irreducible divisor of A and it occurs in A with the exponent $\frac{h}{d} v_{\mathcal{L}}$. Each term $P_{i}^{a_{i}}$ is equal to one of the terms $N_{1}(\mathcal{L})^{v_{\mathcal{L}} h / d}$ occuring in A, and

$$
a_{i} \operatorname{deg} P_{i}=v_{\mathcal{L}} h / d \operatorname{deg}\left(N_{1}(\mathcal{L})\right)
$$

Since d divides $\operatorname{deg}\left(N_{1}(\mathcal{L})\right), h$ divides $a_{i} \operatorname{deg} P_{i}$.

4 - The functions n_{h} and U

Definition. For every monic polynomial $A \in \mathbb{F}_{q}[T]$, we denote by $U(h, A)$ the number of monic polynomials $\mathcal{A} \in \mathbb{F}_{q^{h}}[T]$ such that $A=N(\mathcal{A})$.

We notice that $U(h, A)$ is the number of principal ideals (\mathcal{A}) of $\mathbb{F}_{q^{h}}[T]$ whose norm is the principal ideal (A).

Proposition 4.1. Let $A \in \mathbb{F}_{q}[T]$, different from 0 . Then

$$
\mathrm{n}_{h}(A)=\frac{q^{h}-1}{q-1} U\left(U, \frac{A}{\operatorname{sign}(A)}\right)
$$

Proof: Let $Y(A)$, resp. $V(A)$, be the set of polynomials $\mathcal{A} \in \mathbb{F}_{q^{h}}[T]$ such that $A=N(\mathcal{A})$, resp. the set of monic polynomials $\mathcal{A} \in \mathbb{F}_{q^{h}}[T]$ such that $\frac{A}{\operatorname{sgn}(A)}=$ $N(\mathcal{A})$. Then

$$
\begin{equation*}
\mathrm{n}_{h}(A)=\# Y(A), \quad U\left(h, \frac{A}{\operatorname{sgn}(A)}\right)=\# V(A) \tag{i}
\end{equation*}
$$

Let $\mathcal{A} \in Y(A)$. Then

$$
\operatorname{sgn}(A) \frac{A}{\operatorname{sgn}(A)}=A=N\left(\operatorname{sgn}(\mathcal{A}) \frac{\mathcal{A}}{\operatorname{sgn}(\mathcal{A})}\right)=N(\operatorname{sgn}(\mathcal{A})) N\left(\frac{\mathcal{A}}{\operatorname{sgn}(\mathcal{A})}\right)
$$

Since $\frac{A}{\operatorname{sgn}(A)}$ and $N\left(\frac{\mathcal{A}}{\operatorname{sgn}(\mathcal{A})}\right)$ are monic polynomials in $\mathbb{F}_{q}[T]$,

$$
\operatorname{sgn}(A)=N(\operatorname{sgn}(\mathcal{A})), \quad \frac{A}{\operatorname{sgn}(A)}=N\left(\frac{\mathcal{A}}{\operatorname{sgn}(\mathcal{A})}\right)
$$

and $\operatorname{sgn}(\mathcal{A}) \in Y(\operatorname{sgn}(A)), \frac{\mathcal{A}}{\operatorname{sgn}(\mathcal{A})} \in V\left(\frac{A}{\operatorname{sgn}(A)}\right)$. Conversely, if $\mathcal{H} \in V\left(\frac{A}{\operatorname{sgn}(A)}\right)$, and if $\alpha \in \mathbb{F}_{q^{h}}$ is such that $N(\alpha)=\operatorname{sgn}(A)$, then $\alpha \mathcal{H} \in Y(A)$. Whence,

$$
\begin{equation*}
\# Y(A)=\# Y(\operatorname{sgn}(A)) \# V\left(\frac{A}{\operatorname{sgn}(A)}\right) \tag{ii}
\end{equation*}
$$

According to Hilbert's theorem, every $b \in \mathbb{F}_{q}^{*}$ is norm of an element of $\mathbf{F}_{q^{h}}^{*}$ (cf. [1], §11). So, when b runs through \mathbb{F}_{q}^{*}, all the sets $Y(b)$ have the same cardinality equal to $\frac{q^{h}-1}{q-1}$. We may conclude with (i) and (ii).

Proposition 4.2. The function $A \mapsto U(h, A)$ is a multiplicative.
Proof: Let A and B be monic and coprime polynomials.

- If $U(h, A)=0, A$ is not a norm, and, according to theorem 3.5, there exists an irreducible polynomial P dividing A with an exponent a such that h does not divide $a \operatorname{deg} P$. Since A and B are coprime, P does not divide B, and P divides $A B$ with the same exponent $a, A B$ is not a norm, and $U(h, A B)=0$.
- We suppose $U(h, A)=r>0$ and $U(h, B)=s>0$. Let $\mathcal{A}_{1}, \ldots, \mathcal{A}_{r}$, $\mathcal{B}_{1}, \ldots, \mathcal{B}_{s}$, be the different polynomials in $\mathbb{F}_{q^{h}}[T]$ such that

$$
\begin{aligned}
& A=N\left(\mathcal{A}_{1}\right)=\ldots=N\left(\mathcal{A}_{r}\right), \\
& B=N\left(\mathcal{B}_{1}\right)=\ldots=N\left(\mathcal{B}_{s}\right),
\end{aligned}
$$

then,

$$
A B=N\left(\mathcal{A}_{i} \mathcal{B}_{j}\right), \quad 1 \leq i \leq r, \quad 1 \leq j \leq s
$$

Since A and B are coprime, for every $i=1, \ldots, r$, every $j=1, \ldots, s, \mathcal{A}_{i}$ and \mathcal{B}_{j} are coprime. Let $i \in\{1, \ldots, r\}, k \in\{1, \ldots, r\}, j \in\{1, \ldots, s\}, \ell \in\{1, \ldots, s\}$ with $k \neq i$. We may suppose that there exists an irreducible polynomial \mathcal{P} dividing \mathcal{A}_{i} such that $v_{\mathcal{P}}\left(\mathcal{A}_{i}\right) \neq v_{\mathcal{P}}\left(\mathcal{A}_{k}\right), v_{\mathcal{P}}$ being the \mathcal{P}-adic valuation. Then, \mathcal{P} does not divide \mathcal{B}_{j} or $\mathcal{B}_{\ell}, v_{\mathcal{P}}\left(\mathcal{A}_{i} \mathcal{B}_{j}\right)=v_{\mathcal{P}}\left(\mathcal{A}_{i}\right), v_{\mathcal{P}}\left(\mathcal{A}_{k} \mathcal{B}_{\ell}\right)=v_{\mathcal{P}}\left(\mathcal{A}_{k}\right)$ and $\mathcal{A}_{i} \mathcal{B}_{j} \neq \mathcal{A}_{k} \mathcal{B}_{\ell}$.

Conversely, if $\mathcal{H} \in \mathbb{F}_{q^{h}}[T]$ is such that $N(\mathcal{H})=A B$, every irreducible divisor of \mathcal{H} divides $A B$. Since A and B are coprime, we may write \mathcal{H} as a product

$$
\mathcal{H}=\mathcal{H}_{A} \mathcal{H}_{B}
$$

where the irreducible factors of \mathcal{H}_{A}, resp. \mathcal{H}_{B} are those of A, resp. B,

$$
A=N\left(\mathcal{H}_{A}\right), \quad B=N\left(\mathcal{H}_{B}\right)
$$

and \mathcal{H}_{A}, resp. \mathcal{H}_{B} is one of the \mathcal{A}_{i} 's, resp. one of the $\mathcal{B}_{i}{ }^{\prime}$'s. Whence,

$$
U(h, A B)=r s
$$

Proposition 4.3. Let P be monic and irreducible. Let m be a positive integer. Then,
(1) If $\frac{h}{\text { G.C.D. }(h, \operatorname{deg} P)}$ does not divide $m, U\left(h, P^{m}\right)=0$,
(2) If $\frac{h}{\text { G.C.D. }(h, \operatorname{deg} P)}$ divides $m, U\left(h, P^{m}\right)=\mathrm{p}_{d}\left(m \frac{\text { G.C.D. }(h, \operatorname{deg} P)}{h}\right)$,
where $\mathrm{P}_{d}(b)$ denotes the number of partitions of the integer b in d parts, that is to say the number of solutions $\left(b_{1}, \ldots, b_{d}\right)$ in non negative integers of the equation

$$
b=b_{1}+\ldots+b_{d}
$$

Proof: This is a corollary to proposition 3.4.
We define the multiplicative function ϵ which will be used to generalize Carlitz's theorem.

Definition. Let ϵ be the multiplicative function defined on the set of monic polynomials by the following conditions. Let P be a monic and irreducible polynomial. Let b, s, r be positive integers. Then,
(1) If G.C.D. $(h \operatorname{deg} P)=1$,

$$
\begin{aligned}
& \epsilon\left(P^{h b}\right)=1, \\
& \epsilon\left(P^{h b+1}\right)=-1, \\
& \epsilon\left(P^{h b+r}\right)=0 \quad \text { if } 1<r<b,
\end{aligned}
$$

(2) If G.C.D. $(h, \operatorname{deg} P)=h$,

$$
\epsilon\left(P^{b}\right)=\binom{b+h-2}{h-2}
$$

(3) If G.C.D. $(h, \operatorname{deg} P)=d>1$, if $\frac{h}{d}=k>1$,

$$
\begin{aligned}
& \epsilon\left(P^{k b}\right)=\binom{b+d-1}{d-1} \\
& \epsilon\left(P^{k b+1}\right)=-\binom{b+d-1}{d-1} \\
& \epsilon\left(P^{k b+r}\right)=0 \quad \text { if } 1<r<k
\end{aligned}
$$

Theorem 4.4. For any non zero polynomial A, one has

$$
\mathrm{n}_{h}(A)=\frac{q^{h}-1}{q-1} \sum_{D \mid A}^{*} \epsilon(D)
$$

Proof: Let
(i)

$$
S(A)=\sum_{D \mid A}^{*} \epsilon(D) .
$$

According to proposition 4.1, we have to prove that

$$
\begin{equation*}
S(A)=U(h, A), \tag{ii}
\end{equation*}
$$

for every monic polynomial A. Since the functions $A \mapsto S(A)$ and $A \mapsto U(h, A)$ are multiplicative, it is sufficient to prove (2) when A is the power P^{m} of a monic irreducible polynomial P, i.e., to prove that

$$
\begin{equation*}
\epsilon\left(P^{m}\right)=U\left(h, P^{m}\right)-U\left(h, P^{m-1}\right) . \tag{iii}
\end{equation*}
$$

We notice that $\mathrm{p}_{1}(b)=1$ for every integer b. From the identity

$$
(1-x)^{-d}=\sum_{j=0}^{\infty} \mathrm{p}_{d}(j) x^{j},
$$

we deduce that $\mathrm{p}_{d}(j)=\binom{j+d-1}{d-1}$. The above proposition gives the following results:

- If h and $\operatorname{deg} P$ are coprime,

$$
U\left(h, P^{m}\right)-U\left(h, P^{m-1}\right)=\left\{\begin{aligned}
1 & \text { if } h \text { divides } m \\
-1 & \text { if } h \text { divides } m-1 \\
0 & \text { otherwise }
\end{aligned}\right.
$$

- If h divides $\operatorname{deg} P$,

$$
\begin{aligned}
U\left(h, P^{m}\right)-U\left(h, P^{m-1}\right) & =\mathrm{p}_{h}(m)-\mathrm{p}_{h}(m-1) \\
& =\binom{m+h-1}{h-1}-\binom{m+h-2}{h-1}, \\
U\left(h, P^{m}\right)-U\left(h, P^{m-1}\right) & =\binom{m+h-2}{h-2} ;
\end{aligned}
$$

- If G.C.D. $(h, \operatorname{deg} P)=d>1$, if $k=\frac{h}{d}>1$,
$U\left(h, P^{m}\right)-U\left(h, P^{m-1}\right)= \begin{cases}\mathrm{p}_{d}\left(\frac{m}{k}\right)=\binom{m+d-1}{d-1} & \text { if } k \text { divides } m, \\ -\mathrm{p}_{d}\left(\frac{m-1}{k}\right)=-\binom{m+d-1}{d-1} & \text { if } k \text { divides } m-1, \\ 0 & \text { otherwise } .\end{cases}$
In both cases (i iii) is true.
We notice that, if $h=2, \epsilon(H)=(-1)^{\operatorname{deg} H}$ for every monic polynomial H, so theorem 4.4 contains Carlitz's formula.

REFERENCES

[1] Bourbaki, N. - Algèbre, Chapitre 5, Hermann, France.
[2] Carlitz, L. - On the representations of a polynomial on a Galois field as the sum of an even number of squares, Trans. Amer. Math. Soc., 35 (1933), 397-410.
[3] Carlitz, L. - On the representations of a polynomial on a Galois field as the sum of an odd number of squares, Duke Math. Jour., 1 (1935), 298-315.
[4] Carlitz, L. - Sums of squares of polynomials, Duke Math. Jour., 3 (1937), 1-7.
[5] Carlitz, L. - The singular series for sums of squares of polynomials, Duke Math. Jour., 14 (1947), 1105-1120.
[6] Cohen, E. - Sums of an even number of squares on $G F\left[p^{n}, x\right]$, I, Duke Math. Jour., 14, 251-267.
[7] Cohen, E. - Sums of an even number of squares on $G F\left[p^{n}, x\right]$, II, Duke Math. Jour., 14, 543-557.
[8] Cohen, E. - Sums of an odd number of squares on $G F\left[p^{n}, x\right]$, I, Duke Math. Jour., $15,501-511$.
[9] Lidl, R. and Niederreiter, H. - Introduction to Finite Fields and their Applications, Cambridge University Press.

[^0]: Received: April 24, 1992; Revised: November 13, 1992.

