PORTUGALIAE MATHEMATICA Vol. 51 Fasc. 4 – 1994

A GENERALIZATION OF A THEOREM OF CARLITZ

MIREILLE CAR

Abstract: Extending Carlitz's theorem on sums of two squares, we study the number of representations of a polynomial in $\mathbf{F}_q[T]$ as a norm in the extension $\mathbf{F}_{q^h}[T]$ of $\mathbf{F}_q[T]$ of a polynomial in $\mathbf{F}_{q^h}[T]$.

Généralisant un théorème de Carlitz sur les sommes de deux carrés, nous étudions le nombre de représentations d'un polynôme de $\mathbf{F}_q[T]$ comme norme dans l'extension $\mathbf{F}_{q^h}[T]$ de $\mathbf{F}_q[T]$ d'un polynôme de $\mathbf{F}_{q^h}[T]$.

1 – Introduction

Let \mathbf{F}_q be the finite field with q elements. If q is odd, sums of squares in $\mathbf{F}_q[T]$ are well known, cf. [2], [3], [4], [5], [6], [7], [8]. In these papers, one can find formulas which give the number $r_k(M)$ of representations of a polynomial $M \in \mathbf{F}_q[T]$ as a sum of k squares. As a corollary to the general result proved by Carlitz in [1], one may deduce that

$$r_2(M) = (q+1) \sum_{D|M}^* (-1)^{\deg D} ,$$

if -1 is not a square in \mathbf{F}_Q , the symbol * being used to indicate that all polynomials D in the sum are monic. This is not true if -1 is a square in \mathbf{F}_q . When -1 is not a square in \mathbf{F}_q , a sum of two squares in $\mathbf{F}_q[T]$ is a norm of a polynomial of the extension $\mathbf{F}_{q^2}[T]$ of $\mathbf{F}_q[T]$. We shall prove that the above formula is true in all cases if $r_2(M)$ is defined as the number $\mathbf{n}_2(M)$ of polynomials $\mathcal{B} \in \mathbf{F}_{q^2}[T]$, such that M is the norm of \mathcal{B} in the extension $\mathbf{F}_{q^2}[T]$ of $\mathbf{F}_q[T]$, such that M is the norm of $\mathcal{B} \in \mathbf{F}_{q^h}[T]$, such that M is the norm of a polynomials $\mathcal{B} \in \mathbf{F}_{q^h}[T]$, such that M is the norm of a polynomial $\mathcal{B} \in \mathbf{F}_{q^h}[T]$, such that M is the norm of a polynomial $\mathcal{B} \in \mathbf{F}_{q^h}[T]$.

Received: April 24, 1992; Revised: November 13, 1992.

 \mathcal{B} in the extension $\mathbb{F}_{q^h}[T]$ of $\mathbb{F}_q[T]$ is given by a formula of the same type:

$$\mathbf{n}_h(M) = \frac{q^h - 1}{q - 1} \sum_{D|M}^* \epsilon(D) \; ,$$

where ϵ is a multiplicative function to be defined later on.

2 – Notation

If \mathbf{F} is any field, we denote by \mathbf{F}^* the set of the non zero elements of \mathbf{F} .

Let h be an integer such that $h \geq 2$. We denote by N the norm of the extension $\mathbf{F}_{q^h}[T]$ of $\mathbf{F}_q[T]$. Let $\theta \in \mathbf{F}_{q^h}$ such that $\mathbf{F}_{q^h} = \mathbf{F}_q(\theta)$. We denote by $\theta_1 = \theta, \ldots, \theta_h$ all the roots of the minimal polynomial of θ over \mathbf{F} . Obviously, every polynomial $\mathcal{A} \in \mathbf{F}_{q^h}[T]$ admits an unique representation as a sum

(2.1)
$$\mathcal{A} = A_0 + A_1\theta + \ldots + A_{h-1}\theta^{h-1} ,$$

and the *h* conjugates of \mathcal{A} are the polynomials

$$\mathcal{A}_i = A_0 + A_1 \theta_i + \ldots + A_{h-1} \theta_i^{h-1}, \quad 1 \le i \le h.$$

Since

$$N\mathcal{A} = \mathcal{A}_1 imes \mathcal{A}_2 imes \ldots imes \mathcal{A}_h$$
 .

there is an homogeneous polynomial $\Phi \in \mathbf{F}_q[Y_0, \ldots, Y_{h-1}]$, only depending on h, such for every $\mathcal{A} = A_0 + A_1\theta + \ldots + A_{h-1}\theta^{h-1}$ belonging to $\mathbf{F}_{q^h}[T]$,

(2.2)
$$N(\mathcal{A}) = \Phi(A_0, \dots, A_{h-1})$$

and the number $\mathbf{n}_h(A)$ may be seen as the number of solutions $(A_0, \ldots, A_{h-1}) \in \mathbf{F}_q^h$ of the equation

(2.3)
$$A = \Phi(A_0, \dots, A_{h-1}) ,$$

Let $A \in \mathbf{F}_q[T]$. If there exists $\mathcal{A} \in \mathbf{F}_{q^h}[T]$ such that $A = N(\mathcal{A})$, we shall say simply that A is a norm.

Let $A \in \mathbb{F}_Q[T]$, resp. $\mathcal{A} \in \mathbb{F}_{q^h}[T]$ be different from 0. We denote by $\operatorname{sgn}(A)$, resp. $\operatorname{sgn}(\mathcal{A})$, the coefficient of the highest degree term in A, resp. in \mathcal{A} .

If E is a finite set, we denote by #(E) the number of elements of E.

3 - The set of norms

Proposition 3.1. If $\mathcal{A} \in \mathbf{F}_{q^h}[T]$ is monic, then $N\mathcal{A}$) is monic and $\deg(N(\mathcal{A})) = h \deg \mathcal{A}$.

Proof: Since N(1) = 1, it suffices to prove the proposition for a monic polynomial $\mathcal{A} \in \mathbb{F}_{q^h}[T]$ whose degree is positive. Let

$$\mathcal{A} = T^n + \sum_{i=1}^n \alpha_i T^{n-i}, \quad \alpha_i \in \mathbb{F}_{q^h}, \quad n \ge 1,$$

be such a polynomial. For every i = 1, ..., n, let $a_{i,0}, ..., a_{i,h-1} \in \mathbb{F}_q$, such that

$$\alpha_i = \sum_{k=0}^{h-1} a_{i,k} \, \theta^k \; .$$

If we write \mathcal{A} as a sum

(3.1)
$$\mathcal{A} = A_0 + A_1\theta + \ldots + A_{h-1}\theta^{h-1} ,$$

then

$$A_0 = T^n + \sum_{i=1}^n a_{i,0} \, T^{n-i}$$

and, for k = 1, ..., h - 1,

$$A_k = \sum_{i=1}^n a_{i,k} T^{n-i}$$
.

From (3.1), we get that

$$N(\mathcal{A}) = A_0^h + \psi(A_0, \dots, A_{h-1})$$

where ψ is a polynomial in $\mathbf{F}_q[Y_0, \ldots, Y_{h-1}]$ which does not contain the monomial Y_0^h . Whence,

$$\deg\Big(\psi(A_0,\ldots,A_{h-1})\Big) < h n = \deg(A_0^h) ,$$

 $\deg(N(\mathcal{A})) = hn$ and the leading term in $N(\mathcal{A})$ is the leading term in A_0^h , that is to say T^{hn} .

Proposition 3.2. Let $A \in \mathbf{F}_q[T]$ be different from 0. Then, A is a norm if and only if $\operatorname{sgn}(A)^{-1}A$ is a norm. In that case, h divides deg A.

Proof: According to Hilbert's theorem, every non zero element in \mathbf{F}_q is the norm of an element of \mathbf{F}_{q^h} , (cf. [1], §11). There exists $\alpha \in \mathbf{F}_{q^h}$ such that

 $\operatorname{sgn}(A) = N(\alpha)$. If $\operatorname{sgn}(A)^{-1}A$ is a norm, then A is a norm, and conversely. Let $\mathcal{A} \in \mathbf{F}_{q^h}[T]$, $A = N(\mathcal{A})$, $H \in \mathbf{F}_q[T]$ and $\mathcal{H} \in \mathbf{F}_{q^h}[T]$ monic such that $A = \operatorname{sgn}(A)H$ and $\mathcal{A} = \operatorname{sgn}(\mathcal{A})\mathcal{H}$. Then, $\operatorname{sgn}(A)H = N(\mathcal{A}) = N(\operatorname{sgn}(\mathcal{A}))N(\mathcal{H})$. Since $N(\mathcal{H})$ is monic, $H = N(\mathcal{H})$ and $\deg A = \deg H = h \deg \mathcal{H}$.

Proposition 3.3. Let $P \in \mathbf{F}_q[T]$ be monic and irreducible. Then, P is the norm of a monic polynomial $\mathcal{P} \in \mathbf{F}_{q^h}[T]$ if and only if h divides deg P. In that case, \mathcal{P} is irreducible and its degree is $\frac{\deg P}{h}$.

Proof: We suppose $P = N(\mathcal{P})$, where $\mathcal{P} \in \mathbf{F}_{q^h}[T]$ is monic. Proposition 3.1 says that deg $P = h \deg \mathcal{P}$. It remains to prove that \mathcal{P} is irreducible. We suppose that there exists an integer $r \geq 1$, monic irreducible polynomials $\mathcal{P}_1, \ldots, \mathcal{P}_r$ in $\mathbf{F}_{q^h}[T]$, positive integers e_1, \ldots, e_r , such that

$$\mathcal{P} = \mathcal{P}_1^{e_1} imes \ldots imes \mathcal{P}_r^{e_r}$$
 .

Then,

$$P = N(\mathcal{P}) = N(\mathcal{P}_1^{e_1} \times \ldots \times \mathcal{P}_r^{e_r}) = N(\mathcal{P}_1)^{e_1} \times \ldots \times N(\mathcal{P}_r)^{e_r} .$$

Then, r = 1, $e_1 = 1$ and $\mathcal{P} = \mathcal{P}_1$ is irreducible.

We suppose that h divides deg P. Let

(i)
$$m = \frac{\deg P}{h} \,.$$

Let $\mathcal{L} \in \mathbf{F}_{q^h}[T]$ be monic, irreducible, and such that $\deg(\mathcal{L}) = m$. It is well known that such \mathcal{L} exists. A proof of this may be provided by theorem 3.25 of [9]. Then,

$$\mathbf{F}_{q^h}[T]/(\mathcal{L}) = \mathbf{F}_{q^{h\deg(\mathcal{L})}} = \mathbf{F}_{q^{\deg P}} = \mathbf{F}_q[T]/(P) ,$$

where (\mathcal{L}) denotes the ideal generated by \mathcal{L} in $\mathbb{F}_{q^h}[T]$, and (P) the ideal generated by P in $\mathbb{F}_q[T]$. In the ring $\mathbb{F}_{q^h}[T]$, \mathcal{L} divises P. We put

$$P = \mathcal{L}\mathcal{H} ,$$

with $\mathcal{L} \in \mathbf{F}_{q^h}[T]$.

Let d be the least integer such that $\mathcal{L} \in \mathbb{F}_{q^d}[T]$. Then d divides h and $\mathcal{H} \in \mathbb{F}_{q^d}[T]$. Let $\mathcal{L}_1, \ldots, \mathcal{L}_d$ be the d different conjugates of \mathcal{L} in the extension $\mathcal{F}_{q^d}[T]$ of $\mathbb{F}_q[T]$, and $\mathcal{H}_1, \ldots, \mathcal{H}_d$ be the d conjugates of \mathcal{H} in the same extension. Then, for each index i,

$$P = \mathcal{L}_i \mathcal{H}_i$$

Since $\mathcal{L}_1, \ldots, \mathcal{L}_d$ are distinct irreducible polynomials, the product $\mathcal{L}_1 \times \ldots \times \mathcal{L}_d$ divides P. Since P is irreducible

(*ii*)
$$P = \mathcal{L}_1 \times \ldots \times \mathcal{L}_d ,$$
$$\deg P = d \deg \mathcal{L}_1 = d \deg \mathcal{L} .$$

With (i) we get that h = d and (ii) shows that P is the norm of $\mathcal{L}_1 = \mathcal{L}$.

Proposition 3.4. Let $P \in \mathbf{F}_q[T]$ be monic and irreducible, let

$$d = G.C.D.(h, \deg P)$$
,

and let a be a non negative integer. Then

(1) There exist d monic irreducible polynomials $\mathcal{P}_1, \ldots, \mathcal{P}_d$ in $\mathbb{F}_{q^d}[T]$ which remain irreducible in $\mathbb{F}_{q^h}[T]$ such that

$$P = \mathcal{P}_1 \times \ldots \times \mathcal{P}_d ;$$

- (2) P^a is a norm if and only if $\frac{h}{d}$ divides a;
- (3) If P^a is norm of a polynomial $\mathcal{H} \in \mathbf{F}_{q^h}[T]$, then,
 - If $d = 1, \mathcal{H} \in \mathbf{F}_q[T],$

- If d > 1, there exist non negative integers a_1, \ldots, a_d such that

$$\mathcal{H} = \mathcal{P}_1^{a_1} \times \ldots \times \mathcal{P}_d^{a_d}$$
 and $\frac{ad}{h} = a_1 + \ldots + a_d$

Proof: Let

$$k = \frac{h}{d}, \quad m = \frac{\deg P}{d}.$$

Then, k and m are coprime. According to proposition 3.3, there exist d monic irreducible polynomials $\mathcal{P}_1, \ldots, \mathcal{P}_d$ in $\mathbb{F}_{q^d}[T]$ such that

(i)
$$P = \mathcal{P}_1 \times \ldots \times \mathcal{P}_d .$$

Let N_1 be the norm of the extension $\mathbb{F}_{q^d}[T]$ of $\mathbb{F}_q[T]$. Let $\mathcal{P} = \mathcal{P}_1$. Then,

$$P = N_1(\mathcal{P})$$
.

If \mathcal{P} is not irreducible in $\mathbf{F}_{q^h}[T]$, then \mathcal{P} admits in $\mathcal{F}_{q^h}[T]$ an irreducible factor \mathcal{L} . Since \mathcal{P} is irreducible in $\mathbf{F}_{q^d}[T]$, we prove as in proposition 3.3, that \mathcal{P} is the product of the k conjugates of \mathcal{L} in the extension $\mathbf{F}_{q^h}[T]$ of $\mathbf{F}_{q^d}[T]$. Then, k divides deg(\mathcal{P}), so, h divides deg P and h = d. If $h \neq d$, all the \mathcal{P}_i remain

irreducible in $\mathbf{F}_{q^h}[T]$, if h = d, all the \mathcal{P}_i are irreducible polynomials in $\mathbf{F}_{q^h}[T]$, whence (1) is proved.

If P^a is a norm, h = kd divides $\deg(P^a) = a \deg P = a m d$, so k divides a and the "if" part of (2) is proved. Let N_1 be the norm of the extension $\mathbf{F}_{q^d}[T]$ of $\mathbf{F}_q[T]$. Let N_2 be the norm of the extension $\mathbf{F}_{q^h}[T]$ of $\mathbf{F}_{q^d}[T]$. Since \mathcal{P} remains irreducible in $\mathbf{F}_{q^h}[T]$,

$$N_2(\mathcal{P}) = \mathcal{P}^k$$
,

whence,

$$P^{k} = N_{1}(\mathcal{P})^{k} = N_{1}(\mathcal{P}^{k}) = N_{1}(N_{2}(\mathcal{P})) = N(\mathcal{P}) .$$

Since P^k is a norm, every power of P^k is a norm, and the "only if" part of (2) is proved.

Suppose that $P^a = N(\mathcal{H})$, with $\mathcal{H} \in \mathbf{F}_{q^h}[T]$, then a = hb. Let \mathcal{L} be an irreducible factor of \mathcal{H} in $\mathbf{F}_{q^h}[T]$ which does not belong to $\mathbf{F}_q[T]$, let δ be the least integer such that $\mathcal{L} \in \mathbf{F}_{q^\delta}[T]$ and let $\mathcal{L}_1, \ldots, \mathcal{L}_\delta$ be the conjugates of \mathcal{L} in the extension $\mathcal{F}_{q^\delta}[T]$ of $\mathcal{F}_q[T]$. They are irreducible in $\mathbf{F}_{q^h}[T]$ and $\mathcal{L}_1 \times \ldots \times \mathcal{L}_\delta$ is an irreducible polynomial in $\mathbf{F}_q[T]$ dividing P^a , so,

(*ii*)
$$P = \mathcal{L}_1 \times \ldots \times \mathcal{L}_\delta .$$

Since the factorizations (i) and (ii) of P must be the same, $d = \delta$, and the set $\{\mathcal{L}_1, \ldots, \mathcal{L}_d\}$ is equal to the set $\{\mathcal{P}_1, \ldots, \mathcal{P}_d\}$. There exist non negative integers a_1, \ldots, a_d such that $\mathcal{H} = \mathcal{P}_1^{a_1} \times \ldots \times \mathcal{P}_d^{a_d}$. We have

$$P^{a} = N(\mathcal{H}) = (P^{k})^{a_{1}} \times \ldots \times (P^{k})^{a_{d}} ,$$
$$\frac{a}{b} = a_{1} + \ldots + a_{d} .$$

and

If d = 1,

$$\kappa$$

P remains irreducible in $\mathbf{F}_{q^h}[T]$ and is the only irreducible divisor of \mathcal{H} ,

then, $\mathcal{H} = P^b$.

Theorem 3.5. Let P_1, \ldots, P_r , be monic irreducible paiwise distinct polynomials in $\mathbb{F}_q[T]$, let a_1, \ldots, a_r be positive integers, and let

$$A = P_1^{a_1} \times \ldots \times P_r^{a_r} \; .$$

Then, A is a norm in the extension $\mathbf{F}_{q^h}[T]$ of $\mathbf{F}_{q^d}[T]$ if and only if for every $i \in \{1, \ldots, r\}$, h divides $a_i \deg P_i$.

Proof: The above results prove that the condition is sufficient. Let $\mathcal{A} \in \mathbb{F}_{q^h}[T]$ be monic, such that

$$A = N(\mathcal{A})$$
 .

We write

$$\mathcal{A} = \prod_{d|h} \mathcal{A}_d \; ,$$

where \mathcal{A}_d is the product of all monic irreducible divisors \mathcal{L} of \mathcal{A} such that $\mathcal{L} \in \mathbb{F}_{q^d}[T]$ and $\mathcal{L} \notin \mathbb{F}_{q^\delta}[T]$ for any δ smaller than d, these divisors being counted with multiplicity. Let \mathcal{L} be an irreducible factor of \mathcal{A}_d . Let $v_{\mathcal{L}}$ be the \mathcal{L} -adic valuation of \mathcal{A} . Let N_1 be the norm of the extension $\mathbb{F}_{q^d}[T]$ of $\mathbb{F}_q[T]$, and N_2 be the norm of the extension $\mathbb{F}_{q^h}[T]$ of $\mathbb{F}_{q^d}[T]$. Then, $N_1(\mathcal{L})$ is an irreducible polynomial in $\mathbb{F}_q[T]$, and

$$N(\mathcal{L}) = N_1(N_2(\mathcal{L})) = N_1(\mathcal{L}^{h/d}) = N_1(\mathcal{L})^{h/d}$$

So $N_1(\mathcal{L})$ is an irreducible divisor of A and it occurs in A with the exponent $\frac{h}{d}v_{\mathcal{L}}$. Each term $P_i^{a_i}$ is equal to one of the terms $N_1(\mathcal{L})^{v_{\mathcal{L}}h/d}$ occuring in A, and

$$a_i \deg P_i = v_{\mathcal{L}} h / d \deg(N_1(\mathcal{L}))$$
.

Since d divides $\deg(N_1(\mathcal{L}))$, h divides $a_i \deg P_i$.

4 – The functions n_h and U

Definition. For every monic polynomial $A \in \mathbf{F}_q[T]$, we denote by U(h, A) the number of monic polynomials $\mathcal{A} \in \mathbf{F}_{q^h}[T]$ such that $A = N(\mathcal{A})$.

We notice that U(h, A) is the number of principal ideals (\mathcal{A}) of $\mathbb{F}_{q^h}[T]$ whose norm is the principal ideal (A).

Proposition 4.1. Let $A \in \mathbf{F}_q[T]$, different from 0. Then

$$\mathbf{n}_h(A) = \frac{q^h - 1}{q - 1} U\left(U, \frac{A}{\operatorname{sign}(A)}\right) \,.$$

Proof: Let Y(A), resp. V(A), be the set of polynomials $\mathcal{A} \in \mathbf{F}_{q^h}[T]$ such that $A = N(\mathcal{A})$, resp. the set of monic polynomials $\mathcal{A} \in \mathbf{F}_{q^h}[T]$ such that $\frac{A}{\operatorname{sgn}(A)} = N(\mathcal{A})$. Then

(i)
$$\mathbf{n}_h(A) = \#Y(A), \quad U\left(h, \frac{A}{\operatorname{sgn}(A)}\right) = \#V(A) \; .$$

Let $\mathcal{A} \in Y(\mathcal{A})$. Then

$$\operatorname{sgn}(A)\frac{A}{\operatorname{sgn}(A)} = A = N\left(\operatorname{sgn}(\mathcal{A})\frac{\mathcal{A}}{\operatorname{sgn}(\mathcal{A})}\right) = N(\operatorname{sgn}(\mathcal{A}))N\left(\frac{\mathcal{A}}{\operatorname{sgn}(\mathcal{A})}\right) \,.$$

Since $\frac{A}{\operatorname{sgn}(A)}$ and $N(\frac{A}{\operatorname{sgn}(A)})$ are monic polynomials in $\mathbb{F}_q[T]$,

$$\operatorname{sgn}(A) = N(\operatorname{sgn}(\mathcal{A})), \quad \frac{A}{\operatorname{sgn}(A)} = N\left(\frac{\mathcal{A}}{\operatorname{sgn}(\mathcal{A})}\right),$$

and $\operatorname{sgn}(\mathcal{A}) \in Y(\operatorname{sgn}(A)), \frac{\mathcal{A}}{\operatorname{sgn}(\mathcal{A})} \in V(\frac{A}{\operatorname{sgn}(A)})$. Conversely, if $\mathcal{H} \in V(\frac{A}{\operatorname{sgn}(A)})$, and if $\alpha \in \mathbb{F}_{q^h}$ is such that $N(\alpha) = \operatorname{sgn}(A)$, then $\alpha \mathcal{H} \in Y(A)$. Whence,

(*ii*)
$$\#Y(A) = \#Y(\operatorname{sgn}(A)) \#V\left(\frac{A}{\operatorname{sgn}(A)}\right)$$

According to Hilbert's theorem, every $b \in \mathbf{F}_q^*$ is norm of an element of $\mathbf{F}_{q^h}^*$ (cf. [1], §11). So, when b runs through \mathbf{F}_q^* , all the sets Y(b) have the same cardinality equal to $\frac{q^h-1}{q-1}$. We may conclude with (i) and (ii).

Proposition 4.2. The function $A \mapsto U(h, A)$ is a multiplicative.

Proof: Let *A* and *B* be monic and coprime polynomials.

• If U(h, A) = 0, A is not a norm, and, according to theorem 3.5, there exists an irreducible polynomial P dividing A with an exponent a such that h does not divide $a \deg P$. Since A and B are coprime, P does not divide B, and P divides AB with the same exponent a, AB is not a norm, and U(h, AB) = 0.

• We suppose U(h, A) = r > 0 and U(h, B) = s > 0. Let $\mathcal{A}_1, \ldots, \mathcal{A}_r$, $\mathcal{B}_1, \ldots, \mathcal{B}_s$, be the different polynomials in $\mathbf{F}_{q^h}[T]$ such that

$$A = N(\mathcal{A}_1) = \ldots = N(\mathcal{A}_r) ,$$

$$B = N(\mathcal{B}_1) = \ldots = N(\mathcal{B}_s) ,$$

then,

$$AB = N(\mathcal{A}_i \mathcal{B}_j), \quad 1 \le i \le r, \ 1 \le j \le s.$$

Since A and B are coprime, for every i = 1, ..., r, every j = 1, ..., s, \mathcal{A}_i and \mathcal{B}_j are coprime. Let $i \in \{1, ..., r\}$, $k \in \{1, ..., r\}$, $j \in \{1, ..., s\}$, $\ell \in \{1, ..., s\}$ with $k \neq i$. We may suppose that there exists an irreducible polynomial \mathcal{P} dividing \mathcal{A}_i such that $v_{\mathcal{P}}(\mathcal{A}_i) \neq v_{\mathcal{P}}(\mathcal{A}_k)$, $v_{\mathcal{P}}$ being the \mathcal{P} -adic valuation. Then, \mathcal{P} does not divide \mathcal{B}_j or \mathcal{B}_ℓ , $v_{\mathcal{P}}(\mathcal{A}_i \mathcal{B}_j) = v_{\mathcal{P}}(\mathcal{A}_i)$, $v_{\mathcal{P}}(\mathcal{A}_k \mathcal{B}_\ell) = v_{\mathcal{P}}(\mathcal{A}_k)$ and $\mathcal{A}_i \mathcal{B}_j \neq \mathcal{A}_k \mathcal{B}_\ell$.

Conversely, if $\mathcal{H} \in \mathbf{F}_{q^h}[T]$ is such that $N(\mathcal{H}) = AB$, every irreducible divisor of \mathcal{H} divides AB. Since A and B are coprime, we may write \mathcal{H} as a product

$$\mathcal{H} = \mathcal{H}_A \, \mathcal{H}_B \; ,$$

where the irreducible factors of \mathcal{H}_A , resp. \mathcal{H}_B are those of A, resp. B,

$$A = N(\mathcal{H}_A), \quad B = N(\mathcal{H}_B)$$

A GENERALIZATION OF A THEOREM OF CARLITZ

and \mathcal{H}_A , resp. \mathcal{H}_B is one of the \mathcal{A}_i 's, resp. one of the \mathcal{B}_i 's. Whence,

$$U(h, AB) = r s$$
.

Proposition 4.3. Let P be monic and irreducible. Let m be a positive integer. Then,

- (1) If $\frac{h}{G,C,D,(h,\deg P)}$ does not divide $m, U(h, P^m) = 0$,
- (2) If $\frac{h}{\text{G.C.D.}(h, \text{deg }P)}$ divides $m, U(h, P^m) = p_d \left(m \frac{\text{G.C.D.}(h, \text{deg }P)}{h}\right)$,

where $\mathbf{p}_d(b)$ denotes the number of partitions of the integer b in d parts, that is to say the number of solutions (b_1, \ldots, b_d) in non negative integers of the equation

$$b=b_1+\ldots+b_d.$$

Proof: This is a corollary to proposition 3.4.

We define the multiplicative function ϵ which will be used to generalize Carlitz's theorem.

Definition. Let ϵ be the multiplicative function defined on the set of monic polynomials by the following conditions. Let P be a monic and irreducible polynomial. Let b, s, r be positive integers. Then,

(1) If G.C.D. $(h \deg P) = 1$,

$$\begin{split} \epsilon(P^{hb}) &= 1 \ , \\ \epsilon(P^{hb+1}) &= -1 \ , \\ \epsilon(P^{hb+r}) &= 0 \quad \text{if} \ 1 < r < b \ , \end{split}$$

(2) If G.C.D. $(h, \deg P) = h$,

$$\epsilon(P^b) = \left(\begin{array}{c} b+h-2\\ h-2 \end{array}\right) \;,$$

(3) If G.C.D. $(h, \deg P) = d > 1$, if $\frac{h}{d} = k > 1$,

$$\begin{split} \epsilon(P^{kb}) &= \left(\begin{array}{c} b+d-1\\ d-1 \end{array} \right) \;, \\ \epsilon(P^{kb+1}) &= - \left(\begin{array}{c} b+d-1\\ d-1 \end{array} \right) \;, \\ \epsilon(P^{kb+r}) &= 0 \quad \text{if} \;\; 1 < r < k \;. \end{split}$$

Theorem 4.4. For any non zero polynomial A, one has

$$\mathbf{n}_h(A) = \frac{q^h - 1}{q - 1} \sum_{D|A}^* \epsilon(D) \; .$$

Proof: Let

(i)
$$S(A) = \sum_{D|A}^{*} \epsilon(D) .$$

According to proposition 4.1, we have to prove that

$$(ii) S(A) = U(h, A) ,$$

for every monic polynomial A. Since the functions $A \mapsto S(A)$ and $A \mapsto U(h, A)$ are multiplicative, it is sufficient to prove (2) when A is the power P^m of a monic irreducible polynomial P, i.e., to prove that

(*iii*)
$$\epsilon(P^m) = U(h, P^m) - U(h, P^{m-1})$$

We notice that $p_1(b) = 1$ for every integer b. From the identity

$$(1-x)^{-d} = \sum_{j=0}^{\infty} \mathbf{p}_d(j) \, x^j \; ,$$

we deduce that $\mathbf{p}_d(j) = \begin{pmatrix} j+d-1 \\ d-1 \end{pmatrix}$. The above proposition gives the following results:

• If h and deg P are coprime,

$$U(h, P^m) - U(h, P^{m-1}) = \begin{cases} 1 & \text{if } h \text{ divides } m, \\ -1 & \text{if } h \text{ divides } m-1, \\ 0 & \text{otherwise }; \end{cases}$$

• If h divides deg P,

$$\begin{split} U(h,P^m) - U(h,P^{m-1}) &= \mathbf{p}_h(m) - \mathbf{p}_h(m-1) \\ &= \left(\begin{array}{c} m+h-1 \\ h-1 \end{array} \right) - \left(\begin{array}{c} m+h-2 \\ h-1 \end{array} \right) \ , \\ U(h,P^m) - U(h,P^{m-1}) &= \left(\begin{array}{c} m+h-2 \\ h-2 \end{array} \right) \ ; \end{split}$$

A GENERALIZATION OF A THEOREM OF CARLITZ

• If G.C.D.
$$(h, \deg P) = d > 1$$
, if $k = \frac{h}{d} > 1$,

$$U(h, P^m) - U(h, P^{m-1}) = \begin{cases} p_d \left(\frac{m}{k}\right) = \left(\begin{array}{c} m+d-1\\ d-1 \end{array}\right) & \text{if } k \text{ divides } m, \\ -p_d \left(\frac{m-1}{k}\right) = -\left(\begin{array}{c} m+d-1\\ d-1 \end{array}\right) & \text{if } k \text{ divides } m-1, \\ 0 & \text{otherwise }. \end{cases}$$

In both cases (iii) is true.

We notice that, if h = 2, $\epsilon(H) = (-1)^{\deg H}$ for every monic polynomial H, so theorem 4.4 contains Carlitz's formula.

REFERENCES

- [1] BOURBAKI, N. Algèbre, Chapitre 5, Hermann, France.
- [2] CARLITZ, L. On the representations of a polynomial on a Galois field as the sum of an even number of squares, *Trans. Amer. Math. Soc.*, 35 (1933), 397–410.
- [3] CARLITZ, L. On the representations of a polynomial on a Galois field as the sum of an odd number of squares, *Duke Math. Jour.*, 1 (1935), 298–315.
- [4] CARLITZ, L. Sums of squares of polynomials, Duke Math. Jour., 3 (1937), 1–7.
- [5] CARLITZ, L. The singular series for sums of squares of polynomials, *Duke Math. Jour.*, 14 (1947), 1105–1120.
- [6] COHEN, E. Sums of an even number of squares on GF[pⁿ, x], I, Duke Math. Jour., 14, 251–267.
- [7] COHEN, E. Sums of an even number of squares on $GF[p^n, x]$, II, Duke Math. Jour., 14, 543–557.
- [8] COHEN, E. Sums of an odd number of squares on $GF[p^n, x]$, I, Duke Math. Jour., 15, 501–511.
- [9] LIDL, R. and NIEDERREITER, H. Introduction to Finite Fields and their Applications, Cambridge University Press.

Mireille Car,

Laboratoire de Mathématiques, Faculté de Saint-Jerôme Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 13 – FRANCE