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0 – Introduction

It is well known that TX , the semigroup of full transformations on a set X
contains an isomorhpic copy of every semigroup of order not exceeding |X| − 1.
Therefore, as remarked by Howie [13], there is little point in attempting a com-
plete classification of the subsemigroups of TX . However, there is some interest in
identifying certain special subsemigroups that appear to be of particular interest.
See for example, Howie [10, 11, 13] and Umar [15, 16].

In this paper we construct a class of transformation semigroups based on sim-
ple modification of Vagner’s [17] method of representing the elements of J (X),
the symmetric inverse semigroup as full transformations. In Section 1 we de-
scribe our construction while in Section 2, we show that the construction leads
to R-unipotent semigroups. (A regular semigroups is R-unipotent if each of its
principal right ideals has a unique idempotent generator. Equivalently, an R-
unipotent semigroup is a regular semigroup S in which E(S) is a left regular
band; i.e., efe = ef , for all e, f ∈ E(S).) Further, we consider the finite case
where we obtain expressions for the order of the semigroup and that of its left
regular band of idempotents.

In Section 3 we further obtain a subclass of (irregular) quasi-adequate semi-
groups (these are the analogues of orthodox semigroups in the abundant semi-
group [9] theory), from our earlier construction and show that they are indeed
R∗-unipotent semigroups. (An R∗-unipotent semigroup is defined as a quasi-
adequate semigroup in which each of its principal right ∗-ideals has a unique
idempotent generator. Equivalently, an R∗-unipotent semigroup is an abundant
semigroup S in which E(S) is a left regular band.) We also consider a finite case,
where we obtain expressions for the order of the semigroup and that of its left
regular band of idempotents.
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1 – Preliminaries

For standard terms in semigroup theory see [12]. Let TX and I(X) be the full
transformation and symmetric inverse semigroups on a set X (finite or infinite)
respectively. Vagner represents the element of J (X) as full transformations by
adjoining an extra element 0 to X and defining, for α ∈ J (X), the full transfor-
mation α∗ in TX∪{0} by

xα∗ = xα (if x ∈ domα) and xα∗ = 0 (otherwise) .

Now, for a given α in TX let

C(α) =
⋃

{

tα−1 : (t ∈ Imα) |tα−1| ≥ 2
}

, F (α) =
{

x ∈ X : xα = x
}

.

Then clearly C(α∗)α∗ = {0}. If now we replace {0} in these expressions, by a set
A, we are thus led to the following definition.

Definition 1.1. An element α (in Tx) is called a Vagner map with respect to a
subset (ofX) A (possibly empty) or simply an A-Vagner map if C(α)α ⊆ A = Aα
and α|A is one-to-one.

Remark. Notice that (in the above definition) if A is finite then A = Aα
implies α|A is one-to-one.

The following lemma is crucial in proving that the set of all A-Vagner maps
in TX is a subsemigroup.

Lemma 1.2. Let α, β ∈ TX . Then C(αβ) ⊆ C(α) ∪ C(β)α−1.

Proof: For some t ∈ Imαβ and x, y ∈ C(αβ), let x, y ∈ t(αβ)−1 with x 6= y.
Then xαβ = yαβ. Now if xα = yα then x, y ∈ C(α); otherwise xα, yα ∈ C(β)
so that x, y ∈ C(β)α−1. Thus C(αβ) ⊆ C(α) ∪ C(β)α−1, as required.

Now let FA be the set of all A-Vagner maps in Tx. Then we have

Lemma 1.3. FA is a subsemigroup of TX .

Proof: First notice that for all α, β ∈ FA

(Aα)β = Aβ = A ,
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and αβ|A is one-to-one if both α|A and β|A are one-to-one. Moreover,

C(αβ)αβ ⊆ C(α)αβ ∪ (C(β)α−1)αβ (by Lemma 1.2)

⊆ Aβ ∪ C(β)β

⊆ A ∪A

= A .

Hence αβ ∈ FA, as required.

Remark. Notice that if A = ∅, then FA is the semigroup of one-to-one maps
of Tx.

Lemma 1.4. Let α ∈ TX . Then α is an idempotent if and only if for all
t ∈ Imα, t ∈ tα−1, i.e., if and only if F (α) = Imα.

Proof: This statement is proved in [14] for the finite case and no essential
use is made of the finiteness of X.

Lemma 1.5. Let α ∈ FA. Then the following statements are equivalent:

(1) α is an idempotent;

(2) A ⊆ F (α) and xα = x for all x /∈ C(α).

Proof:

(1)⇒ (2) By Lemma 1.4, it is clear that for any idempotent α ∈ FA,

A = Aα ⊆ Imα = F (α) .

Moreover, for all y ∈ Imα\A, yα = y and yα−1 = {x} with x /∈ C(α). Thus

xα = y = yα

which implies that x = y = xα, for all x /∈ C(α).

(2)⇒ (1) Let x ∈ C(α). Then xα ∈ C(α)α ⊆ A ⊆ F (α), so that xα2 = xα.
And since xα = x for all x /∈ C(α) (by (2)), then xα2 = xα for all x. Thus α is
an idempotent.

In view of the remark made after Lemma 1.3, from this point onwards it is
assumed that A 6= ∅.

Lemma 1.6. FA is a regular semigroup.

Proof: Let α ∈ FA and let a0 be a fixed element of A. If a ∈ A, aα−1∩A 6= ∅
since A = Aα. For each a ∈ A choose an element ba in aα−1 ∩ A and for each
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y ∈ Imα\A, let yα−1 = {xy}. Now define α′ ∈ TX by

aα′ = ba (a ∈ A)

yα′ = xy (y ∈ Imα\A)

xα′ = a0 (x ∈ X\ Imα) .

Then clearly αα′α = α, Aα′ ⊆ A and A ⊆ {ba : a ∈ A} = Aα′. Moreover, since
C(α′) = X\ Imα, then

C(α′)α′ = (X\ Imα)α′ = {a0} ,

and it now follows that α′ ∈ FA. Hence FA is regular.

2 – Orthodox semigroups

Recall that an orthodox semigroup is a regular semigroup whose set of idempo-
tents E(S) forms a subsemigroup. For a detailed account of orthodox semigroups
see [12, Chapter VI].

2.1 Green’s relations

For the definitions of the Green’s relations see, for example, [12]. It is now clear
by Lemma 1.6 and [12, Proposition II.4.5 and Ex. II.10] that in the semigroup
FA, for α, β ∈ FA

(α, β) ∈ L iff Imα = Imβ ,(2.1)

(α, β) ∈ R iff α ◦ α−1 = β ◦ β−1 ,(2.2)

(α, β) ∈ LH iff Imα = Imβ and α ◦ α−1 = β ◦ β−1 .(2.3)

Moreover, if (α, β) ∈ D = L ◦ R ( = R ◦ L), then there exist δ ∈ FA such that
αL δRβ, so that

Imα = Im δ and α ◦ α−1 = β ◦ β−1 .

However, α ◦α−1 = β ◦β−1 implies that C(δ) = C(β), which in turn implies that
|Im δ\A| = |Imβ\A|. Thus

|Imα\A| = |Im δ\A| = |Imβ\A| .
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Conversely, suppose that |Imα\A| = |Imβ\A|. Let θ be a bijection from
Imβ\A onto Imα\A, and define δ (in FA) by

xδ =

{

xβθ (if x /∈ C(β) ∪A)

xβ ∈ a (if x ∈ C(β) ∪A) .

Then, clearly δ and β coincide on C(β) ∪A, and since δ is one-to-one otherwise,
it follows that

C(δ)δ = C(β)β ⊆ A = Aβ = Aδ .

Moreover, Im δ = Imα and α ◦ α−1 = β ◦ β−1, so that αL δRβ, i.e., αDβ. Thus

(2.4) (α, β) ∈ D iff |Imα\A| = |Imβ\A| .

Also, if (α, β) ∈ J , then there exist δ1, δ2, γ1, γ2 ∈ FA such that

α = δ1βδ2 and β = γ1αγ2 .

However, if |Imα\A| < |Imβ\A|, then

|Im γ1α\A| < |Imβ\A| (since Im γ1α ⊆ Imα) ,

and hence

|Imβ\A| = |Im γ1αγ2\A| < |Imβ\A| (since A ⊆ Im γ1α ∩ Im γ2) ,

which is a contradiction. Thus, on the semigroup FA, D = J .

Lemma 2.1.1. Every R-class of FA contains exactly one idempotent.

Proof: Let ε, η be two R-related idempotents in FA, then C(ε) = C(η).
Moreover, for all x /∈ C(ε)

xε = x = xη (by Lemma 1.5) ,

and for all x ∈ C(ε)
xε, xη ∈ A ⊆ Im ε ∩ Im η ,

so that Im ε = Im η. Thus, (ε, η) ∈ L ∩ R = H, and it follows that ε = η, as
required.

A regular semigroup is said to be R-unipotent if each of its principal right
ideals has a unique idempotent generator. (In other words each R-class contains
a unique idempotent.) Equivalently, an R-unipotent semigroup is a regular semi-
group S in which E(S) is a left regular band; i.e., efe = ef , for all e, f ∈ E(S).
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An L-unipotent semigroup is defined dually. Notice that anR(L)-unipotent semi-
group is necessarily orthodox. R(L)-unipotent semigroups have been studied, for
example, by Edwards [4] and Venkatesan [18]. R-unipotent semigroups are also
known as left inverse semigroups in the literature. In view of the above remarks,
by Lemmas 1.6 and 2.1.1, we obtain

Theorem 2.1.2. Let FA be the semigroup of all A-vagner maps of TX . Then
FA is an R-unipotent semigroup.

2.2 The finite case

For any relation K we shall denote the K-class containing α by Kα. Let
X = {1, . . . , n} and A = {a1, a2, . . . , ak} ⊆ X for some 1 ≤ k ≤ n. It follows
from (2.3) that if |Imα| = r then there are k! (r − k)! elements in Hα. To see
this notice that there must be r− k singleton (α ◦α−1)-classes outside Aα−1 and
that these must map to the r − k elements of Imα outside A. Hence there are
(r − k)! ways of mapping those elements. The remaining (α ◦ α−1)-classes, k in
number, all intersect A and must map onto A in a one-one fashion. There are
thus k! possibilities. It now follows that |Hα| = k! (r − k)!.

And from (2.1), we deduce that the number of L-classes in Dα is equal to the
number of (r − k)-element subsets of X\A (for the image set must contain A).

Hence there are

(

n−k

r−k

)

L-classes in Dα. However, the number of R-classes in

Dα is less obvious and the next lemma provides the answer.

Lemma 2.2.1. Let α ∈ FA such that |Imα| = r. Then there are kn−r
(

n−k

r−k

)

R-classes in Dα.

Proof: Since there are r − k elements not in C(α) ∪ A, then the number of
R-classes in Dα is equivalent to the number of partitions of Xn into r subsets
subject to the conditions that there are r − k singletons (from Xn\A) and of
the remaining k subsets each must contain an element of A. However, there are
(

n−k

r−k

)

ways of choosing the r−k singletons from Xn\A and there are kn−r ways

of partitioning the remaining n− r+ k elements into k subsets, with each subset
containing an element of A. Hence there are

kn−r
(

n−k

r−k

)

number of partitions as required.

Evidently, we now have
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Lemma 2.2.2. Let α ∈ FA such that |Imα| = r. Then

|Jα| = kn−r
(

n−k

r−k

)2

k! (r − k)! .

Theorem 2.2.3. Let FA be the semigroup of all A-Vagner maps of TX .
Then

|FA| =
n
∑

r=k

kn−r
(

n−k

r−k

)2

k! (r − k)! .

Theorem 2.2.4. Let FA be the semigroup of all A-Vagner maps of TX .
Then

|E(FA)| =
n
∑

r=k

kn−r
(

n−k

r−k

)

= (k + 1)n−k .

Proof: It follows directly from Lemmas 2.1.1 and 2.2.1.

3 – Irregular quasi-adequate semigroups

Let X be a well ordered set and let A be a (non empty) subset of X. Also,
let TX be the full transformation semigroup on X, and let FA be the semigroup
of all A-Vagner maps of TX . Consider the subset of FA denoted by F−

A

(3.1) F−
A =

{

α ∈ FA : (∀x ∈ X) xα ≤ x and A ⊆ F (α)
}

consisting of all order-decreasing maps of FA for which A ⊆ F (α). Then clearly
F−
A is a subsemigroup of FA, since for all α, β ∈ F−

A

(xα)β ≤ xα ≤ x and A ⊆ F (α) ∩ F (β) ⊆ F (αβ) .

Notice that if A is finite then A = Aα and xα ≤ x (for all x ∈ X) implies
A ⊆ F (α).

3.1 Green’s and starred Green’s relations

Lemma 3.1.1. F−
A is R-trivial.

Proof: Let (α, β) ∈ R. Then there exist δ, γ in F−
A such that

αδ = β and βγ = α .
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However, for all x ∈ X

xβ = xαδ ≤ xα and xα = xβγ ≤ xβ

so that xα = xβ. Thus α = β.

Lemma 3.1.2. Let α, β ∈ F−
A . Then the following are equivalent:

(1) (α, β) ∈ L;

(2) Imα = Imβ and zα−1 = zβ−1 for all z ∈ Imα\A.

Proof: Let (α, β) ∈ L. Then certainly Imα = Imβ and there exists δ, γ in
F−
A such that

δα = β and γβ = α .

Let z ∈ Imα\A = Imβ\A and let y = zα−1. Then

yγβ = yα = z

and so
yγ = zβ−1 .

Hence
y ≥ yγ = zβ−1 .

That is, zα−1 ≥ zβ−1, and we can similarly show that

zβ−1 ≥ zα−1 .

Thus
zβ−1 = zα−1 ,

as required.
Conversely, suppose that Imα = Imβ and zα−1 = zβ−1 for all z ∈ Imα\A.

Let δ, γ be defined by

xδ =

{

xα (if x ∈ Aα−1)

x (otherwise)

xγ =

{

xβ (if y ∈ Aβ−1)

x (otherwise) .

Then, clearly δ and α coincide on Aα−1, and since

C(α) ⊆ C(α)αα−1 ⊆ Aα−1 and A ⊆ Aα−1 ,



A CLASS OF QUASI-ADEQUATE TRANSFORMATION SEMIGROUPS 561

it follows that
C(δ)δ = C(α)α ⊆ A = Aα = Aδ .

Thus δ ∈ F−
A . Similarly, δ ∈ F−

A and α = δβ, β = γα. Hence (α, β) ∈ L.

Some immediate consequences of Lemma 3.1.1 are:

Corollary 3.1.3. On the semigroup F−
A , H = R = ı, the indentity and

L = D.

Corollary 3.1.4. F−
A is either a band or an irregular semigroup.

Proof: Let x be a regular element of F−
A . Then there exists x′ in F−

A such
that x = xx′x and (x, xx′) ∈ R, so that x = xx′ ∈ E(F−

A ). Thus the only regular
elements of F−

A are its idempotents.

Now in view of the above Corollary it is natural to ask: when is F−
A a band?

To investigate this, first we introduce some new notations and record some basic
results about F−

A . Let us denote by A− and A+ the sets
{

x ∈ X : (∃ a ∈ A) x ≤ a
}

,
{

x ∈ X : (∃ a ∈ A) x ≥ a
}

respectively. Then clearly A ⊆ A− ∩A+ and A− ∪A+ = X.

Lemma 3.1.5. Let α ∈ F−
A . Then A−\A+ ⊆ F (α).

Proof: If A−\A+ 6⊂ F (α), then there is a smallest element c ∈ A−\A+ such
that cα 6= c. Then, as α ∈ F−

A , we have cα < c so that cα ∈ A−\A+ and by the
choice of c we have (cα)α = cα. Hence c ∈ C(α) and as α ∈ FA, we have cα ∈ A,
a contradiction.

Lemma 3.1.6. F−
A is a band if and only if |A+\A| ≤ 1.

Proof: First observe that if A+\A = ∅, then A = A+ so that

X = A− ∪A+ = A− = (A−\A) ∪A = (A−\A+) ∪A

⊆ F (α) (by Lemma 3.1.5) .

Thus F−
A is the trivial semigroup. Next, if A+\A = {y}, then yα = y or yα ∈ A,

and hence (yα)α = yα. Moreover, xα = x for all x ∈ (A−\A+) ∪ A = (A+\A)′,
by Lemma 3.1.5, so that α2 = α. Thus F−

A is a band if |A+\A| ≤ 1.
Conversely, suppose that F−

A is a band and |A+\A| ≥ 2, then there exist x,
y ∈ A+\A with x 6= y such that x > y. Now choose an element ay ∈ A for which
ay ≤ y and define β in F−

A by

xβ = y , yβ = ay and zβ = z (otherwise) .
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Then, clearly β is a non-idempotent element in F−
A , which is a contradiction as

F−
A is a band. Thus if F−

A is a band then |A+\A| ≤ 1. Hence the proof.

Recall from [9] that on a semigroup S the relation L∗ (R∗) is defined by the
rule that (a, b) ∈ L∗ (R∗) if and only if the elements a, b are related by the Green’s
relation L (R) in some oversemigroup of S. The join of the equivalences L∗ and
R∗ is denotes by D∗ and their intersection by H∗. A semigroup S in which each
L∗-class and each R∗-class contains an idempotent is called abundant. Of course
regular semigroups are abundant (and in this case K∗ = K, for K any of H, L,
R or D). The starred relations play a role in the theory of abundant semigroups
analogous to that of Green’s relations in the theory of regular semigroups. As in
[9] we introduce ∗-ideals to obtain the starred analogue of the Green’s relation
J .

The L∗-class containing the element a is denoted by L∗
a. The corresponding

notation is used for the class of the other relations. We now define a left (right)
∗-ideal of a semigroup S to be a left (right) ideal I of S for which L∗

a ⊆ I (R∗
a ⊆ I),

for all elements a of I. A subset I of S is a ∗-ideal if it is both a left ∗-ideal and a
right ∗-ideal. The principal ∗-ideal J∗(a) generated by the element a of S is the
intersection of all ∗-ideals of S to which a belongs. The relation J ∗ is defined by
the rule that: aJ ∗b if and only if J∗(a) = J∗(b). Again, for a regular semigroup
SJ = J ∗. In the case of ambiguity we denote a relation K on S by KS .

Before we characterize the starred Green’s relations we need the following
definition and lemmas:

Definition 3.1.7. Let S be a semigroup and let U be a subsemigroup of S.
Then U will be called an inverse ideal of S if for all u ∈ U , there exists u′ ∈ S
such that uu′u = u and uu′, u′u ∈ U .

Lemma 3.1.8. Every inverse ideal U of a semigroup S is abundant.

Proof: Since for all u ∈ U

(u, u′u) ∈ LS and (u, uu′) ∈ RS

it follows that

(u, u′u) ∈ L∗
U and (u, uu′) ∈ R∗

U .

Hence every L∗-class and every R∗-class of U contains an idempotent, since uu′,
u′u are idempotents in U . Thus U is abundant.

Again, recall from [9] that for any subsemigroup U of S

L∗
S ∩ (U × U) ⊆ L∗

U and R∗
S ∩ (U × U) ⊆ R∗

U .
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And for any regular elements a, b of a semigroup S

(a, b) ∈ K iff (a, b) ∈ K∗ ,

where K is any of H, L or R. Moreover, in any semigroup S, K ⊆ K∗. Hence we
have

Lemma 3.1.9. Let U be an inverse ideal of a semigroup S. Then

(1) L∗
U = LS ∩ (U × U);

(2) R∗
U = RS ∩ (U × U);

(3) H∗
U = HS ∩ (U × U).

Proof:

(1) Certainly,
LS ∩ (U × U) ⊆ L∗

U .

Conversely, suppose that (a, b) ∈ L∗
U and a′, b′ are elements in S such that

aa′a = a, bb′b = b and aa′, a′a, bb′, b′b ∈ U . Then

(a′a, a) ∈ LS and (b, b′b) ∈ LS ,

which implies that

(a′a, a) ∈ L∗
U and (b, b′b) ∈ L∗

U .

And, by transitivity
(a′a, b′b) ∈ L∗

U ,

which is equivalent to
(a′a, b′b) ∈ LU .

Now, since LU ⊆ LS ∩ (U × U), then

(a′a, b′b) ∈ LS

and hence,
(a, b) ∈ LS .

So that
L∗
U ⊆ LS ∩ (U × U) ,

and the result follows.

(2) The proof is similar to that of (1).

(3) This is a simple set-theoretic consequence of (1) and (2).
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Corollary 3.1.10. If U is an inverse ideal of a semigroup S, then

L∗
U = L∗

S ∩ (U × U), R∗
U = R∗

S ∩ (U × U) and H∗
U = H∗

S ∩ (U × U) .

Lemma 3.1.11. F−
A is an inverse ideal of FA.

Proof: Let α ∈ F−
A . Notice that for all t ∈ Imα\A

|tα−1| = 1 ,

and for all t ∈ A, if x ∈ tα−1 then

x ≥ xα = t = tα .

Thus min(tα−1) exists for all t ∈ Imα. Now, let a0 = minA and define α′ by

tα′ = xt = min(tα−1) (t ∈ Imα) , yα′ = a0 (otherwise) .

Then, it is clear that A ⊆ F (α′) and C(α′)∩ Imα = ∅. Thus C(α′)α′ = {a0} and
Aα′ = A. It now follows that α′ ∈ FA and αα′α = α. (However notice that α′

need not be a decreasing map.) Also,

C(αα′)αα′ ⊆ C(α) · αα′ ∪ C(α′)α−1 · αα′ (by Lemma 1.2)

⊆ Aα′ ∪A

= A ,

C(α′α)α′α ⊆ C(α′) · α′α ∪ C(α)(α′)−1 · α′α (by Lemma 1.2)

⊆ Aα ∪A

= A ,

and A ⊆ F (α) ∩ F (α′) = F (α′) ∩ F (α) ⊆ F (αα′) ∩ F (α′α). Moreover, since for
all x ∈ X

xαα′ = (xα)α′ = xxα = min(xαα−1) ≤ x ,

it follows that αα′ ∈ F−
A . To see that α

′α ∈ F−
A , first notice that if y /∈ Imα, then

y /∈ A−\A+, by Lemma 3.1.5, and hence y ∈ A+\ Imα. Thus for all t ∈ Imα

tα′α = xtα = t (since xt ∈ tα−1) ,

for all y ∈ A+\ Imα
yα′α = a0α = a0 < y .

Hence the proof.
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A quasi-adequate semigroup is an abundant semigroup in which E(S) is a
subsemigroup. Thus the class of quasi-adequate semigroups includes all orthodox
semigroups. By contrast with the regular case, an abundant semigroup in which
each of its principal right ∗-ideals has a unique idempotent generator need not be
quasi-adequate. In fact S−

n , the semigroup of all decreasing full transformations
of Xn = {1, . . . , n} is an abundant semigroup whose each of its principal right
∗-ideals has a unique idempotent generator ([15, Lemma 2.6 and Theorem 2.7])
but it is idempotent-generated ([15, Theorem 1.4]). El-Qallali [5] defines an
R∗-unipotent semigroup to be a quasi-adequate semigroup in which each of its
principal right ∗-ideal has a unique idempotent generator. In other words, an
R∗-unipotent semigroup is a quasi-adequate semigroup in which each R∗-class
contains a unique idempotent. Also, El-Qallali showed that the latter condition
is equivalent to having a right regular band of idempotents ([5, Lemma 1.1]).
By Lemmas 2.1.1, 3.1.8, 3.1.9 and 3.1.11 we have

Theorem 3.1.12. Let F−
A be as defined in (3.1). Then F−

A is an
R∗-unipotent semigroup.

By equation (2.1) and (2.2), Corollary 3.1.10 and Lemma 3.1.11 we deduce

Lemma 3.1.13. Let (α, β) ∈ F−
A . Then

(1) (α, β) ∈ L∗ if and only if Imα = Imβ;

(2) (α, β) ∈ R∗ if and only if α ◦ α−1 = β ◦ β−1.

To characterize D∗ on F−
A we let T = (A−\A+) ∪ A and define a relation K

on F−
A by the rule

(α, β) ∈ K iff |Imα\T | = |Imβ\T | .

Then, clearly, L∗ ⊆ K and R∗ ⊆ K, since T ⊆ F (α) ∩ F (β) ⊆ Imα ∩ Imβ.
Also, D∗ ⊆ K, since D∗ is the smallest equivalence containing both L∗ and R∗.
We now have

Lemma 3.1.14. K = R∗ ◦ L∗ ◦ R∗ = L∗ ◦ R∗ ◦ L∗ = D∗.

Proof: Suppose that (α, β) ∈ K so that |Imα\T | = |Imβ\T | and let θ be a
bijection from Imα onto Imβ such that, for all t ∈ T , tθ = t. Define δ, γ ∈ TX
as follows:

xδ = min(xα, xαθ) ,

xγ = min(xβ, xβθ−1) .
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Then, it is clear that C(δ) = C(α), and for all x ∈ C(δ), xδ = min(xα, xαθ) =
xα ∈ A, so that C(δ)δ ⊆ A = Aδ. Similarly, C(γ)γ ⊆ A = Aγ. Moreover, δ, γ
are decreasing maps for which Im δ = Im γ, δ◦δ−1 = α◦α−1 and γ◦γ−1 = β◦β−1.
Thus δ, γ ∈ F−

A and αR∗ δL∗ γR∗β, by Lemma 3.1.13. Thus

K ⊆ R∗ ◦ L∗ ◦ R∗ .

Conversely, let (α, β) ∈ R∗ ◦ L∗ ◦ R∗. Then, there exist δ, γ ∈ F−
A such that

αR∗ δL∗ γR∗β. Since T is contained in Imα, Imβ, Im γ and Im δ we have

|Imα\T | = |Im δ\T |, Im δ\T = Im γ\T and |Im γ\T | = |Imβ\T | ,

so that

|Imα\T | = |Imβ\T | .

Thus

R∗ ◦ L∗ ◦ R∗ ⊆ K .

On the other hand, let (α, β) ∈ K and let a0 = minA. Also, let M(α) =
{max(xα, xαθ) : x ∈ X} and define δ′, γ′ ∈ TX as follows:

xδ′ =

{

xα (if x ∈M(α))

a0 (otherwise) ,

xγ′ =

{

xαθ (if x ∈M(α))

a0 (otherwise) .

Notice that, A ⊆ T ⊆ M(α) and C(δ′) ∩M(α) = ∅. Thus C(δ′) ⊆ X\M(α), so
that C(δ′)δ′ = {a0}. Similarly, C(γ′)γ′ = {a0}. Moreover, δ′, γ′ are decreasing
maps for which Imα = Im δ′, δ ◦ (δ′)−1 = γ ◦ (γ′)−1 and Im γ′ = Imβ. Thus
δ′, γ′ ∈ F−

A and αL∗ δ′R∗ γ′L∗β, by Lemma 3.1.13. Thus

K ⊆ L∗ ◦ R∗ ◦ L∗ .

Similarly (from above), we can show that

L∗ ◦ R∗ ◦ L∗ ⊆ K .

And finally, from the inequality

D∗ ⊆ K = R∗ ◦ L∗ ◦ R∗ = L∗ ◦ R∗ ◦ L∗ ⊆ D∗ ,

we deduce the result of the lemma.
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The following lemma is essential to our next investigation about the properties
of J ∗.

Lemma 3.1.15 ([9, Lemma 1.7]). Let a be an element of a semigroup S.
Then b ∈ J∗(a) if and only if there are elements a0, a1, . . . , an ∈ S, x1, . . . , xn,
y1, . . . , yn ∈ S1 such that a = a0, b = an, and (ai, xiai−1yi) ∈ D

∗ for i = 1, . . . , n.

We immediately have:

Lemma 3.1.16. Let α ∈ J∗(β). Then |Imα\T | ≤ |Imβ\T |.

Proof: Let α ∈ J∗(β). Then, by Lemma 3.1.15, there exist β0, β1, . . . , βn,
δ1, . . . , δn, γ1, . . . , γn ∈ F−

A such that β = β0, α = βn, and (βi, δiβi−1γi) ∈ D
∗ for

i = 1, . . . , n. However, by Lemma 3.1.14, this implies that

|Imβi\T | = |Im(δiβi−1γi)\T | ≤ |Imβi−1\T |

so that
|Imα\T | ≤ |Imβ\T | ,

as required.

Thus we now have the final result of this section:

Lemma 3.1.17. On the semigroup F−
A , D

∗ = J ∗.

Proof: Notice we need only show that J ∗ ⊆ D∗ (since D∗ ⊆ J ∗). So,
suppose that (α, β) ∈ J ∗, then J∗(α) = J∗(β), so that α ∈ J∗(β) and β ∈ J∗(α).
However, by Lemma 3.1.16, this implies that

|Imα\T | ≤ |Imβ\T | and |Imβ\T | ≤ |Imα\T |

so that
|Imα\T | = |Imβ\T | .

Thus, by Lemma 3.1.14,
J ∗ ⊆ D∗ ,

as required.

3.2 The finite case

We aim to find a formula for the order of the semigroup F−
A in the case where

A = {1, . . . , k} and X = {1, . . . , n}. Let

J∗(n, r) =
∣

∣

∣

{

α ∈ F−
A : |Imα| = r

}∣

∣

∣ .
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Then J∗(n, k) = kn−k, J∗(n, n) = 1 and J∗(n, r) = 0 if r = 0 or n < r or r < k.

Lemma 3.2.1. J∗(n, r) = k J∗(n− 1, r) + (n− r + 1) J∗(n− 1, r − 1).

Proof: Maps α for which |Imα| = r divide naturally into two classes de-
pending upon whether

Im(α | {1, . . . , n− 1}) = Imα (1)

or

Im(α | {1, . . . , n− 1}) ⊂ Imα (2) .

In case (1), n must map to one of the k elements in A, and so there are
k J∗(n − 1, r) elements of this kind. In case (2), |Im(α | {1, . . . , n − 1})| = r − 1
and n must map to one of the n − r + 1 elements not in Im(α | {1, . . . , n − 1}).
Hence there are (n− r + 1) J∗(n− 1, r − 1) elements of this kind. Thus,

J∗(n, r) = k J∗(n− 1, r) + (n− r + 1) J∗(n− 1, r − 1) ,

as required.

Recall that the Stirling number of the second kind denoted by S(n, k) is
usually defined as

S(n, 1) = 1 = S(n, n) and S(n, k) = S(n− 1, k − 1) + k S(n− 1, k) ,

where n, k are natural numbers such that n ≥ k.

Lemma 3.2.2. J∗(n, r) = kn−r S(n− k + 1, n− r + 1) (n ≥ r ≥ k).

Proof: Certainly the result is true when n = k. Suppose that k < n and
that the result is true for all s such that k ≤ s ≤ n−1. Consider J ∗(n, r). Clearly
the result is true if r = n or r = k. Hence we may assume that k < r < n. We
have

J∗(n, r) = k J∗(n− 1, r) + (n− r + 1) J∗(n− 1, r − 1)

so that using the induction hypothesis,

J∗(n, r) = k · kn−r−1 S(n− k, n− r) + (n− r + 1) · kn−r S(n− k, n− r + 1)

= kn−r
{

S(n− k, n− r) + (n− r + 1)S(n− k, n− r + 1)
}

= kn−r S(n− k + 1, n− r + 1)

as required.

Then we immediately have:
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Theorem 3.2.3. Let F−
A be as defined in (3.1). Then

|F−
A | =

n
∑

r=−k

kn−r S(n− k + 1, n− r + 1) .

Theorem 3.2.4. Let F−
A be as defined in (3.1). Then

|E(F−
A )| =

n
∑

r=k

kn−r
(

n−k

r−k

)

= (k + 1)n−k .

Proof: The result will follow from Theorem 2.2.4 if we show that E(F−
A ) =

E(FA). Clearly
E(F−

A ) ⊆ E(FA) .

Conversely, suppose that ε ∈ E(FA). Then aε = a, for all a ∈ A, by Lemma
1.5. Since A = {1, . . . , k}, then for all x ∈ C(ε)\A

xε ≤ k < x .

Also, by Lemma 1.5, xε = x for all x /∈ C(ε). Thus, for any x ∈ X, xε ≤ x and
A ⊆ F (α). Thus ε ∈ F (F−

A ). Therefore,

E(FA) ⊆ E(F−
A ) .

Hence E(FA) = E(F−
A ) as required.

Remark. Notice that F−
A is isomorphic to (I−n−1)

1, the semigroup of order-
decreasing partial one-to-one transformations on Xn−1, when k = 1. Thus
Lemma 3.2.2 and Theorem 3.2.3 reduce to [2, Proposition 3.1 and Remark 3.6],
when k = 1.
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