PORTUGALIAE MATHEMATICA Vol. 51 Fasc. 4 – 1994

A CLASS OF QUASI-ADEQUATE TRANSFORMATION SEMIGROUPS

Abdullahi Umar

0 – Introduction

It is well known that \mathcal{T}_X , the semigroup of full transformations on a set X contains an isomorphic copy of every semigroup of order not exceeding |X| - 1. Therefore, as remarked by Howie [13], there is little point in attempting a complete classification of the subsemigroups of \mathcal{T}_X . However, there is some interest in identifying certain special subsemigroups that appear to be of particular interest. See for example, Howie [10, 11, 13] and Umar [15, 16].

In this paper we construct a class of transformation semigroups based on simple modification of Vagner's [17] method of representing the elements of $\mathcal{J}(X)$, the symmetric inverse semigroup as full transformations. In Section 1 we describe our construction while in Section 2, we show that the construction leads to \mathcal{R} -unipotent semigroups. (A regular semigroups is \mathcal{R} -unipotent if each of its principal right ideals has a unique idempotent generator. Equivalently, an \mathcal{R} unipotent semigroup is a regular semigroup S in which E(S) is a left regular band; i.e., efe = ef, for all $e, f \in E(S)$.) Further, we consider the finite case where we obtain expressions for the order of the semigroup and that of its left regular band of idempotents.

In Section 3 we further obtain a subclass of (irregular) quasi-adequate semigroups (these are the analogues of orthodox semigroups in the abundant semigroup [9] theory), from our earlier construction and show that they are indeed \mathcal{R}^* -unipotent semigroups. (An \mathcal{R}^* -unipotent semigroup is defined as a quasiadequate semigroup in which each of its principal right *-ideals has a unique idempotent generator. Equivalently, an \mathcal{R}^* -unipotent semigroup is an abundant semigroup S in which E(S) is a left regular band.) We also consider a finite case, where we obtain expressions for the order of the semigroup and that of its left regular band of idempotents.

Received: March 23, 1992; Revised: January 15, 1993.

1 – Preliminaries

For standard terms in semigroup theory see [12]. Let \mathcal{T}_X and $\mathcal{I}(X)$ be the full transformation and symmetric inverse semigroups on a set X (finite or infinite) respectively. Vagner represents the element of $\mathcal{J}(X)$ as full transformations by adjoining an extra element 0 to X and defining, for $\alpha \in \mathcal{J}(X)$, the full transformation α^* in $\mathcal{T}_{X \cup \{0\}}$ by

 $x\alpha^* = x\alpha$ (if $x \in \operatorname{dom} \alpha$) and $x\alpha^* = 0$ (otherwise).

Now, for a given α in \mathcal{T}_X let

$$C(\alpha) = \bigcup \left\{ t\alpha^{-1} \colon (t \in \operatorname{Im} \alpha) | t\alpha^{-1} | \ge 2 \right\}, \quad F(\alpha) = \left\{ x \in X \colon x\alpha = x \right\}.$$

Then clearly $C(\alpha^*)\alpha^* = \{0\}$. If now we replace $\{0\}$ in these expressions, by a set A, we are thus led to the following definition.

Definition 1.1. An element α (in \mathcal{T}_x) is called a Vagner map with respect to a subset (of X) A (possibly empty) or simply an A-Vagner map if $C(\alpha)\alpha \subseteq A = A\alpha$ and $\alpha|_A$ is one-to-one.

Remark. Notice that (in the above definition) if A is finite then $A = A\alpha$ implies $\alpha|_A$ is one-to-one.

The following lemma is crucial in proving that the set of all A-Vagner maps in \mathcal{T}_X is a subsemigroup.

Lemma 1.2. Let $\alpha, \beta \in \mathcal{T}_X$. Then $C(\alpha\beta) \subseteq C(\alpha) \cup C(\beta)\alpha^{-1}$.

Proof: For some $t \in \text{Im } \alpha\beta$ and $x, y \in C(\alpha\beta)$, let $x, y \in t(\alpha\beta)^{-1}$ with $x \neq y$. Then $x\alpha\beta = y\alpha\beta$. Now if $x\alpha = y\alpha$ then $x, y \in C(\alpha)$; otherwise $x\alpha, y\alpha \in C(\beta)$ so that $x, y \in C(\beta)\alpha^{-1}$. Thus $C(\alpha\beta) \subseteq C(\alpha) \cup C(\beta)\alpha^{-1}$, as required.

Now let F_A be the set of all A-Vagner maps in \mathcal{T}_x . Then we have

Lemma 1.3. F_A is a subsemigroup of \mathcal{T}_X .

Proof: First notice that for all $\alpha, \beta \in F_A$

$$(A\alpha)\beta = A\beta = A ,$$

and $\alpha\beta|_A$ is one-to-one if both $\alpha|_A$ and $\beta|_A$ are one-to-one. Moreover,

$$C(\alpha\beta)\alpha\beta \subseteq C(\alpha)\alpha\beta \cup (C(\beta)\alpha^{-1})\alpha\beta \quad \text{(by Lemma 1.2)}$$
$$\subseteq A\beta \cup C(\beta)\beta$$
$$\subseteq A \cup A$$
$$= A .$$

Hence $\alpha\beta \in F_A$, as required.

Remark. Notice that if $A = \emptyset$, then F_A is the semigroup of one-to-one maps of \mathcal{T}_x .

Lemma 1.4. Let $\alpha \in \mathcal{T}_X$. Then α is an idempotent if and only if for all $t \in \text{Im } \alpha, t \in t\alpha^{-1}$, i.e., if and only if $F(\alpha) = \text{Im } \alpha$.

Proof: This statement is proved in [14] for the finite case and no essential use is made of the finiteness of X.

Lemma 1.5. Let $\alpha \in F_A$. Then the following statements are equivalent:

(1) α is an idempotent;

(2) $A \subseteq F(\alpha)$ and $x\alpha = x$ for all $x \notin C(\alpha)$.

Proof:

(1) \Rightarrow (2) By Lemma 1.4, it is clear that for any idempotent $\alpha \in F_A$,

$$A = A\alpha \subseteq \operatorname{Im} \alpha = F(\alpha) \; .$$

Moreover, for all $y \in \text{Im } \alpha \setminus A$, $y\alpha = y$ and $y\alpha^{-1} = \{x\}$ with $x \notin C(\alpha)$. Thus

$$x\alpha = y = y\alpha$$

which implies that $x = y = x\alpha$, for all $x \notin C(\alpha)$.

 $(2) \Rightarrow (1)$ Let $x \in C(\alpha)$. Then $x\alpha \in C(\alpha)\alpha \subseteq A \subseteq F(\alpha)$, so that $x\alpha^2 = x\alpha$. And since $x\alpha = x$ for all $x \notin C(\alpha)$ (by (2)), then $x\alpha^2 = x\alpha$ for all x. Thus α is an idempotent.

In view of the remark made after Lemma 1.3, from this point onwards it is assumed that $A \neq \emptyset$.

Lemma 1.6. F_A is a regular semigroup.

Proof: Let $\alpha \in F_A$ and let a_0 be a fixed element of A. If $a \in A$, $a\alpha^{-1} \cap A \neq \emptyset$ since $A = A\alpha$. For each $a \in A$ choose an element b_a in $a\alpha^{-1} \cap A$ and for each

 $y \in \operatorname{Im} \alpha \setminus A$, let $y\alpha^{-1} = \{x_y\}$. Now define $\alpha' \in \mathcal{T}_X$ by

$$a\alpha' = b_a \quad (a \in A)$$
$$y\alpha' = x_y \quad (y \in \operatorname{Im} \alpha \backslash A)$$
$$x\alpha' = a_0 \quad (x \in X \backslash \operatorname{Im} \alpha)$$

Then clearly $\alpha \alpha' \alpha = \alpha$, $A\alpha' \subseteq A$ and $A \subseteq \{b_a \colon a \in A\} = A\alpha'$. Moreover, since $C(\alpha') = X \setminus \text{Im } \alpha$, then

$$C(\alpha')\alpha' = (X \setminus \operatorname{Im} \alpha)\alpha' = \{a_0\},\$$

and it now follows that $\alpha' \in F_A$. Hence F_A is regular.

2 – Orthodox semigroups

Recall that an orthodox semigroup is a regular semigroup whose set of idempotents E(S) forms a subsemigroup. For a detailed account of orthodox semigroups see [12, Chapter VI].

2.1 Green's relations

For the definitions of the Green's relations see, for example, [12]. It is now clear by Lemma 1.6 and [12, Proposition II.4.5 and Ex. II.10] that in the semigroup F_A , for $\alpha, \beta \in F_A$

- (2.1) $(\alpha, \beta) \in \mathcal{L}$ iff $\operatorname{Im} \alpha = \operatorname{Im} \beta$,
- (2.2) $(\alpha, \beta) \in \mathcal{R}$ iff $\alpha \circ \alpha^{-1} = \beta \circ \beta^{-1}$,

(2.3)
$$(\alpha, \beta) \in \mathcal{LH}$$
 iff $\operatorname{Im} \alpha = \operatorname{Im} \beta$ and $\alpha \circ \alpha^{-1} = \beta \circ \beta^{-1}$.

Moreover, if $(\alpha, \beta) \in \mathcal{D} = \mathcal{L} \circ \mathcal{R}$ $(= \mathcal{R} \circ \mathcal{L})$, then there exist $\delta \in F_A$ such that $\alpha \mathcal{L} \delta \mathcal{R} \beta$, so that

Im
$$\alpha$$
 = Im δ and $\alpha \circ \alpha^{-1} = \beta \circ \beta^{-1}$.

However, $\alpha \circ \alpha^{-1} = \beta \circ \beta^{-1}$ implies that $C(\delta) = C(\beta)$, which in turn implies that $|\text{Im } \delta \setminus A| = |\text{Im } \beta \setminus A|$. Thus

$$|\operatorname{Im} \alpha \setminus A| = |\operatorname{Im} \delta \setminus A| = |\operatorname{Im} \beta \setminus A|.$$

Conversely, suppose that $|\operatorname{Im} \alpha \setminus A| = |\operatorname{Im} \beta \setminus A|$. Let θ be a bijection from $\operatorname{Im} \beta \setminus A$ onto $\operatorname{Im} \alpha \setminus A$, and define δ (in F_A) by

$$x\delta = \begin{cases} x\beta\theta & (\text{if } x \notin C(\beta) \cup A) \\ x\beta \in a & (\text{if } x \in C(\beta) \cup A) \end{cases}.$$

Then, clearly δ and β coincide on $C(\beta) \cup A$, and since δ is one-to-one otherwise, it follows that

$$C(\delta)\delta = C(\beta)\beta \subseteq A = A\beta = A\delta$$
.

Moreover, Im $\delta = \text{Im } \alpha$ and $\alpha \circ \alpha^{-1} = \beta \circ \beta^{-1}$, so that $\alpha \mathcal{L} \, \delta \mathcal{R} \, \beta$, i.e., $\alpha \mathcal{D} \beta$. Thus

(2.4)
$$(\alpha, \beta) \in \mathcal{D} \quad \text{iff} \quad |\text{Im}\,\alpha \setminus A| = |\text{Im}\,\beta \setminus A| .$$

Also, if $(\alpha, \beta) \in \mathcal{J}$, then there exist $\delta_1, \delta_2, \gamma_1, \gamma_2 \in F_A$ such that

 $\alpha = \delta_1 \beta \delta_2$ and $\beta = \gamma_1 \alpha \gamma_2$.

However, if $|\operatorname{Im} \alpha \backslash A| < |\operatorname{Im} \beta \backslash A|$, then

$$|\operatorname{Im} \gamma_1 \alpha \setminus A| < |\operatorname{Im} \beta \setminus A| \quad (\text{since } \operatorname{Im} \gamma_1 \alpha \subseteq \operatorname{Im} \alpha) ,$$

and hence

$$|\operatorname{Im} \beta \backslash A| = |\operatorname{Im} \gamma_1 \alpha \gamma_2 \backslash A| < |\operatorname{Im} \beta \backslash A| \quad (\text{since } A \subseteq \operatorname{Im} \gamma_1 \alpha \cap \operatorname{Im} \gamma_2) ,$$

which is a contradiction. Thus, on the semigroup F_A , $\mathcal{D} = \mathcal{J}$.

X

Lemma 2.1.1. Every \mathcal{R} -class of F_A contains exactly one idempotent.

Proof: Let ε , η be two \mathcal{R} -related idempotents in F_A , then $C(\varepsilon) = C(\eta)$. Moreover, for all $x \notin C(\varepsilon)$

$$x\varepsilon = x = x\eta$$
 (by Lemma 1.5),

and for all $x \in C(\varepsilon)$

$$\varepsilon, x\eta \in A \subseteq \operatorname{Im} \varepsilon \cap \operatorname{Im} \eta$$
,

so that $\operatorname{Im} \varepsilon = \operatorname{Im} \eta$. Thus, $(\varepsilon, \eta) \in \mathcal{L} \cap \mathcal{R} = \mathcal{H}$, and it follows that $\varepsilon = \eta$, as required.

A regular semigroup is said to be \mathcal{R} -unipotent if each of its principal right ideals has a unique idempotent generator. (In other words each \mathcal{R} -class contains a unique idempotent.) Equivalently, an \mathcal{R} -unipotent semigroup is a regular semigroup S in which E(S) is a left regular band; i.e., efe = ef, for all $e, f \in E(S)$.

An \mathcal{L} -unipotent semigroup is defined dually. Notice that an $\mathcal{R}(\mathcal{L})$ -unipotent semigroup is necessarily orthodox. $\mathcal{R}(\mathcal{L})$ -unipotent semigroups have been studied, for example, by Edwards [4] and Venkatesan [18]. \mathcal{R} -unipotent semigroups are also known as *left inverse* semigroups in the literature. In view of the above remarks, by Lemmas 1.6 and 2.1.1, we obtain

Theorem 2.1.2. Let F_A be the semigroup of all A-vagner maps of \mathcal{T}_X . Then F_A is an \mathcal{R} -unipotent semigroup.

2.2 The finite case

For any relation \mathcal{K} we shall denote the \mathcal{K} -class containing α by K_{α} . Let $X = \{1, \ldots, n\}$ and $A = \{a_1, a_2, \ldots, a_k\} \subseteq X$ for some $1 \leq k \leq n$. It follows from (2.3) that if $|\operatorname{Im} \alpha| = r$ then there are k! (r - k)! elements in H_{α} . To see this notice that there must be r - k singleton $(\alpha \circ \alpha^{-1})$ -classes outside $A\alpha^{-1}$ and that these must map to the r - k elements of $\operatorname{Im} \alpha$ outside A. Hence there are (r - k)! ways of mapping those elements. The remaining $(\alpha \circ \alpha^{-1})$ -classes, k in number, all intersect A and must map onto A in a one-one fashion. There are thus k! possibilities. It now follows that $|H_{\alpha}| = k! (r - k)!$.

And from (2.1), we deduce that the number of \mathcal{L} -classes in D_{α} is equal to the number of (r-k)-element subsets of $X \setminus A$ (for the image set must contain A). Hence there are $\binom{n-k}{r-k} \mathcal{L}$ -classes in D_{α} . However, the number of \mathcal{R} -classes in D_{α} is less obvious and the next lemma provides the answer.

Lemma 2.2.1. Let $\alpha \in F_A$ such that $|\text{Im } \alpha| = r$. Then there are $k^{n-r} \binom{n-k}{r-k}$ \mathcal{R} -classes in D_{α} .

Proof: Since there are r - k elements not in $C(\alpha) \cup A$, then the number of \mathcal{R} -classes in D_{α} is equivalent to the number of partitions of X_n into r subsets subject to the conditions that there are r - k singletons (from $X_n \setminus A$) and of the remaining k subsets each must contain an element of A. However, there are $\binom{n-k}{r-k}$ ways of choosing the r-k singletons from $X_n \setminus A$ and there are k^{n-r} ways of partitioning the remaining n-r+k elements into k subsets, with each subset containing an element of A. Hence there are

$$k^{n-r} \begin{pmatrix} n-k \\ r-k \end{pmatrix}$$

number of partitions as required. \blacksquare

Evidently, we now have

Lemma 2.2.2. Let $\alpha \in F_A$ such that $|\text{Im } \alpha| = r$. Then

$$|J_{\alpha}| = k^{n-r} \left({n-k \atop r-k} \right)^2 k! (r-k)! .$$

Theorem 2.2.3. Let F_A be the semigroup of all A-Vagner maps of \mathcal{T}_X . Then

$$|F_A| = \sum_{r=k}^n k^{n-r} {\binom{n-k}{r-k}}^2 k! (r-k)!$$

Theorem 2.2.4. Let F_A be the semigroup of all A-Vagner maps of \mathcal{T}_X . Then

$$|E(F_A)| = \sum_{r=k}^{n} k^{n-r} \binom{n-k}{r-k} = (k+1)^{n-k} .$$

Proof: It follows directly from Lemmas 2.1.1 and 2.2.1. ■

3 – Irregular quasi-adequate semigroups

Let X be a well ordered set and let A be a (non empty) subset of X. Also, let \mathcal{T}_X be the full transformation semigroup on X, and let F_A be the semigroup of all A-Vagner maps of \mathcal{T}_X . Consider the subset of F_A denoted by F_A^-

(3.1)
$$F_A^- = \left\{ \alpha \in F_A \colon (\forall x \in X) \ x\alpha \le x \text{ and } A \subseteq F(\alpha) \right\}$$

consisting of all order-decreasing maps of F_A for which $A \subseteq F(\alpha)$. Then clearly F_A^- is a subsemigroup of F_A , since for all $\alpha, \beta \in F_A^-$

 $(x\alpha)\beta \leq x\alpha \leq x$ and $A \subseteq F(\alpha) \cap F(\beta) \subseteq F(\alpha\beta)$.

Notice that if A is finite then $A = A\alpha$ and $x\alpha \leq x$ (for all $x \in X$) implies $A \subseteq F(\alpha)$.

3.1 Green's and starred Green's relations

Lemma 3.1.1. F_A^- is \mathcal{R} -trivial.

Proof: Let $(\alpha, \beta) \in \mathcal{R}$. Then there exist δ , γ in F_A^- such that

$$\alpha \delta = \beta$$
 and $\beta \gamma = \alpha$.

However, for all $x \in X$

$$x\beta = x\alpha\delta \le x\alpha$$
 and $x\alpha = x\beta\gamma \le x\beta$

so that $x\alpha = x\beta$. Thus $\alpha = \beta$.

Lemma 3.1.2. Let $\alpha, \beta \in F_A^-$. Then the following are equivalent:

- (1) $(\alpha, \beta) \in \mathcal{L};$
- (2) Im α = Im β and $z\alpha^{-1} = z\beta^{-1}$ for all $z \in \text{Im } \alpha \setminus A$.

Proof: Let $(\alpha, \beta) \in \mathcal{L}$. Then certainly $\operatorname{Im} \alpha = \operatorname{Im} \beta$ and there exists δ, γ in F_A^- such that

$$\delta \alpha = \beta$$
 and $\gamma \beta = \alpha$.

Let $z \in \operatorname{Im} \alpha \backslash A = \operatorname{Im} \beta \backslash A$ and let $y = z\alpha^{-1}$. Then

$$y\gamma\beta = y\alpha = z$$

and so

 $y\gamma = z\beta^{-1}$.

Hence

$$y \ge y\gamma = z\beta^{-1}$$
.

That is, $z\alpha^{-1} \ge z\beta^{-1}$, and we can similarly show that

$$z\beta^{-1} \ge z\alpha^{-1} \; .$$

Thus

$$z\beta^{-1} = z\alpha^{-1} ,$$

as required.

Conversely, suppose that $\operatorname{Im} \alpha = \operatorname{Im} \beta$ and $z\alpha^{-1} = z\beta^{-1}$ for all $z \in \operatorname{Im} \alpha \setminus A$. Let δ , γ be defined by

$$\begin{split} x\delta &= \left\{ \begin{array}{ll} x\alpha & (\text{if } x\in A\alpha^{-1}) \\ x & (\text{otherwise}) \end{array} \right. \\ x\gamma &= \left\{ \begin{array}{ll} x\beta & (\text{if } y\in A\beta^{-1}) \\ x & (\text{otherwise}) \end{array} \right. \end{split}$$

Then, clearly δ and α coincide on $A\alpha^{-1}$, and since

$$C(\alpha) \subseteq C(\alpha) \alpha \alpha^{-1} \subseteq A \alpha^{-1}$$
 and $A \subseteq A \alpha^{-1}$,

it follows that

$$C(\delta)\delta = C(\alpha)\alpha \subseteq A = A\alpha = A\delta$$

Thus $\delta \in F_A^-$. Similarly, $\delta \in F_A^-$ and $\alpha = \delta\beta$, $\beta = \gamma\alpha$. Hence $(\alpha, \beta) \in \mathcal{L}$.

Some immediate consequences of Lemma 3.1.1 are:

Corollary 3.1.3. On the semigroup F_A^- , $\mathcal{H} = \mathcal{R} = i$, the indentity and $\mathcal{L} = \mathcal{D}$.

Corollary 3.1.4. F_A^- is either a band or an irregular semigroup.

Proof: Let x be a regular element of F_A^- . Then there exists x' in F_A^- such that x = xx'x and $(x, xx') \in \mathcal{R}$, so that $x = xx' \in E(F_A^-)$. Thus the only regular elements of F_A^- are its idempotents.

Now in view of the above Corollary it is natural to ask: when is F_A^- a band? To investigate this, first we introduce some new notations and record some basic results about F_A^- . Let us denote by A^- and A^+ the sets

$$\left\{x \in X \colon (\exists a \in A) \ x \le a\right\}, \quad \left\{x \in X \colon (\exists a \in A) \ x \ge a\right\}$$

respectively. Then clearly $A \subseteq A^- \cap A^+$ and $A^- \cup A^+ = X$.

Lemma 3.1.5. Let $\alpha \in F_A^-$. Then $A^- \setminus A^+ \subseteq F(\alpha)$.

Proof: If $A^- \setminus A^+ \not\subset F(\alpha)$, then there is a smallest element $c \in A^- \setminus A^+$ such that $c\alpha \neq c$. Then, as $\alpha \in F_A^-$, we have $c\alpha < c$ so that $c\alpha \in A^- \setminus A^+$ and by the choice of c we have $(c\alpha)\alpha = c\alpha$. Hence $c \in C(\alpha)$ and as $\alpha \in F_A$, we have $c\alpha \in A$, a contradiction.

Lemma 3.1.6. F_A^- is a band if and only if $|A^+ \setminus A| \le 1$.

Proof: First observe that if $A^+ \setminus A = \emptyset$, then $A = A^+$ so that

$$X = A^{-} \cup A^{+} = A^{-} = (A^{-} \backslash A) \cup A = (A^{-} \backslash A^{+}) \cup A$$
$$\subseteq F(\alpha) \quad \text{(by Lemma 3.1.5)}.$$

Thus F_A^- is the trivial semigroup. Next, if $A^+ \setminus A = \{y\}$, then $y\alpha = y$ or $y\alpha \in A$, and hence $(y\alpha)\alpha = y\alpha$. Moreover, $x\alpha = x$ for all $x \in (A^- \setminus A^+) \cup A = (A^+ \setminus A)'$, by Lemma 3.1.5, so that $\alpha^2 = \alpha$. Thus F_A^- is a band if $|A^+ \setminus A| \leq 1$. Conversely, suppose that F_A^- is a band and $|A^+ \setminus A| \geq 2$, then there exist x,

Conversely, suppose that F_A^- is a band and $|A^+ \setminus A| \ge 2$, then there exist x, $y \in A^+ \setminus A$ with $x \neq y$ such that x > y. Now choose an element $a_y \in A$ for which $a_y \le y$ and define β in F_A^- by

$$x\beta = y$$
, $y\beta = a_y$ and $z\beta = z$ (otherwise).

Then, clearly β is a non-idempotent element in F_A^- , which is a contradiction as F_A^- is a band. Thus if F_A^- is a band then $|A^+ \setminus A| \leq 1$. Hence the proof.

Recall from [9] that on a semigroup S the relation \mathcal{L}^* (\mathcal{R}^*) is defined by the rule that $(a, b) \in \mathcal{L}^*$ (\mathcal{R}^*) if and only if the elements a, b are related by the Green's relation \mathcal{L} (\mathcal{R}) in some oversemigroup of S. The join of the equivalences \mathcal{L}^* and \mathcal{R}^* is denotes by \mathcal{D}^* and their intersection by \mathcal{H}^* . A semigroup S in which each \mathcal{L}^* -class and each \mathcal{R}^* -class contains an idempotent is called *abundant*. Of course regular semigroups are abundant (and in this case $\mathcal{K}^* = \mathcal{K}$, for \mathcal{K} any of $\mathcal{H}, \mathcal{L}, \mathcal{R}$ or \mathcal{D}). The starred relations play a role in the theory of abundant semigroups analogous to that of Green's relations in the theory of regular semigroups. As in [9] we introduce *-ideals to obtain the starred analogue of the Green's relation \mathcal{J} .

The \mathcal{L}^* -class containing the element a is denoted by L_a^* . The corresponding notation is used for the class of the other relations. We now define a left (right) *-ideal of a semigroup S to be a left (right) ideal I of S for which $L_a^* \subseteq I$ ($R_a^* \subseteq I$), for all elements a of I. A subset I of S is a *-ideal if it is both a left *-ideal and a right *-ideal. The principal *-ideal $J^*(a)$ generated by the element a of S is the intersection of all *-ideals of S to which a belongs. The relation \mathcal{J}^* is defined by the rule that: $a\mathcal{J}^*b$ if and only if $J^*(a) = J^*(b)$. Again, for a regular semigroup $S\mathcal{J} = \mathcal{J}^*$. In the case of ambiguity we denote a relation \mathcal{K} on S by \mathcal{K}_S .

Before we characterize the starred Green's relations we need the following definition and lemmas:

Definition 3.1.7. Let S be a semigroup and let U be a subsemigroup of S. Then U will be called an *inverse ideal* of S if for all $u \in U$, there exists $u' \in S$ such that uu'u = u and $uu', u'u \in U$.

Lemma 3.1.8. Every inverse ideal U of a semigroup S is abundant.

Proof: Since for all $u \in U$

 $(u, u'u) \in \mathcal{L}_S$ and $(u, uu') \in \mathcal{R}_S$

it follows that

$$(u, u'u) \in \mathcal{L}_U^*$$
 and $(u, uu') \in \mathcal{R}_U^*$.

Hence every \mathcal{L}^* -class and every \mathcal{R}^* -class of U contains an idempotent, since uu', u'u are idempotents in U. Thus U is abundant.

Again, recall from [9] that for any subsemigroup U of S

$$\mathcal{L}_{S}^{*} \cap (U \times U) \subseteq \mathcal{L}_{U}^{*}$$
 and $\mathcal{R}_{S}^{*} \cap (U \times U) \subseteq \mathcal{R}_{U}^{*}$.

And for any regular elements a, b of a semigroup S

$$(a,b) \in \mathcal{K}$$
 iff $(a,b) \in \mathcal{K}^*$,

where \mathcal{K} is any of \mathcal{H}, \mathcal{L} or \mathcal{R} . Moreover, in any semigroup $S, \mathcal{K} \subseteq \mathcal{K}^*$. Hence we have

Lemma 3.1.9. Let U be an inverse ideal of a semigroup S. Then

- (1) $\mathcal{L}_U^* = \mathcal{L}_S \cap (U \times U);$
- (2) $\mathcal{R}_U^* = \mathcal{R}_S \cap (U \times U);$
- (3) $\mathcal{H}_U^* = \mathcal{H}_S \cap (U \times U).$

Proof:

(1) Certainly,

$$\mathcal{L}_S \cap (U \times U) \subseteq \mathcal{L}_U^*$$
.

Conversely, suppose that $(a,b) \in \mathcal{L}_U^*$ and a', b' are elements in S such that aa'a = a, bb'b = b and $aa', a'a, bb', b'b \in U$. Then

$$(a'a, a) \in \mathcal{L}_S$$
 and $(b, b'b) \in \mathcal{L}_S$,

which implies that

$$(a'a, a) \in \mathcal{L}_U^*$$
 and $(b, b'b) \in \mathcal{L}_U^*$

And, by transitivity

$$(a'a,b'b)\in\mathcal{L}_U^*$$
 ,

which is equivalent to

$$(a'a,b'b) \in \mathcal{L}_U$$
.

Now, since $\mathcal{L}_U \subseteq \mathcal{L}_S \cap (U \times U)$, then

$$(a'a,b'b) \in \mathcal{L}_S$$

and hence,

$$(a,b) \in \mathcal{L}_S$$
.

So that

$$\mathcal{L}_U^* \subseteq \mathcal{L}_S \cap (U \times U) ,$$

and the result follows.

- (2) The proof is similar to that of (1).
- (3) This is a simple set-theoretic consequence of (1) and (2). \blacksquare

Corollary 3.1.10. If U is an inverse ideal of a semigroup S, then

$$\mathcal{L}_U^* = \mathcal{L}_S^* \cap (U \times U), \quad \mathcal{R}_U^* = \mathcal{R}_S^* \cap (U \times U) \quad \text{and} \quad \mathcal{H}_U^* = \mathcal{H}_S^* \cap (U \times U) \ .$$

Lemma 3.1.11. F_A^- is an inverse ideal of F_A .

Proof: Let $\alpha \in F_A^-$. Notice that for all $t \in \operatorname{Im} \alpha \setminus A$

$$|t\alpha^{-1}| = 1 ,$$

and for all $t \in A$, if $x \in t\alpha^{-1}$ then

$$x \ge x\alpha = t = t\alpha \; .$$

Thus $\min(t\alpha^{-1})$ exists for all $t \in \operatorname{Im} \alpha$. Now, let $a_0 = \min A$ and define α' by

$$t\alpha' = x_t = \min(t\alpha^{-1}) \ (t \in \operatorname{Im} \alpha), \quad y\alpha' = a_0 \ (\text{otherwise}) .$$

Then, it is clear that $A \subseteq F(\alpha')$ and $C(\alpha') \cap \operatorname{Im} \alpha = \emptyset$. Thus $C(\alpha')\alpha' = \{a_0\}$ and $A\alpha' = A$. It now follows that $\alpha' \in F_A$ and $\alpha\alpha'\alpha = \alpha$. (However notice that α' need not be a decreasing map.) Also,

$$C(\alpha \alpha')\alpha \alpha' \subseteq C(\alpha) \cdot \alpha \alpha' \cup C(\alpha')\alpha^{-1} \cdot \alpha \alpha' \quad \text{(by Lemma 1.2)}$$
$$\subseteq A\alpha' \cup A$$
$$= A ,$$
$$C(\alpha'\alpha)\alpha'\alpha \subseteq C(\alpha') \cdot \alpha'\alpha \cup C(\alpha)(\alpha')^{-1} \cdot \alpha'\alpha \quad \text{(by Lemma 1.2)}$$
$$\subseteq A\alpha \cup A$$
$$= A ,$$

and $A \subseteq F(\alpha) \cap F(\alpha') = F(\alpha') \cap F(\alpha) \subseteq F(\alpha\alpha') \cap F(\alpha'\alpha)$. Moreover, since for all $x \in X$

$$x\alpha\alpha' = (x\alpha)\alpha' = x_{x\alpha} = \min(x\alpha\alpha^{-1}) \le x$$
,

it follows that $\alpha \alpha' \in F_A^-$. To see that $\alpha' \alpha \in F_A^-$, first notice that if $y \notin \operatorname{Im} \alpha$, then $y \notin A^- \setminus A^+$, by Lemma 3.1.5, and hence $y \in A^+ \setminus \operatorname{Im} \alpha$. Thus for all $t \in \operatorname{Im} \alpha$

$$t\alpha'\alpha = x_t\alpha = t$$
 (since $x_t \in t\alpha^{-1}$),

for all $y \in A^+ \setminus \operatorname{Im} \alpha$

$$y\alpha'\alpha = a_0\alpha = a_0 < y$$
.

Hence the proof. \blacksquare

A quasi-adequate semigroup is an abundant semigroup in which E(S) is a subsemigroup. Thus the class of quasi-adequate semigroups includes all orthodox semigroups. By contrast with the regular case, an abundant semigroup in which each of its principal right *-ideals has a unique idempotent generator need not be quasi-adequate. In fact S_n^- , the semigroup of all decreasing full transformations of $X_n = \{1, \ldots, n\}$ is an abundant semigroup whose each of its principal right *-ideals has a unique idempotent generator ([15, Lemma 2.6 and Theorem 2.7]) but it is idempotent-generated ([15, Theorem 1.4]). El-Qallali [5] defines an \mathcal{R}^* -unipotent semigroup to be a quasi-adequate semigroup in which each of its principal right *-ideal has a unique idempotent generator. In other words, an R^* -unipotent semigroup is a quasi-adequate semigroup in which each \mathcal{R}^* -class contains a unique idempotent. Also, El-Qallali showed that the latter condition is equivalent to having a right regular band of idempotents ([5, Lemma 1.1]). By Lemmas 2.1.1, 3.1.8, 3.1.9 and 3.1.11 we have

Theorem 3.1.12. Let F_A^- be as defined in (3.1). Then F_A^- is an \mathcal{R}^* -unipotent semigroup.

By equation (2.1) and (2.2), Corollary 3.1.10 and Lemma 3.1.11 we deduce

Lemma 3.1.13. Let $(\alpha, \beta) \in F_A^-$. Then

(1) $(\alpha, \beta) \in \mathcal{L}^*$ if and only if $\operatorname{Im} \alpha = \operatorname{Im} \beta$;

(2) $(\alpha, \beta) \in \mathcal{R}^*$ if and only if $\alpha \circ \alpha^{-1} = \beta \circ \beta^{-1}$.

To characterize \mathcal{D}^* on F_A^- we let $T = (A^- \setminus A^+) \cup A$ and define a relation \mathcal{K} on F_A^- by the rule

$$(\alpha, \beta) \in \mathcal{K}$$
 iff $|\operatorname{Im} \alpha \setminus T| = |\operatorname{Im} \beta \setminus T|$.

Then, clearly, $\mathcal{L}^* \subseteq \mathcal{K}$ and $\mathcal{R}^* \subseteq \mathcal{K}$, since $T \subseteq F(\alpha) \cap F(\beta) \subseteq \operatorname{Im} \alpha \cap \operatorname{Im} \beta$. Also, $\mathcal{D}^* \subseteq \mathcal{K}$, since \mathcal{D}^* is the smallest equivalence containing both \mathcal{L}^* and \mathcal{R}^* . We now have

Lemma 3.1.14. $\mathcal{K} = \mathcal{R}^* \circ \mathcal{L}^* \circ \mathcal{R}^* = \mathcal{L}^* \circ \mathcal{R}^* \circ \mathcal{L}^* = \mathcal{D}^*.$

Proof: Suppose that $(\alpha, \beta) \in \mathcal{K}$ so that $|\text{Im } \alpha \setminus T| = |\text{Im } \beta \setminus T|$ and let θ be a bijection from Im α onto Im β such that, for all $t \in T$, $t\theta = t$. Define $\delta, \gamma \in \mathcal{T}_X$ as follows:

$$x\delta = \min(x\alpha, x\alpha\theta)$$
,
 $x\gamma = \min(x\beta, x\beta\theta^{-1})$.

Then, it is clear that $C(\delta) = C(\alpha)$, and for all $x \in C(\delta)$, $x\delta = \min(x\alpha, x\alpha\theta) = x\alpha \in A$, so that $C(\delta)\delta \subseteq A = A\delta$. Similarly, $C(\gamma)\gamma \subseteq A = A\gamma$. Moreover, δ, γ are decreasing maps for which $\operatorname{Im} \delta = \operatorname{Im} \gamma, \delta \circ \delta^{-1} = \alpha \circ \alpha^{-1}$ and $\gamma \circ \gamma^{-1} = \beta \circ \beta^{-1}$. Thus $\delta, \gamma \in F_A^-$ and $\alpha \mathcal{R}^* \delta \mathcal{L}^* \gamma \mathcal{R}^* \beta$, by Lemma 3.1.13. Thus

$$\mathcal{K}\subseteq \mathcal{R}^*\circ \mathcal{L}^*\circ \mathcal{R}^*$$
 .

Conversely, let $(\alpha, \beta) \in \mathcal{R}^* \circ \mathcal{L}^* \circ \mathcal{R}^*$. Then, there exist $\delta, \gamma \in F_A^-$ such that $\alpha \mathcal{R}^* \delta \mathcal{L}^* \gamma \mathcal{R}^* \beta$. Since T is contained in $\operatorname{Im} \alpha$, $\operatorname{Im} \beta$, $\operatorname{Im} \gamma$ and $\operatorname{Im} \delta$ we have

$$|\operatorname{Im} \alpha \setminus T| = |\operatorname{Im} \delta \setminus T|, \quad \operatorname{Im} \delta \setminus T = \operatorname{Im} \gamma \setminus T \text{ and } |\operatorname{Im} \gamma \setminus T| = |\operatorname{Im} \beta \setminus T|,$$

so that

$$|\mathrm{Im}\,\alpha\backslash T| = |\mathrm{Im}\,\beta\backslash T|$$

Thus

$$\mathcal{R}^* \circ \mathcal{L}^* \circ \mathcal{R}^* \subseteq \mathcal{K}$$
.

On the other hand, let $(\alpha, \beta) \in \mathcal{K}$ and let $a_0 = \min A$. Also, let $M(\alpha) = \{\max(x\alpha, x\alpha\theta) \colon x \in X\}$ and define $\delta', \gamma' \in \mathcal{T}_X$ as follows:

$$x\delta' = \begin{cases} x\alpha & (\text{if } x \in M(\alpha)) \\ a_0 & (\text{otherwise}) \\ x\gamma' = \begin{cases} x\alpha\theta & (\text{if } x \in M(\alpha)) \\ a_0 & (\text{otherwise}) \\ . \end{cases}$$

Notice that, $A \subseteq T \subseteq M(\alpha)$ and $C(\delta') \cap M(\alpha) = \emptyset$. Thus $C(\delta') \subseteq X \setminus M(\alpha)$, so that $C(\delta')\delta' = \{a_0\}$. Similarly, $C(\gamma')\gamma' = \{a_0\}$. Moreover, δ', γ' are decreasing maps for which $\operatorname{Im} \alpha = \operatorname{Im} \delta', \ \delta \circ (\delta')^{-1} = \gamma \circ (\gamma')^{-1}$ and $\operatorname{Im} \gamma' = \operatorname{Im} \beta$. Thus $\delta', \gamma' \in F_A^-$ and $\alpha \mathcal{L}^* \delta' \mathcal{R}^* \gamma' \mathcal{L}^* \beta$, by Lemma 3.1.13. Thus

$$\mathcal{K} \subseteq \mathcal{L}^* \circ \mathcal{R}^* \circ \mathcal{L}^*$$
 .

Similarly (from above), we can show that

$$\mathcal{L}^* \circ \mathcal{R}^* \circ \mathcal{L}^* \subseteq \mathcal{K}$$
.

And finally, from the inequality

$$\mathcal{D}^* \subseteq \mathcal{K} = \mathcal{R}^* \circ \mathcal{L}^* \circ \mathcal{R}^* = \mathcal{L}^* \circ \mathcal{R}^* \circ \mathcal{L}^* \subseteq \mathcal{D}^* \;,$$

we deduce the result of the lemma. \blacksquare

The following lemma is essential to our next investigation about the properties of \mathcal{J}^* .

Lemma 3.1.15 ([9, Lemma 1.7]). Let a be an element of a semigroup S. Then $b \in J^*(a)$ if and only if there are elements $a_0, a_1, \ldots, a_n \in S, x_1, \ldots, x_n, y_1, \ldots, y_n \in S^1$ such that $a = a_0, b = a_n$, and $(a_i, x_i a_{i-1} y_i) \in \mathcal{D}^*$ for $i = 1, \ldots, n$.

We immediately have:

Lemma 3.1.16. Let $\alpha \in J^*(\beta)$. Then $|\operatorname{Im} \alpha \setminus T| \le |\operatorname{Im} \beta \setminus T|$.

Proof: Let $\alpha \in J^*(\beta)$. Then, by Lemma 3.1.15, there exist $\beta_0, \beta_1, \ldots, \beta_n$, $\delta_1, \ldots, \delta_n, \gamma_1, \ldots, \gamma_n \in F_A^-$ such that $\beta = \beta_0, \alpha = \beta_n$, and $(\beta_i, \delta_i \beta_{i-1} \gamma_i) \in \mathcal{D}^*$ for $i = 1, \ldots, n$. However, by Lemma 3.1.14, this implies that

$$\operatorname{Im} \beta_i \backslash T | = |\operatorname{Im}(\delta_i \beta_{i-1} \gamma_i) \backslash T| \le |\operatorname{Im} \beta_{i-1} \backslash T|$$

so that

$$|\mathrm{Im}\,\alpha\backslash T| \le |\mathrm{Im}\,\beta\backslash T|$$

as required. \blacksquare

Thus we now have the final result of this section:

Lemma 3.1.17. On the semigroup F_A^- , $\mathcal{D}^* = \mathcal{J}^*$.

Proof: Notice we need only show that $\mathcal{J}^* \subseteq \mathcal{D}^*$ (since $\mathcal{D}^* \subseteq \mathcal{J}^*$). So, suppose that $(\alpha, \beta) \in \mathcal{J}^*$, then $J^*(\alpha) = J^*(\beta)$, so that $\alpha \in J^*(\beta)$ and $\beta \in J^*(\alpha)$. However, by Lemma 3.1.16, this implies that

$$|\operatorname{Im} \alpha \setminus T| \le |\operatorname{Im} \beta \setminus T|$$
 and $|\operatorname{Im} \beta \setminus T| \le |\operatorname{Im} \alpha \setminus T|$

so that

$$|\mathrm{Im}\,\alpha\backslash T| = |\mathrm{Im}\,\beta\backslash T| \ .$$

Thus, by Lemma 3.1.14,

$$\mathcal{J}^* \subseteq \mathcal{D}^*$$
,

as required. \blacksquare

3.2 The finite case

We aim to find a formula for the order of the semigroup F_A^- in the case where $A = \{1, \ldots, k\}$ and $X = \{1, \ldots, n\}$. Let

$$J^*(n,r) = \left| \left\{ \alpha \in F_A^- \colon |\mathrm{Im}\,\alpha| = r \right\} \right| \,.$$

Then $J^*(n,k) = k^{n-k}$, $J^*(n,n) = 1$ and $J^*(n,r) = 0$ if r = 0 or n < r or r < k.

Lemma 3.2.1. $J^*(n,r) = k J^*(n-1,r) + (n-r+1) J^*(n-1,r-1).$

Proof: Maps α for which $|\text{Im} \alpha| = r$ divide naturally into two classes depending upon whether

$$\operatorname{Im}(\alpha \,|\, \{1, \dots, n-1\}) = \operatorname{Im} \alpha \quad (1)$$

or

$$\operatorname{Im}(\alpha \,|\, \{1,\ldots,n-1\}) \subset \operatorname{Im} \alpha \quad (2) \;.$$

In case (1), n must map to one of the k elements in A, and so there are $k J^*(n-1,r)$ elements of this kind. In case (2), $|\text{Im}(\alpha | \{1, \ldots, n-1\})| = r-1$ and n must map to one of the n-r+1 elements not in $\text{Im}(\alpha | \{1, \ldots, n-1\})$. Hence there are $(n-r+1) J^*(n-1,r-1)$ elements of this kind. Thus,

$$J^*(n,r) = k J^*(n-1,r) + (n-r+1) J^*(n-1,r-1) ,$$

as required. \blacksquare

Recall that the Stirling number of the second kind denoted by S(n,k) is usually defined as

$$S(n,1) = 1 = S(n,n)$$
 and $S(n,k) = S(n-1,k-1) + k S(n-1,k)$,

where n, k are natural numbers such that $n \ge k$.

Lemma 3.2.2.
$$J^*(n,r) = k^{n-r} S(n-k+1, n-r+1)$$
 $(n \ge r \ge k).$

Proof: Certainly the result is true when n = k. Suppose that k < n and that the result is true for all s such that $k \le s \le n-1$. Consider $J^*(n,r)$. Clearly the result is true if r = n or r = k. Hence we may assume that k < r < n. We have

$$J^{*}(n,r) = k J^{*}(n-1,r) + (n-r+1) J^{*}(n-1,r-1)$$

so that using the induction hypothesis,

$$J^*(n,r) = k \cdot k^{n-r-1} S(n-k,n-r) + (n-r+1) \cdot k^{n-r} S(n-k,n-r+1)$$

= $k^{n-r} \left\{ S(n-k,n-r) + (n-r+1) S(n-k,n-r+1) \right\}$
= $k^{n-r} S(n-k+1,n-r+1)$

as required.

Then we immediately have:

Theorem 3.2.3. Let F_A^- be as defined in (3.1). Then

$$|F_A^-| = \sum_{r=-k}^n k^{n-r} S(n-k+1, n-r+1)$$

Theorem 3.2.4. Let F_A^- be as defined in (3.1). Then

$$|E(F_A^-)| = \sum_{r=k}^n k^{n-r} \binom{n-k}{r-k} = (k+1)^{n-k}.$$

Proof: The result will follow from Theorem 2.2.4 if we show that $E(F_A^-) = E(F_A)$. Clearly

$$E(F_A^-) \subseteq E(F_A)$$
.

Conversely, suppose that $\varepsilon \in E(F_A)$. Then $a\varepsilon = a$, for all $a \in A$, by Lemma 1.5. Since $A = \{1, \ldots, k\}$, then for all $x \in C(\varepsilon) \setminus A$

$$x \varepsilon \leq k < x$$
 .

Also, by Lemma 1.5, $x\varepsilon = x$ for all $x \notin C(\varepsilon)$. Thus, for any $x \in X$, $x\varepsilon \leq x$ and $A \subseteq F(\alpha)$. Thus $\varepsilon \in F(F_A^-)$. Therefore,

$$E(F_A) \subseteq E(F_A^-)$$
.

Hence $E(F_A) = E(F_A^-)$ as required.

Remark. Notice that F_A^- is isomorphic to $(I_{n-1}^-)^1$, the semigroup of orderdecreasing partial one-to-one transformations on X_{n-1} , when k = 1. Thus Lemma 3.2.2 and Theorem 3.2.3 reduce to [2, Proposition 3.1 and Remark 3.6], when k = 1.

ACKNOWLEDGEMENTS – I thank my research supervisor, Professor John M. Howie for his helpful comments and encouragement. I which also, to thank the referee for his/her many helpful remarks and criticisms.

Financial support from the Federal Government of Nigeria is gratefully acknowledged.

REFERENCES

 ANDERSON, I. – A first course in combinatorial mathematics, Oxford University Press, 1974.

- [2] BORWEIN, D., RANKIN, S. and RENNER, L. Enumeration of injective partial transformations, *Discrete Math.*, 73 (1989), 291–296.
- [3] CHARALAMBIDES, CH.A. and SINGH, J. A review of the Stirling numbers, their generalisations and statistical applications, *Commun. Statist. A-Theory Methods*, 17(8) (1988), 2533–2595.
- [4] EDWARDS, C.C. The greatest idempotent separating congruence on an *L*-unipotent semigroup, *Semigroup Forum*, 14 (1977), 127–135.
- [5] EL-QALLALI, A. \mathcal{L}^* -unipotent semigroups, J. Pure Appl. Algebra, 62 (1989), 19–33.
- [6] EL-QALLALI, A. and FOUNTAIN, J.B. Idempotent-connected abundant semigroups, Proc. Roy. Soc. Edinburgh, Sect. A 91 (1981), 79–90.
- [7] EL-QALLALI, A. and FOUNTAIN, J.B. Quasi-adequate semigroups, Proc. Roy. Soc. Edinburgh, Sect. A 91 (1981), 91–99.
- [8] FOUNTAIN, J.B. Adequate semigroups, Proc. Edinburgh Math. Soc., 22 (1979), 113–125.
- [9] FOUNTAIN, J.B. Abundant semigroups, Proc. London Math. Soc., 44(3), (1982), 103–129.
- [10] HOWIE, J.M. The subsemigroup generated by the idempotents of a full transformation semigroup, J. London Math. Soc., 41 (1966), 707–716.
- [11] HOWIE, J.M. Product of idempotents in certain semigroups of transformations, Proc. Edinburgh Math. Soc., 17(2), (1971), 223–236.
- [12] HOWIE, J.M. An introduction to semigroup theory, London Academic Press, 1976.
- [13] HOWIE, J.M. Some subsemigroups of infinite full transformation semigroups, Proc. Roy. Soc. Edinburgh, Sect. A 88 (1981), 159–167.
- [14] HOWIE, J.M., ROBERTSON, E.F. and SCHEIN, B.M. A combinatorial property of finite full transformation semigroups, *Proc. Roy. Soc. Edinburgh*, Sect. A 109 (1988), 319–328.
- [15] UMAR, A. On the semigroups of order-decreasing finite full transformations, Proc. Roy. Soc. Edinburgh, Sect. A 120 (1992), 129–142.
- [16] UMAR, A. On the semigroups of partial one-to-one order-decreasing finite transformations, Proc. Roy. Soc. Edinburgh, Sect. A (accepted).
- [17] VAGNER, V.V. Representations of ordered semigroups, Math. Sb. (N.S.), 38 (1956), 203–240; translated in Amer. Math. Soc. Transl., 36(2) (1964), 295-336.
- [18] VENKATESAN, P.S. Right (left) inverse semigroups, J. Algebra, 31 (1974), 209-217.

Abdullahi Umar Department of Mathematics, Ahmadu Bello University, Zaria – NIGERIA