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WHEN DOES FINITE HOLOMORPHY
IMPLY HOLOMORPHY?

Leopoldo Nachbin

Abstract: A study of the existence of discontinuous polynomials and its role in

holomorphy.

1 – Introduction

Given a Hausdorff complex locally convex space E, any finitely holomorphic
map f : U → F is holomorphic for every nonvoid open subset U of E and
complex locally convex space F iff E is countably dimensional and carries its
finest locally convex topology (Proposition 3). The proof of this result is based
on the following one. Given a complex vector space E endowed with its finest
locally convex topology, there is a discontinuous complex valued polynomial on E,
equivalently a discontinuous complex valued homogeneous polynomial of degree
two on E, iff the algebraic dimension of E is uncountable (Proposition 2). The
point of this article is to prove these two results without using the continuum
hypothesis, as they are known otherwise. We discuss these questions to the best
of our knowledge. References [2] and [3] are standard about holomorphy.

2 – Existence of discontinuous polynomials

In Example 3, [5], we stated without proof that, if E is a complex vector space,
whose algebraic dimension is at least equal to continuum power, endowed with
its largest locally convex topology, there is a discontinuous homogeneous complex
valued polynomial of degree two on E. This fact was used in connection with
Lemma 1, [5], about holomorphy on countable inductive limits. That statement in
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Example 3, [5], was given two proofs in Lemma 19, [1]. It got used in Example 20,
[1], in connection with Lemma 11, [1], about holomorphy on countable inductive
limits. The argument used in proving Lemma 19, [1], is quoted and used in [3],
page 37.

Lemma 1. Given a set B, for every function r : B × B → IR+ there is a

function t : B → IR+ such that

(1) r(b1, b2) ≤ t(b1) t(b2)

for all b1, b2 ∈ B iff B is countable.

Proof: Sufficiency is clear. We shall produce three proofs of necessity, that
is, if B is uncountable there is a function r : B ×B → IR+ for which there is no
function t : B → IR+ satisfying (1) for all b1, b2 ∈ B. The first proof is due to
M.E. Rudin, [7].
Without loss of generality, B may be taken to be an uncountable subset of

IR. Let

r(b1, b2) =
1

|b2 − b1|
∈ IR+

for b1, b2 ∈ B, b1 6= b2. Arbitrarily define r(b, b) ∈ IR+ for b ∈ B. Suppose a
function t as described exists. For every integer n ≥ 0, let

Bn =
{

b ∈ B; t(b) ≤ n
}

.

Fix n so that Bn is uncountable. There must be b1, b2 ∈ Bn, b1 6= b2, such that

|b2 − b1| <
1

n2
, hence r(b1, b2) > n2 .

On the other hand, r(b1, b2) ≤ n2 by (1). So we have a contradiction. The second
proof is due to K. Alster, [6]. Without loss of generality, B may be assumed to
have as its power the first uncountable cardinal, and to be identified with the set
of all countable ordinal numbers. We define r : B × B → IN as follows. We put
r(b1, b2) = rb1(b2) for b1, b2 ∈ B, where the functions rb1 : B → IN for b1 ∈ B

are defined as follows. If b1 ∈ B is finite, then rb1 is an arbitrary function. If
b1 ∈ B is infinite, then rb1 restricted to the set {b ∈ B; b ≤ b1} is defined to
be any injective map from this set into IN, and restricted to the set {b ∈ B;
b > b1} is defined arbitrarily. Suppose that there exists a function t as indicated.
There is n ∈ IN such that t−1(n) is an uncountable set. Thus there is an infinite
b1 ∈ t−1(n) such that C = {b ∈ t−1(n); b ≤ b1} is infinite. Hence rb1(C) is an
infinite subset of IN. Since t(b) = n for all b ∈ C, we get a contradiction because

rb1(b) = r(b1, b) ≤ t(b1) t(b) = t(b1)n if b ∈ C ,
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hence rb1(C) is a bounded subset of IN, but rb1(C) is an infinite subset of IN.
The third proof is due to T.J. Jech, [4]. More generally, if B is an uncountable
set, there is a function r : B×B → IN with the property that, for every function
t : B → IN, there are b1, b2 ∈ B such that r(b1, b2) > t(b1), t(b2). It suffices
to prove this assertion for a set B of cardinality equal to the first uncountable
cardinal. Let us assume that B is the set of all countable ordinal numbers. If
b1 ∈ B, let Wb1 = {b ∈ B; b ≤ b1}. Each Wb1 is countable. For each b ∈ B, let rb

be some injective map of Wa into IN. If b1, b2 ∈ B, we define r(b1, b2) = rb1(b2)
whenever b1 > b2, and arbitrarily otherwise. We shall show that the function
r : B × B → IN satisfies the statement that we claimed. Let t : B → IN be
arbitrary. Since B is uncountable, there is an uncountable subset C of B such
that t is constant on C, with value n. Let b1 ∈ C be such that W1 ∩C is infinite.
Since the values of r(b1, b2) for b2 ∈ W1 ∩ C are all distinct, there is one such b2

with r(b1, b2) > n = t(b1) = t(b2). Once such a function r : B×B → IN is found,
replace r by r2 to get a function r2 : B×B → IR+ for which there is no function
t : B → IR+ such that (1) holds for all b1, b2 ∈ B. If such a function t existed,
we would find b1, b2 ∈ B such that r(b1, b2) > t(b1), t(b2), hence

t(b1) t(b2) < r(b1, b2) ≤ t(b1) t(b2) ,

a contradiction.

Proposition 2. Given a complex vector space E endowed with its finest

locally convex topology, there is a discontinuous complex valued polynomial on

E. Equivalently a discontinuous complex valued homogeneous polynomial of

degree two exists on E, iff the algebraic dimension of E is uncountable.

Proof: If the algebraic dimension of E is countable, every polynomial
p : E → C is continuous. In fact, a subset U of E is open iff the intersection of U
with any finite dimensional vector subspace S of E is open in S. See [2], [3].
If the algebraic dimension of E is uncountable, let B be a basis for the vector
space E. Hence B is uncountable. Find a function r : B × B → IR+ for which
there is no function t : B → IR+ satisfying (1) for all b1, b2 ∈ B. Then proceed
as in the first proof of Lemma 19, [1].

3 – Finite holomorphy implies holomorphy

If E and F are complex locally convex spaces, and U ⊂ E is open, then
f : U → F is said to be finitely holomorphic when the restriction of f to U ∩ S

is holomorphic for every finite dimensional vector subspace S of E.
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Proposition 3. Given a Hausdorff complex locally convex space E, any

finitely holomorphic map f : U → F is holomorphic for every open subset U of

E and complex locally convex space F iff E is countably dimensional and carries

its finest locally convex topology.

Proof: Necessity is seen as follows. Take U = E and F = E with its
largest locally convex topology. The identity map of E is finitely holomorphic,
hence holomorphic. It follows that the given topology on E has to be its finest
locally convex topology. The dimension of E has to be countable. Otherwise, we
could use Proposition 2 and find a discontinuous complex valued homogeneous
polynomial of degree two on E. It would be a complex valued finitely holomorphic
function on E failing to be holomorphic. Sufficiency is seen as follows. A subset U

of E is open iff the intersection of U with any finite dimensional vector subspace
S of E is open in S. See [2], [3]. If f : U → S is finitely holomorphic, then f is
continuous on every such U ∩ S. It follows that f is continuous on U . Hence f

is holomorphic.
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