NON LOCAL SOLUTIONS OF A NONLINEAR HYPERBOLIC PARTIAL DIFFERENTIAL EQUATION

Cícero Lopes Frota

Abstract

In this work we prove that the mixed problem for a temporally nonlinear Kirchhoff-Carrier model, for vibrations of a nonhomogeneous stretched string, has unique nonlocal solution for small data. The solution is obtained in S.L. Sobolev spaces.

Introduction

The nonlinear model of Kirchhoff-Carrier, cf. Carrier [5], for vibrations of an elastic string, of lenght L, is given by:

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}-\left(\frac{P_{o}}{\rho . h}+\frac{E}{2 L \rho} \int_{0}^{L}\left|\frac{\partial u}{\partial s}(s, t)\right|^{2} d s\right) \frac{\partial^{2} u}{\partial x^{2}}=0 \tag{1}
\end{equation*}
$$

where $0 \leq x \leq L$ and $t>0$ represent the string in repose, $u(x, t)$ is the vertical displacement of the point x at the instant t, ρ is the mass density, h is the area of the cross section of the string, L is the lenght of the string, P_{o} the initial tension on the string and E the Young's modulus of the material.

The natural generalization of the model (1) is given by the following nonlinear mixed problem

$$
\left\{\begin{array}{l}
\frac{\partial^{2} u}{\partial t^{2}}-M\left(\sum_{i=1}^{n} \int_{\Omega}\left|\frac{\partial u}{\partial x_{i}}\right|^{2} d x\right) \Delta u=f \text { on } \mathbf{Q}=\Omega \times(0, T) \tag{2}\\
u=0 \text { on } \Sigma=\Gamma \times(0, T) \\
u(x, 0)=\phi_{o}(x) \text { on } \Omega \\
\frac{\partial u}{\partial t}(x, 0)=\phi_{1}(x) \text { on } \Omega
\end{array}\right.
$$

[^0]where Ω is a bounded open set of \mathbf{R}^{n} with smooth boundary $\Gamma, M:[0, \infty) \rightarrow \mathbf{R}$ is a positive real function and $\Delta=\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}$ is the Laplace operator.

Remark 1. In the Kirchhoff-Carrier model (1), $M:[0, \infty) \rightarrow \mathbf{R}$ is $M(\lambda)=$ $\frac{P_{o}}{\rho . h}+\frac{E}{2 L \rho} \lambda$.

Several authors have investigated the nonlinear problem (2). When $n=1$ and $\Omega=(0, L)$, it was studied by Dickey [8] and Bernstein [3] whom considered ϕ_{o} and ϕ_{1} analytic functions with some growth conditions. Assuming Ω bounded open set of $\mathbf{R}^{n}, \quad \phi_{o}$ and ϕ_{1} analytic functions, Pohozaev [18] obtained existence and uniqueness of global solutions for the mixed problem (2). In Lions [12] he formulated the Pohozaev's results in an abstract context obtaining better results and presenting a collection of problems. One of the problems proposed by Lions [12] was the study of the problem (2) with $M: \Omega \times[0, \infty) \rightarrow \mathbf{R}$, i.e., the problem

$$
\left\{\begin{array}{l}
\frac{\partial^{2} u}{\partial t^{2}}-M\left(x, \sum_{i=1}^{n} \int_{\Omega}\left|\frac{\partial u}{\partial x_{i}}\right|^{2} d x\right) \Delta u=f \text { on } \mathbf{Q} \tag{3}\\
u=0 \text { on } \Sigma \\
u(x, 0)=\phi_{o}(x) \text { on } \Omega \\
\frac{\partial u}{\partial t}(x, 0)=\phi_{1}(x) \text { on } \Omega
\end{array}\right.
$$

that is, for nonhomogeneous materials. This case has it's origin in the model (1) when the physic elements ρ, h and E are not constants, but depends on the point x in the string. In Rivera Rodrigues [20] the author proved the existence and uniqueness of local solutions for the problem (3).

In a more general context it is correct to consider ρ, h and E changing not only with the point x in the string but with the instant t too, i.e., $\rho=\rho(x, t)$, $h=h(x, t)$ and $E=E(x, t)$. In this case, we have the problem

$$
\left\{\begin{array}{l}
\frac{\partial^{2} u}{\partial t^{2}}-M\left(x, t, \sum_{i=1}^{n} \int_{\Omega}\left|\frac{\partial u}{\partial x_{i}}\right|^{2} d x\right) \Delta u=f \text { on } \mathbf{Q} \tag{4}\\
u=0 \text { on } \Sigma \\
u(x, 0)=\phi_{o}(x) \text { on } \Omega \\
\frac{\partial u}{\partial t}(x, 0)=\phi_{1}(x) \text { on } \Omega
\end{array}\right.
$$

where $M: \Omega \times[0, T] \times[0, \infty) \rightarrow \mathbf{R}$.

In this work we study the problem (4) and making use of the same technique used by Rivera Rodrigues [20], we prove that if ϕ_{o}, ϕ_{1}, f and $\frac{\partial M}{\partial t}$ are small in some sense, then exist one, and only one, nonlocal solution for the problem (4). It's important to observe that it's a good assumption to consider $\frac{\partial M}{\partial t}$ small, because in normal conditions ρ, h and E have a small variation with the time.

For the study of problem (2) with dissipative terms we have, for instance, Brito [4] and Medeiros-Milla Miranda [14]. The problem (2) in the degenerate case can be find in Arosio-Spagnolo [1], Ebihara-Medeiros-Milla Miranda [9], ArosioGaravaldi [2], Crippa [6], Yamada [21], Nishihara-Yamada [17] and Nishihara [16].

The plan of this paper is the following:

1) Notations and preliminary results;
2) Assumptions and statement of the principal result;
3) Galerkin's approximation and a priori estimates;
4) Proof of the theorem;
5) Uniqueness.

1 - Notation and preliminary results

Let Ω be a bounded open set of \mathbf{R}^{n} with smooth boundary Γ. By $L^{2}(\Omega)$ we represent the usual space of Lebesgue square integrable functions on Ω whose inner product and norm will be denoted by (\cdot, \cdot) and $|\cdot|$ respectively. In the Sobolev space $H_{o}^{1}(\Omega)$ we consider the norm

$$
\begin{equation*}
\|u\|^{2}=\sum_{i=1}^{n} \int_{\Omega}\left|\frac{\partial u}{\partial x_{i}}(x)\right|^{2} d x \tag{5}
\end{equation*}
$$

and inner product

$$
\begin{equation*}
((u, v))=\sum_{i=1}^{n} \int_{\Omega} \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{i}} d x \tag{6}
\end{equation*}
$$

Let $(-\Delta)$ be the operator defined by $\left\{H_{o}^{1}(\Omega), L^{2}(\Omega),((\cdot, \cdot))\right\}$. Then as we well known $(-\Delta)$ is an unbounded selfadjoint operator in $L^{2}(\Omega)$ with domain

$$
\begin{equation*}
D(-\Delta)=\left\{u \in H_{o}^{1}(\Omega) ; \Delta u \in L^{2}(\Omega)\right\}=H_{o}^{1}(\Omega) \cap H^{2}(\Omega) \tag{7}
\end{equation*}
$$

and it has the following properties:
(a) There exist $m_{o}>0$ such that

$$
\begin{equation*}
(-\Delta u, u) \geq m_{o}|u|^{2}, \forall u \in D(-\Delta) ; \tag{8}
\end{equation*}
$$

(b)

$$
\begin{equation*}
(-\Delta u, u)=\|u\|^{2}, \forall u \in D(-\Delta) ; \tag{9}
\end{equation*}
$$

(c) There exist a sequence $\left(\lambda_{j}\right)_{j \in \mathbf{N}}$ of real numbers and $\left(w_{j}\right)_{j \in \mathbf{N}}$ a sequence of $L^{2}(\Omega)$ vectors such that

$$
\begin{gather*}
m_{o} \leq \lambda_{1} \leq \lambda_{2} \leq \ldots \tag{10}\\
-\Delta w_{j}=\lambda_{j} w_{j}, \forall j \in \mathbf{N} \tag{11}\\
\lim _{j \rightarrow \infty} \lambda_{j}=\infty
\end{gather*}
$$

$\left\{w_{j}\right\}$ is a orthonormal complete set in $L^{2}(\Omega)$ and orthogonal complete set in $H_{o}^{1}(\Omega)$ and in $H_{o}^{1}(\Omega) \cap H^{2}(\Omega)$.

Remark 2. We introduce the equivalent norm

$$
\begin{equation*}
\|u\|_{H_{o}^{1}(\Omega) \cap H^{2}(\Omega)}=|-\Delta u|, \quad \forall u \in H_{o}^{1}(\Omega) \cap H^{2}(\Omega) \tag{14}
\end{equation*}
$$

for smooth boundary Γ.
In order to complete this section we introduce a compactness result. It is a version of Arzela's theorem and it's proof follows the same argument as the usual proof of scalar Arzela's theorem.

Lemma 1. Let E and F be Banach spaces, $E \hookrightarrow F$ with compact injection. Let $\left(\sigma_{m}\right)_{m \in \mathbf{N}}$ be a sequence of functions from the interval $[a, b] \subset \mathbf{R}$ into E. If $\left(\sigma_{m}\right)_{m \in \mathbf{N}}$ is uniformly bounded in $[a, b]$ with respect to the norm of E and equicontinuous with respect to the norm of F, then there exist a subsequence $\left(\sigma_{m_{\nu}}\right)_{\nu \in \mathbf{N}}$ of $\left(\sigma_{m}\right)_{m \in \mathbf{N}}$ and a continuous function $\sigma:[a, b] \rightarrow F$ such that

$$
\begin{equation*}
\lim _{\nu \rightarrow \infty} \sigma_{m_{\nu}}(t)=\sigma(t) \text { in } F \text { uniformly for } t \in[a, b] . \tag{15}
\end{equation*}
$$

Moreover, if E is a reflexive Banach space then we find that $\sigma \in L^{\infty}(a, b ; E)$.

2 - Assumptions and principal result

Let Ω be as in section $1, T>0$ a real number. We consider a real function

$$
\begin{array}{ccc}
M: \Omega \times[0, T] \times[0, \infty) & \longrightarrow & \mathbf{R} \\
(x, t, \lambda) & \longmapsto & M(x, t, \lambda)
\end{array}
$$

such that the following assumptions are satisfied:
(H.1) $M \in L_{\mathrm{loc}}^{\infty}\left([0, \infty) ; W^{1, \infty}(\Omega \times(0, T))\right)$, i.e., for each $k>0$ we have $M \in$ $L^{\infty}(\Omega \times(0, T) \times(0, k)), \frac{\partial M}{\partial t} \in L^{\infty}(\Omega \times(0, T) \times(0, k))$ and $\frac{\partial M}{\partial x_{i}} \in$ $L^{\infty}(\Omega \times(0, T) \times(0, k))$ for $i=1, \ldots, n$.
(H.2) For each $L>0$ we have $\frac{\partial M}{\partial \lambda} \in L^{\infty}(\Omega \times(0, T) \times(0, L))$.
(H.3) There exist a real number $m_{1}>0$ such that $m_{1} \leq M(x, t, \lambda), \forall x \in \Omega$, $t \in[0, T]$ and $\lambda \geq 0$.

Now we define

$$
\begin{align*}
k_{o} & =4\left(m_{o} m_{1}^{3}\right)^{-1 / 2}, \quad k_{1}=\frac{1}{m_{1}} \\
\theta_{o} & =\underset{\substack{x \in \Omega \\
0<t<T}}{\operatorname{esssup}}\left|\frac{\partial M}{\partial t}(x, t, 0)\right| \\
k_{2} & =\frac{1}{2}\left[1+\|M\|_{L^{\infty}(\Omega \times(0, T) \times(0,1))}\right] \tag{16}\\
k_{3} & =\frac{4}{m_{o} m_{1}}\left[\left(k_{2}+\frac{T}{2}\right)\left(1+e^{\left(1+k_{1} \theta_{o}\right) T}\right)\right] \\
k_{4} & =\left\|\frac{\partial M}{\partial \lambda}\right\|_{L^{\infty}\left(\Omega \times(0, T) \times\left(0, k_{3}\right)\right)}
\end{align*}
$$

$$
\begin{equation*}
\delta=\min \left\{1 ; m_{o}^{1 / 2} ; \frac{\ln 2}{3 T\left[1+T k_{o} k_{4}+T k_{o} k_{4} e^{\left(1+k_{1} \theta_{o}\right) T}\right]} ;\right. \tag{17}
\end{equation*}
$$

$$
\begin{gather*}
\left.\left[\frac{\ln 2}{6 T k_{o} k_{2} k_{4}\left(1+e^{\left(1+k_{1} \theta_{o}\right) T}\right)}\right]^{1 / 2}\right\} \\
k_{\delta}=k_{2} \delta^{2}+\frac{T}{2} \delta \tag{18}
\end{gather*}
$$

Theorem. Let $M: \Omega \times[0, T] \times[0, \infty) \rightarrow \mathbf{R}$ be a real function satisfying (H.1)(H.3), $\phi_{o} \in H_{o}^{1}(\Omega) \cap H^{2}(\Omega), \phi_{1} \in H_{o}^{1}(\Omega)$ and $f:[0, T] \rightarrow H_{o}^{1}(\Omega)$ a continuous
function. If

$$
\begin{equation*}
\left|\Delta \phi_{o}\right|^{2}+\left\|\phi_{1}\right\|^{2}+0 \leq t \leq T \rightarrow \text { Máx }\|f(t)\|^{2} \leq \delta^{2} \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\frac{\partial M}{\partial t}\right\|_{L^{\infty}\left(\Omega \times(0, T) \times\left(0, k_{3}\right)\right)} \leq \frac{\ln 2}{3 T k_{1}} \tag{20}
\end{equation*}
$$

Then there exist one, and only one, function $u:[0, T] \rightarrow H_{o}^{1}(\Omega)$ such that

$$
\begin{align*}
& u \in C\left([0, T] ; H_{o}^{1}(\Omega)\right) \cap C^{1}\left([0, T] ; L^{2}(\Omega)\right) \cap C^{2}\left([0, T] l H^{-1}(\Omega)\right) \tag{21}\\
& \qquad\left\{\begin{array}{l}
u \in L^{\infty}\left(0, T ; H_{o}^{1}(\Omega) \cap H^{2}(\Omega)\right) \\
u^{\prime} \in L^{\infty}\left(0, T ; H_{o}^{1}(\Omega)\right) \\
u^{\prime \prime} \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right)
\end{array}\right. \tag{22}\\
& \left\{\begin{array}{l}
u^{\prime \prime}(t)-M\left(t,\|u(t)\|^{2}\right) \Delta u(t)=f(t) \text { in } L^{2}(\Omega), 0 \leq t \leq T \\
u(0)=\phi_{o} \\
u^{\prime}(0)=\phi_{1}
\end{array}\right. \tag{23}
\end{align*}
$$

Remark 3. In $(23)_{1}$ we are making use of the following notation: if $\psi: \Omega \times$ $(0, T) \rightarrow \mathbf{R}$ is a function then $\psi(t): \Omega \rightarrow \mathbf{R}$ is defined by $\psi(t)(x)=\psi(x, t)$.

3 - Galerkin's approximation and a priori estimates

We consider $V_{o}=\{0\}$ and $V_{m}=\left[w_{1}, \ldots, w_{m}\right]$ for $m=1,2, \ldots$ i.e., V_{m} is the vector space spanned by w_{1}, \ldots, w_{m}; where $\left(w_{m}\right)_{m \in \mathbf{N}}$ is as in the section 1 . The sequence of Galerkin's approximation is defined by induction as follows: we put

$$
\begin{array}{rlc}
u_{o}:[0, T] & \longrightarrow & V_{o} \\
t & \longmapsto & u_{o}(t)=0
\end{array}
$$

and for $m=1,2, \ldots$, we consider

$$
\begin{array}{rlc}
u_{m}:\left[0, T_{m}\right] & \longrightarrow & V_{m} \\
t & \longmapsto & u_{m}(t)=\sum_{j=1}^{m} g_{j m}(t) w_{j}
\end{array}
$$

the unique solution of the initial value problem, with the coefficient of $-\Delta u_{m}(t)$ depends on the time t :

$$
\left\{\begin{array}{l}
u_{m}^{\prime \prime}(t)-M\left(t,\left\|u_{m-1}(t)\right\|^{2}\right) \Delta u_{m}(t)=f_{m}(t) \text { in } V_{m}, \quad \forall t \in\left[0, T_{m}\right] \tag{24}\\
u_{m}(0)=\varphi_{o m} \\
u_{m}^{\prime}(0)=\varphi_{1 m}
\end{array}\right.
$$

where
(25) $\quad T_{m}=\sup \left\{\tau ; 0<\tau \leq T_{m-1}\right.$ and $u_{m}:[0, \tau] \rightarrow V_{m}$ is solution of (24),

$$
\begin{gather*}
f_{m}(t)=\sum_{j=1}^{m}\left(f(t), w_{j}\right) w_{j}, \quad 0 \leq t \leq T \tag{26}\\
\varphi_{o m}=\sum_{j=1}^{m}\left(\phi_{o}, w_{j}\right) w_{j} \tag{27}\\
\varphi_{1 m}=\sum_{j=1}^{m}\left(\phi_{1}, w_{j}\right) w_{j}
\end{gather*}
$$

Remark 4. The Galerkin's approximation is well defined. It's sufficient we note that the initial value problem (24) is equivalent to the following system of ordinary differential equations:

$$
\left\{\begin{array}{l}
\begin{array}{l}
g_{j m}^{\prime \prime}(t)+\sum_{k=1}^{m} \lambda_{k} g_{k m}(t)\left(M\left(t,\left\|u_{m-1}(t)\right\|^{2}\right) w_{k}, w_{j}\right)=\left(f(t), w_{j}\right) \\
g_{j m}(0)=\left(\phi_{o}, w_{j}\right) \\
g_{j m}^{\prime}(0)=\left(\phi_{1}, w_{j}\right)
\end{array} \quad 0 \leq t \leq T_{m} ; j=1, \ldots, m \tag{29}
\end{array}\right.
$$

Estimate (i) From $(24)_{1}$ we have the approximate equation

$$
\begin{equation*}
\left(u_{m}^{\prime \prime}(t), v\right)-\left(M\left(t,\left\|u_{m-1}(t)\right\|^{2}\right) \Delta u_{m}(t), v\right)=\left(f_{m}(t), v\right), \quad \forall v \in V_{m} \tag{30}
\end{equation*}
$$

Take $v=-\Delta u_{m}^{\prime}(t)$ in (30) we get
$\frac{1}{2} \frac{d}{d t}\left\|u_{m}^{\prime}(t)\right\|^{2}+\int_{\Omega} M\left(x, t,\left\|u_{m-1}\right\|^{2}\right) \Delta u_{m}(x, t) \cdot \Delta u_{m}^{\prime}(x, t) d x=\left(\left(f_{m}(t), u_{m}^{\prime}(t)\right)\right)$,
since

$$
\begin{aligned}
& \int_{\Omega} M\left(x, t,\left\|u_{m-1}(t)\right\|^{2}\right) \Delta u_{m}(x, t) \Delta u_{m}^{\prime}(x, t) d x= \\
&=\frac{1}{2} \frac{d}{d t}\left(M\left(t,\left\|u_{m-1}(t)\right\|^{2}\right) \Delta u_{m}(t), \Delta u_{m}(t)\right) \\
&-\frac{1}{2} \int_{\Omega} \frac{\partial M}{\partial t}\left(x, t,\left\|u_{m-1}(t)\right\|^{2}\right)\left(\Delta u_{m}(x, t)\right)^{2} d x \\
&-\left(\left(u_{m-1}(t), u_{m-1}^{\prime}(t)\right)\right) \int_{\Omega} \frac{\partial M}{\partial \lambda}\left(x, t,\left\|u_{m-1}(t)\right\|^{2}\right)\left(\Delta u_{m}(x, t)\right)^{2} d x
\end{aligned}
$$

we have
(31) $\frac{d}{d t}\left\{\frac{1}{2}\left[\left\|u_{m}^{\prime}(t)\right\|^{2}+\left(M\left(t,\left\|u_{m-1}(t)\right\|^{2}\right) \Delta u_{m}(t), \Delta u_{m}(t)\right)\right]\right\}=$

$$
\begin{aligned}
& =\left(\left(f_{m}(t), u_{m}^{\prime}(t)\right)\right)+\frac{1}{2} \int_{\Omega} \frac{\partial M}{\partial t}\left(x, t,\left\|u_{m-1}(t)\right\|^{2}\right)\left(\Delta u_{m}(x, t)\right)^{2} d x \\
& +\left(\left(u_{m-1}(t), u_{m-1}^{\prime}(t)\right)\right) \int_{\Omega} \frac{\partial M}{\partial \lambda}\left(x, t,\left\|u_{m-1}(t)\right\|^{2}\right)\left(\Delta u_{m}(x, t)\right)^{2} d x
\end{aligned}
$$

$$
\forall t \in\left[0, T_{m}\right], m=1,2, \ldots
$$

Lemma 2. Let be

$$
\begin{gather*}
\left\{\begin{array}{l}
Z_{o}(t)=0 \\
Z_{m}(t)=\frac{1}{2}\left[\left\|u_{m}(t)\right\|^{2}+\left(M\left(t,\left\|u_{m-1}(t)\right\|^{2}\right) \Delta u_{m}(t), \Delta u_{m}(t)\right)\right] \\
0 \leq t \leq T_{m}, m=1,2, \ldots,
\end{array}\right. \tag{32}\\
\alpha=\sup _{0 \leq t \leq T_{m}} Z_{m}(t), \alpha_{m}^{\prime}=\frac{2}{m_{o} m_{1}} \alpha_{m} \\
\theta_{m}=\left\|\frac{\partial M}{\partial t}\right\|_{L^{\infty}\left(\Omega \times(0, T) \times\left(0, \alpha_{m}^{\prime}\right)\right)}, \quad \beta_{m}=\left\|\frac{\partial M}{\partial \lambda}\right\|_{L^{\infty}\left(\Omega \times(0, T) \times\left(0, \alpha_{m}^{\prime}\right)\right)}
\end{gather*}
$$

Then, $T_{m}=T, \alpha_{m}$ is finite $\forall m \in \mathbf{N}$ and

$$
\begin{equation*}
Z_{m}(t) \leq\left[Z_{m}(0)+\frac{1}{2 \delta} \int_{0}^{t}\left\|f_{m}(s)\right\|^{2} d s\right] e^{\left(\delta+k_{1} \theta_{m-1}+k_{o} \alpha_{m-1} \beta_{m-1}\right) t} \tag{33}
\end{equation*}
$$

Proof: The proof will be done by induction on m. Clearly the solution of the problem

$$
\left\{\begin{array}{l}
g_{11}^{\prime \prime}(t)+\lambda_{1}\left(M(t, 0) w_{1}, w_{1}\right) g_{11}(t)=\left(f(t), w_{1}\right) \\
g_{11}(0)=\left(\phi_{o}, w_{1}\right) \\
g_{11}^{\prime}(0)=\left(\phi_{1}, w_{1}\right)
\end{array}\right.
$$

is defined in all $[0, T]$. This show us that $T_{1}=T$. Moreover if we consider the assumption (H.3) on M we have

$$
\begin{equation*}
\left|\Delta u_{1}(t)\right|^{2} \leq \frac{2}{m_{1}} Z_{1}(t), \quad \forall t \in[0, T] \tag{34}
\end{equation*}
$$

From (31) and (34) we get

$$
Z_{1}^{\prime}(t)-\left(\delta+k_{1} \theta_{o}\right) Z_{1}(t) \leq \frac{1}{2 \delta}\left\|f_{1}(t)\right\|^{2}
$$

where δ is given by (17). By the last inequality we obtain

$$
Z_{1}(t) \leq\left[Z_{1}(0)+\frac{1}{2 \delta} \int_{0}^{t}\left\|f_{1}(s)\right\|^{2} d s\right] e^{\left(\delta+k_{1} \theta_{o}\right) t}
$$

and it proves that α_{1} is finite and (33) is true when $m=1$. Now we make the induction assumption, i.e., we assume that for $m \geq 1$ we have $T_{m}=T, \alpha_{m}$ finite and (34) true for this m. Then (31) for $m+1$ implies

$$
\begin{aligned}
Z_{m+1}^{\prime}(t) & \leq \frac{1}{2 \delta}\left\|f_{m+1}(t)\right\|^{2}+\delta Z_{m+1}(t) \\
& +\frac{1}{2} \int_{\Omega}\left|\frac{\partial M}{\partial t}\left(x, t,\left\|u_{m}(t)\right\|^{2}\right)\right|\left(\Delta u_{m+1}(x, t)\right)^{2} d x \\
& +\left\|u_{m}(t)\right\|\left\|u_{m}^{\prime}(t)\right\| \int_{\Omega}\left|\frac{\partial M}{\partial \lambda}\left(x, t,\left\|u_{m}(t)\right\|^{2}\right)\right|\left(\Delta u_{m+1}(x, t)\right)^{2} d x
\end{aligned}
$$

By the other hand, we note that

$$
\begin{align*}
\left\|u_{m}(t)\right\|^{2} \leq \frac{1}{m_{o}}\left|\Delta u_{m}(t)\right|^{2} & \leq \frac{2}{m_{o} m_{1}} Z_{m}(t) \tag{35}\\
& \leq \frac{2}{m_{o} m_{1}} \alpha_{m}=\alpha_{m}^{\prime}, \quad 0 \leq t \leq T
\end{align*}
$$

It follows that:

$$
Z_{m+1}^{\prime}(t)-\left(\delta+k_{1} \theta_{m}+k_{o} \alpha_{m} \beta_{m}\right) Z_{m+1}(t) \leq \frac{1}{2 \delta}\left\|f_{m+1}(t)\right\|^{2}
$$

The above inequality shows that (33) is true for $(m+1), \alpha_{m+1}$ is finite and $T_{m+1}=T$, i.e., the proof of Lemma 2 is complete.

We denote,

$$
\begin{equation*}
\tau_{m}=Z_{m}(0)+\frac{1}{2 \delta} \int_{0}^{T}\left\|f_{m}(t)\right\|^{2} d t, m=1,2, \ldots \tag{36}
\end{equation*}
$$

and then the sequence $\left(\tau_{m}\right)_{m \in \mathbf{N}}$ is bounded. In fact, by (26), (27) and (28) we have that

$$
\left\{\begin{array}{l}
\Delta \varphi_{o m} \rightarrow \Delta \phi_{o} \text { strong in } L^{2}(\Omega) \tag{37}\\
\varphi_{1 m} \rightarrow \phi_{1} \text { strong in } H_{o}^{1}(\Omega) \\
f_{m}(t) \rightarrow f(t) \text { strong in } H_{o}^{1}(\Omega), \text { uniformly on }[0, T]
\end{array}\right.
$$

and from the hypothesis of small data (17) we obtain

$$
\begin{equation*}
\left|\Delta \varphi_{o m}\right|^{2}+\left\|\varphi_{1 m}\right\|^{2}+0 \leq t \leq T \rightarrow \operatorname{Máx}\left\|f_{m}(t)\right\|^{2} \leq \delta^{2}, \quad \forall m \in \mathbf{N} \tag{38}
\end{equation*}
$$

Therefore,

$$
\left\|\varphi_{o m}\right\|^{2} \leq \frac{1}{m_{o}}\left|\Delta \varphi_{o m}\right|^{2} \leq \frac{1}{m_{o}} \delta^{2} \leq 1, \quad \forall m \in \mathbf{N}
$$

and then,

$$
\begin{aligned}
\tau_{m}= & \frac{1}{2}\left[\left\|\varphi_{1 m}\right\|^{2}+\int_{\Omega} M\left(x, 0,\left\|\varphi_{o(m-1)}\right\|^{2}\right)\left(\Delta \varphi_{o m}(x)\right)^{2} d x\right] \\
& +\frac{1}{2 \delta} \int_{0}^{T}\left\|f_{m}(t)\right\|^{2} d t \leq k_{2} \delta^{2}+\frac{T}{2} \delta=k_{\delta} .
\end{aligned}
$$

We conclude that:

$$
\begin{equation*}
0 \leq \tau_{m} \leq k_{\delta}, \forall m \in \mathbf{N}, \tag{39}
\end{equation*}
$$

and

$$
\begin{equation*}
Z_{m}(t) \leq \tau_{m} e^{\left(\delta+k_{1} \theta_{m-1}+k_{o} \alpha_{m-1} \beta_{m-1}\right) t}, \quad \forall t \in[0, T], m \in \mathbf{N} . \tag{40}
\end{equation*}
$$

Lemma 3. Exists a constant c_{o} (independent of $m \in \mathbf{N}$ and $t \in[0, T]$) such that

$$
\begin{equation*}
Z_{m}(t) \leq 2 c_{o}, \forall t \in[0, T], \forall m \in \mathbf{N} \tag{41}
\end{equation*}
$$

Proof: We consider $c_{o}=k_{\delta}\left[1+e^{\left(1+k_{1} \theta_{o}\right) T}\right]$. Then, we have by (39):

$$
\begin{equation*}
\tau_{m} \leq c_{o}, \forall m \in \mathbf{N}, \tag{42}
\end{equation*}
$$

and by (40)

$$
Z_{1}(t) \leq \tau_{1} e^{\left(\delta+k_{1} \theta_{o}\right) t} \leq k_{\delta} e^{\left(1+k_{1} \theta_{o}\right) T} \leq c_{o} \leq 2 c_{o},
$$

it shows that (41) is true for $m=1$. Now, we do the follows induction assumption: given $m \geq 1$ we assume that (41) is true for this m. In order to prove that (41) is true for $(m+1)$ we have

$$
\alpha_{m}=\sup _{0 \leq t \leq T} Z_{m}(t) \leq 2 c_{o}
$$

and

$$
\begin{aligned}
\alpha_{m}^{\prime} & =\frac{2 \alpha_{m}}{m_{o} m_{1}} \leq \frac{4 c_{o}}{m_{o} m_{1}}=\frac{4}{m_{o} m_{1}}\left\{k_{\delta}\left[1+e^{\left(1+k_{1} \theta_{o}\right) T}\right]\right\}= \\
& =\frac{4}{m_{o} m_{1}}\left\{\left(k_{2} \delta^{2}+\frac{T}{2} \delta\right)\left(1+e^{\left(1+k_{1} \theta_{o}\right) T}\right)\right\} \leq k_{3} .
\end{aligned}
$$

Therefore, we can see that

$$
\begin{equation*}
\beta_{m} \leq\left\|\frac{\partial M}{\partial \lambda}\right\|_{L^{\infty}\left(\Omega \times(0, T) \times\left(0, k_{3}\right)\right)}=k_{4} \tag{43}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta_{m} \leq\left\|\frac{\partial M}{\partial t}\right\|_{L^{\infty}\left(\Omega \times(0, T) \times\left(0, k_{3}\right)\right)} \leq \frac{\ln 2}{3 T k_{1}} \tag{44}
\end{equation*}
$$

By (40), (42), (43) and (44) we get

$$
Z_{m+1}(t) \leq \tau_{m+1} e^{\left(\delta+k_{1} \theta_{m}+k_{o} \alpha_{m} \beta_{m}\right) t} \leq c_{o} e^{\left(\delta+\frac{\ln 2}{3 T}+2 k_{o} k_{4} c_{o}\right) t}
$$

We note that, from our choice we have

$$
\begin{aligned}
& \left(\delta+\frac{\ln 2}{3 T}+2 k_{o} k_{4} c_{o}\right)=\left[1+T k_{o} k_{4}+T k_{o} k_{4} e^{\left(1+k_{1} \theta_{o}\right) T}\right] \delta+ \\
& \quad+2 k_{o} k_{2} k_{4}\left[1+e^{\left(1+k_{1} \theta_{o}\right) T}\right] \delta^{2}+\frac{\ln 2}{3 T} \leq \frac{\ln 2}{3 T}+\frac{\ln 2}{3 T}+\frac{\ln 2}{3 T}=\frac{\ln 2}{T}
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\left(\delta+\frac{\ln 2}{3 T}+2 k_{o} k_{4} c_{o}\right) t \leq \ln 2, \forall t \in[0, T] \tag{45}
\end{equation*}
$$

and then

$$
Z_{m+1}(t) \leq 2 c_{o}, \forall t \in[0, T]
$$

The above relation complete the proof of lemma 3 .
We obtain from (41) the first estimate: There exists a constant c_{1} such that

$$
\begin{equation*}
\left\|u_{m}(t)\right\|^{2}+\left\|u_{m}^{\prime}(t)\right\|^{2}+\left|\Delta u_{m}(t)\right|^{2} \leq c_{1}, \forall t \in[0, T], \forall m \in \mathbf{N} \tag{46}
\end{equation*}
$$

Estimate (ii) We start observing that

$$
\begin{aligned}
\left|M\left(t,\left\|u_{m-1}(t)\right\|^{2}\right) \Delta u_{m}(t)\right|^{2} & =\int_{\Omega}\left|M\left(x, t,\left\|u_{m-1}(t)\right\|^{2}\right)\right|^{2}\left|\Delta u_{m}(x, t)\right|^{2} d x \\
& \leq\|M\|_{L^{\infty}\left(\Omega \times(0, T) \times\left(0, c_{1}\right)\right)} \cdot c_{1}
\end{aligned}
$$

and

$$
\left|f_{m}(t)\right|^{2}=\sum_{j=1}^{m}\left|\left(f(t), w_{j}\right)\right|^{2} \leq|f(t)|^{2} \leq \frac{1}{m_{o}}\|f(t)\|^{2} \leq \frac{\delta^{2}}{m_{o}} \leq 1
$$

Thus, using $(24)_{1}$ we obtain the existence of a constant c_{2} such that

$$
\begin{equation*}
\left|u_{m}^{\prime \prime}(t)\right|^{2} \leq c_{2}, \forall t \in[0, T], \forall m \in \mathbf{N} . \tag{47}
\end{equation*}
$$

By (46), (47) and the fundamental theorem of calculus we choose $t, s \in[0, T]$ and we have that

$$
\begin{align*}
\left\|u_{m}(t)-u_{m}(s)\right\| & \leq \sqrt{c_{1}}|t-s|, \tag{48}\\
\left|u_{m}^{\prime}(t)-u_{m}^{\prime}(s)\right| & \leq c_{2}|t-s| . \tag{49}
\end{align*}
$$

In order to obtain an estimate for $\left(u_{m}^{\prime \prime}\right)$ analogous to (48) and (49) we choose $t, s \in[0, T]$ and by $(24)_{1}$ we get

$$
\begin{aligned}
& u_{m}^{\prime \prime}(t)-u_{m}^{\prime \prime}(s)=M\left(t,\left\|u_{m-1}(t)\right\|^{2}\right) \Delta\left(u_{m}(t)-u_{m}(s)\right)+ \\
& \quad+\left[M\left(t,\left\|u_{m-1}(t)\right\|^{2}\right)-M\left(s,\left\|u_{m-1}(s)\right\|^{2}\right)\right] \Delta u_{m}(s)+\left(f_{m}(t)-f_{m}(s)\right) .
\end{aligned}
$$

On the other hand, for $v \in H_{o}^{1}(\Omega)$ we note that

$$
\begin{aligned}
& \left\|M\left(t,\left\|u_{m-1}(t)\right\|^{2}\right) \cdot v\right\|^{2}= \\
& =\sum_{i=1}^{m} \int_{\Omega}\left|\frac{\partial M}{\partial x_{i}}\left(x, t,\left\|u_{m-1}(t)\right\|^{2}\right) \cdot v(x)+M\left(x, t,\left\|u_{m-1}(t)\right\|^{2}\right) \frac{\partial v}{\partial x_{i}}(x)\right|^{2} d x \\
& \leq 2|v|^{2} \sum_{i=1}^{n}\left\|\frac{\partial M}{\partial x_{i}}\right\|_{L^{\infty}\left(\Omega \times(0, T) \times\left(0, c_{1}\right)\right)}^{2}+2\|M\|_{L^{\infty}\left(\Omega \times(0, T) \times\left(0, c_{1}\right)\right) \cdot}^{2} \sum_{i=1}^{n}\left|\frac{\partial v}{\partial x_{i}}\right|^{2} \\
& \leq 2\left[\|M\|_{L^{\infty}\left(\Omega \times(0, T) \times\left(0, c_{1}\right)\right)}+\sum_{i=1}^{n}\left\|\frac{\partial M}{\partial x_{i}}\right\|_{L^{\infty}\left(\Omega \times(0, T) \times\left(0, c_{1}\right)\right)}\right]\left[|v|^{2}+\sum_{i=1}^{n}\left|\frac{\partial v}{\partial x_{i}}\right|^{2}\right] .
\end{aligned}
$$

Whence, there exists a constant c_{3} such that

$$
\begin{equation*}
\left\|M\left(t,\left\|u_{m-1}(t)\right\|^{2}\right) \cdot v\right\|^{2} \leq c_{3}\|v\|^{2}, \forall t \in[0, T], \forall m \in \mathbf{N} \tag{50}
\end{equation*}
$$

By the above estimate we have

$$
\begin{aligned}
\left(M (t , \| u _ { m - 1 } (t) \| ^ { 2 }) \Delta \left(u_{m}(t)-\right.\right. & \left.\left.u_{m}(s)\right), v\right)= \\
& =\left(\Delta\left(u_{m}(t)-u_{m}(s)\right), M\left(t,\left\|u_{m-1}(t)\right\|^{2}\right) \cdot v\right) \\
& =\left(\left(u_{m}(s)-u_{m}(t), M\left(t,\left\|u_{m-1}(t)\right\|^{2}\right) v\right)\right) \\
& \leq \sqrt{c_{3}}\|v\|\left\|u_{m}(s)-u_{m}(t)\right\|
\end{aligned}
$$

and using (48) we get

$$
\begin{equation*}
\left|\left(M\left(t,\left\|u_{m-1}(t)\right\|^{2}\right) \Delta\left(u_{m}(t)-u_{m}(s)\right), v\right)\right| \leq \sqrt{c_{1} c_{3}}\|v\||t-s| . \tag{51}
\end{equation*}
$$

Now, if we consider $g(x, t)=\left(x, t,\left\|u_{m-1}(t)\right\|^{2}\right)$ then we have

$$
\begin{aligned}
M\left(x, t,\left\|u_{m-1}(t)\right\|^{2}\right)-M & \left(x, s,\left\|u_{m-1}(s)\right\|^{2}\right)= \\
& =\int_{s}^{t} \frac{\partial}{\partial \xi}(M \circ g)(x, \xi) d \xi \\
& =\int_{s}^{t} \frac{\partial M}{\partial \xi}\left(x, \xi,\left\|u_{m-1}(\xi)\right\|^{2}\right) d \xi \\
& +2 \int_{s}^{t} \frac{\partial M}{\partial \lambda}\left(x, \xi,\left\|u_{m-1}(\xi)\right\|^{2}\right)\left(\left(u_{m-1}(\xi), u_{m-1}^{\prime}(\xi)\right)\right) d \xi .
\end{aligned}
$$

Then we can see that there exists a constant c_{4} such that

$$
\left|M\left(x, t,\left\|u_{m-1}(t)\right\|^{2}\right)-M\left(x, s,\left\|u_{m-1}(s)\right\|^{2}\right)\right| \leq c_{4}|t-s|
$$

and this estimate shows that there exists a constant c_{5} such that

$$
\begin{equation*}
\left|\left(\left[M\left(t, \|\left. u_{m-1}(t)\right|^{2}\right)-M\left(s,\left\|u_{m-1}(s)\right\|^{2}\right)\right] \Delta u_{m}(s), v\right)\right| \leq c_{5}\|v\||t-s| . \tag{52}
\end{equation*}
$$

Finally, we note that

$$
\begin{equation*}
\left|\left(f_{m}(t)-f_{m}(s), v\right)\right| \leq \frac{1}{m_{o}}\|f(t)-f(s)\|\|v\| . \tag{53}
\end{equation*}
$$

From (51), (52) and (53) we obtain that there exists a constant c_{6} such that

$$
\begin{equation*}
\left\|u_{m}^{\prime \prime}(t)-u_{m}^{\prime \prime}(s)\right\|_{H^{-1}(\Omega)} \leq c_{6}(|t-s|+\|f(t)-f(s)\|) . \tag{54}
\end{equation*}
$$

The estimate (ii) is the relations (47), (48), (49) and (54).

4 - Proof of the theorem

By estimates (i) and (ii) we have:
$\left(u_{m}\right)_{m \in \mathbf{N}}$ uniformly bounded in $[0, T]$ with respect to the norm of $H_{o}^{1}(\Omega) \cap$ $H^{2}(\Omega)$ and equicontinuous with respect to the norm of $H_{o}^{1}(\Omega)$.
$\left(u_{m}^{\prime}\right)_{m \in \mathbf{N}}$ uniformly bounded in $[0, T]$ with respect to the norm of $H_{o}^{1}(\Omega)$ and equicontinuous with respect to the norm of $L^{2}(\Omega)$.
$\left(u_{m}^{\prime \prime}\right)_{m \in \mathbf{N}}$ uniformly bounded in $[0, T]$ with respect to the norm of $L^{2}(\Omega)$ and equicontinuous with respect to the norm of $H^{-1}(\Omega)$.

Then, by lemma 1 , there exists a function $u: \Omega \times[0, T] \rightarrow \mathbf{R}$ and a subsequence $\left(u_{m_{\nu}}\right)_{\nu \in \mathbf{N}}$ extracted from $\left(u_{m}\right)_{m \in \mathbf{N}}$, such that

$$
\begin{equation*}
u \in C\left([0, T] ; H_{o}^{1}(\Omega)\right) \cap C^{1}\left([0, T] ; L^{2}(\Omega)\right) \cap C^{2}\left([0, T] ; H^{-1}(\Omega)\right) \tag{55}
\end{equation*}
$$

$$
\left\{\begin{array}{l}
u_{m_{\nu}}(t) \rightarrow u(t) \text { strongly in } H_{o}^{1}(\Omega), \text { uniformly in }[0, T] \tag{56}\\
u_{m_{\nu}}^{\prime}(t) \rightarrow u^{\prime}(t) \quad \text { strongly in } L^{2}(\Omega), \text { uniformly in }[0, T] \\
u_{m_{\nu}}^{\prime \prime}(t) \rightarrow u^{\prime \prime}(t) \quad \text { strongly in } H^{-1}(\Omega), \text { uniformly in }[0, T]
\end{array}\right.
$$

Moreover, since $H_{o}^{1}(\Omega) \cap H^{2}(\Omega), H_{o}^{1}(\Omega)$ and $L^{2}(\Omega)$ are reflexive Banach spaces, we still have

$$
\left\{\begin{array}{l}
u \in L^{\infty}\left(0, T ; H_{o}^{1}(\Omega) \cap H^{2}(\Omega)\right. \tag{57}\\
u^{\prime} \in L^{\infty}\left(0, T ; H_{o}^{1}(\Omega)\right) \\
u^{\prime \prime} \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right)
\end{array}\right.
$$

The convergences don't allow us to pass to the limit in the approximate equation. Indeed, the sequence $\left(u_{m_{\nu}}\right)_{\nu \in \mathbf{N}}$ have the properties, but we can't say the same for $\left(u_{m_{\nu}-1}\right)_{\nu \in \mathbf{N}}$. In order to solve this problem we will prove the following lemma.

Lemma 4. $\lim _{m \rightarrow \infty}\left\|u_{m+1}(t)-u_{m}(t)\right\|^{2}=0$ uniformly on $[0, T]$.
Proof: For each $m \in \mathbf{N}$ we define $w_{m}=u_{m+1}-u_{m}$. Then

$$
\left\|u_{m+1}(t)-u_{m}(t)\right\|^{2}=\sum_{i=1}^{n} \int_{\Omega}\left(\frac{\partial w_{m}}{\partial x_{i}}(x, t)\right)^{2} d x
$$

and making use of the assumption (H.3) we can see that there exists a constant c_{7} such that

$$
\begin{align*}
\| u_{m+1}(t)- & u_{m}(t) \|^{2} \leq \tag{58}\\
& \leq c_{7}\left\{\frac{1}{2}\left[\left|w_{m}^{\prime}(t)\right|^{2}+\sum_{i=1}^{n}\left(M\left(t,\left\|u_{m}(t)\right\|^{2}\right) \frac{\partial w_{m}}{\partial x_{i}}(t), \frac{\partial w_{m}}{\partial x_{i}}(t)\right)\right]\right\}
\end{align*}
$$

Hence, we are motivated to put

$$
\begin{equation*}
\psi_{m}(t)=\frac{1}{2}\left[\left|w_{m}^{\prime}(t)\right|^{2}+\sum_{i=1}^{n}\left(M\left(t,\left\|u_{m}(t)\right\|^{2}\right) \frac{\partial w_{m}}{\partial x_{i}}(t), \frac{\partial w_{m}}{\partial x_{i}}(t)\right)\right] \tag{59}
\end{equation*}
$$

and then, we will conclude with the proof of lemma showing that $\psi_{m}(t) \rightarrow 0$ uniformly in $[0, T]$.

Differentiating $\psi_{m}(t)$, we have

$$
\begin{align*}
& \psi_{m}^{\prime}(t)=\frac{1}{2} \frac{d}{d t}\left|w_{m}^{\prime}(t)\right|^{2}+ \tag{60}\\
& +\frac{1}{2} \sum_{i=1}^{n}\left(\frac{\partial M}{\partial t}\left(t,\left\|u_{m}(t)\right\|^{2}\right) \frac{\partial w_{m}}{\partial x_{i}}(t), \frac{\partial w_{m}}{\partial x_{i}}(t)\right)+ \\
& +\left(\left(u_{m}(t), u_{m}^{\prime}(t)\right)\right) \sum_{i=1}^{n}\left(\frac{\partial M}{\partial \lambda}\left(t,\left\|u_{m}(t)\right\|^{2}\right) \frac{\partial w_{m}}{\partial x_{i}}, \frac{\partial w_{m}}{\partial x_{i}}(t)\right)+ \\
& +\sum_{i=1}^{n}\left(M\left(t,\left\|u_{m}(t)\right\|^{2}\right) \frac{\partial w_{m}}{\partial x_{i}}(t), \frac{\partial w_{m}^{\prime}}{\partial x_{i}}\right) .
\end{align*}
$$

From the approximation equation we find

$$
\begin{aligned}
w_{m}^{\prime \prime}(t)+\left[M\left(t,\left\|u_{m-1}(t)\right\|^{2}\right)-M(\right. & \left.\left.,\left\|u_{m-1}(t)\right\|^{2}\right)\right] \Delta u_{m}(t)- \\
& -M\left(t,\left\|u_{m}(t)\right\|^{2}\right) \Delta w_{m}(t)=f_{m+1}(t)-f_{m}(t)
\end{aligned}
$$

and then

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t}\left|w_{m}^{\prime}(t)\right|^{2} & =\left(M\left(t,\left\|u_{m}(t)\right\|^{2}\right) \Delta w_{m}, w_{m}^{\prime}(t)\right) \\
& +\left(\left[M\left(t,\left\|u_{m}(t)\right\|^{2}\right)-M\left(t,\left\|u_{m-1}(t)\right\|^{2}\right)\right] \Delta u_{m}(t), w_{m}^{\prime}(t)\right) \\
& +\left(f_{m+1}(t)-f_{m}(t), w_{m}^{\prime}(t)\right) .
\end{aligned}
$$

From the above relation and (60) we obtain

$$
\begin{equation*}
\psi_{m}^{\prime}(t)=A_{m}(t)+B_{m}(t)+C_{m}(t)+D_{m}(t)+E_{m}(t) \tag{61}
\end{equation*}
$$

where
(62)

$$
\left\{\begin{array}{l}
A_{m}(t)=-\sum_{i=1}^{n}\left(\frac{\partial M}{\partial x_{i}}\left(t,\left\|u_{m}(t)\right\|^{2}\right) \frac{\partial w_{m}}{\partial x_{i}}(t), w_{m}^{\prime}(t)\right) \\
B_{m}(t)=\left(\left[M\left(t,\left\|u_{m}(t)\right\|^{2}\right)-M\left(t,\left\|u_{m-1}(t)\right\|^{2}\right)\right] \Delta u_{m}(t), w_{m}^{\prime}(t)\right) \\
C_{m}(t)=\left(\left(u_{m}(t), u_{m}^{\prime}(t)\right)\right) \sum_{i=1}^{n}\left(\frac{\partial M}{\partial \lambda}\left(t,\left\|u_{m}(t)\right\|^{2}\right) \frac{\partial w_{m}}{\partial x_{i}}(t), \frac{\partial w_{m}}{\partial x_{i}}(t)\right) \\
D_{m}(t)=\frac{1}{2} \sum_{i=1}^{n}\left(\frac{\partial M}{\partial t}\left(t,\left\|u_{m}(t)\right\|^{2}\right) \frac{\partial w_{m}}{\partial x_{i}}(t), \frac{\partial w_{m}}{\partial x_{i}}(t)\right) \\
E_{m}(t)=\left(f_{m+1}(t)-f_{m}(t), w_{m}^{\prime}(t)\right) .
\end{array}\right.
$$

By (59) and the estimates we find constants c_{8}, c_{9}, c_{10} and c_{11} such that

$$
\begin{array}{ll}
A_{m}(t) \leq c_{8} \psi_{m}(t), & B_{m}(t) \leq c_{9}\left[\psi_{m-1}(t)-\psi_{m}(t)\right] \\
C_{m}(t) \leq c_{10} \psi_{m}(t), & D_{m}(t) \leq c_{11} \psi_{m}(t)
\end{array}
$$

and $E_{m}(t) \leq \frac{1}{2}\left|f_{m+1}(t)-f_{m}(t)\right|^{2}+\psi_{m}(t)$.
Then we prove that there exists a constant c_{12}, independent of m and $t \in$ $[0, T]$, such that

$$
\psi_{m}^{\prime}(t)-c_{12} \psi_{m}(t) \leq \frac{1}{2}\left|f_{m+1}(t)-f_{m}(t)\right|^{2}+c_{12} \psi_{m-1}(t)
$$

and then,

$$
\begin{aligned}
\psi_{m}(t) & \leq e^{c_{12} T}\left[\psi_{m}(0)+\frac{1}{2} \int_{0}^{T}\left|f_{m+1}(t)-f_{m}(t)\right|^{2} d t\right] \\
& +c_{12} e^{c_{12} T} \int_{0}^{t} \psi_{m-1}(s) d s
\end{aligned}
$$

Now we denote by

$$
\gamma_{m}=\psi_{m}(0)+\frac{1}{2} \int_{0}^{T}\left|f_{m+1}(t)-f_{m}(t)\right|^{2} d t
$$

and choose

$$
c_{13}=\operatorname{Máx}\left\{e^{c_{12} T}, c_{12} e^{c_{12} T}, 0 \leq t \leq T \rightarrow \operatorname{Máx} \psi_{1}(t)\right\} .
$$

Then, we can see that

$$
\left\{\begin{array}{l}
\psi_{1}(t) \leq c_{13} \tag{63}\\
\psi_{m}(t) \leq c_{13} \gamma_{m}+c_{13} \int_{0}^{t} \psi_{m-1}(s) d s
\end{array}\right.
$$

By induction we find

$$
\begin{equation*}
\psi_{m}(t) \leq c_{13} \sum_{j=0}^{m-1} \frac{\left(c_{13}+t\right)^{j}}{j!} \gamma_{m-j}, \forall t \in[0, T], m=2,3, \ldots \tag{64}
\end{equation*}
$$

If we consider (37) we get

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \gamma_{m}=0 \tag{65}
\end{equation*}
$$

and, as we well know,

$$
\begin{equation*}
\sum_{j=1}^{\infty} \frac{\left(c_{13} T\right)^{j}}{j!}=e^{c_{13} T} \tag{66}
\end{equation*}
$$

Therefore, from (64), (65) and (66) we conclude that $\psi_{m}(t) \rightarrow 0$ uniformly in $[0, T]$ and the proof of lemma 4 is complete.

The result of lemma 4 implies that

$$
\begin{equation*}
\lim _{\nu \rightarrow \infty}\left\|u_{m_{\nu}-1}(t)\right\|^{2}=\|u(t)\|^{2} \text { uniformly in }[0, T] \tag{67}
\end{equation*}
$$

Then, we have the following convergences:
(68) $\quad M\left(t,\left\|u_{m_{\nu}-1}(t)\right\|^{2}\right) \cdot v \rightarrow M\left(t,\|u(t)\|^{2}\right) \cdot v$
strongly in $L^{2}(\Omega)$, uniformly in $[0, T], \forall v \in L^{2}(\Omega)$,
(69) $\Delta u_{m_{\nu}}(t) \rightarrow \Delta u(t)$ weakly in $L^{2}(\Omega), 0 \leq t \leq T$.

The convergences (68) and (69) imply

$$
\begin{align*}
& M\left(t,\left\|u_{m_{\nu}-1}(t)\right\|^{2}\right) \Delta u_{m_{\nu}}(t) \rightarrow M\left(t,\|u(t)\|^{2}\right) \Delta u(t) \tag{70}\\
& \text { weakly in } L^{2}(\Omega), 0 \leq t \leq T
\end{align*}
$$

We have then by passage to the limit in ν that

$$
u^{\prime \prime}(t)-M\left(t,\|u(t)\|^{2}\right) \Delta u(t)=f(t) \text { in } L^{2}(\Omega), 0 \leq t \leq T
$$

Clearly we also have $u(0)=\phi_{o}$ and $u^{\prime}(0)=\phi_{2}$.

5 - Uniqueness

Let u and v be satisfying (21), (22) and (23). Then, if we define $w=u-v$ we get

$$
\left\{\begin{array}{l}
w^{\prime \prime}(t)+M\left(t,\|v(t)\|^{2}\right) \Delta v(t)-M\left(t,\|u(t)\|^{2}\right) \Delta u(t)=0 \tag{71}\\
w(0)=w^{\prime}(0)=0
\end{array}\right.
$$

Now we put

$$
\begin{equation*}
\psi(t)=\frac{1}{2}\left[\left|w^{\prime}(t)\right|^{2}+\sum_{i=1}^{n}\left(M\left(t,\|u(t)\|^{2}\right) \frac{\partial w}{\partial x_{i}}(t), \frac{\partial w}{\partial x_{i}}(t)\right)\right] \tag{72}
\end{equation*}
$$

Therefore, using again the same analysis used in the proof of lemma 4, we obtain a constant c_{14} such that

$$
\psi^{\prime}(t)-c_{14} \psi(t) \leq 0
$$

and this imply

$$
\begin{equation*}
\psi(t) \leq c^{c_{14} t} \psi(0), \forall t \in[0, T] . \tag{73}
\end{equation*}
$$

But, from (72) there exists a constant c_{15} such that

$$
0 \leq \psi(t) \leq c_{15}\left[\left|w^{\prime}(t)\right|^{2}+\|w(t)\|^{2}\right], 0 \leq t \leq T
$$

By $(71)_{2}$, if we take $t=0$ in the above relation, we have $\psi(0)=0$. This fact with (73) shows that $\psi(t)=0,0 \leq t \leq T$; and then we have uniqueness.

REFERENCES

[1] Arosio, A. and Spagnolo, S. - Global solutions to the Cauchy problem for a nonlinear hyperbolic equation, Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar, vol. 6, Edited by Brézis H. and Lions J.L., Pitman, London, 1984.
[2] Arosio, A. and Garavaldi - On the mildly degenerate Kirchhoff string, Mathematical Methods in the Applied Sciences, 14 (1991), 177-195.
[3] Bernstein, S. - Sur une classe d'équations fonctionelles aux derivées partielles, Isv. Acad. Nauk. SSSR Ser. Math., 4, 17-26.
[4] Brito, E.H. - The damped elastic stretched string equation generalized: existence, uniqueness, regularity and stability, Applicable Anal., 13 (1982), 219-233.
[5] Carrier, G.F. - On the vibration problem of elastic string, Q.J. Appl. Math., 3 (1945), 151-165.
[6] Crippa, H.R. - On local solutions of some mildly degenerate hyperbolic equations (to appear).
[7] D'Ancona, P. and Spagnolo, S. - Global solvability for the degenerate Kirchhoff equation with real analytic data, Inventiones Mathematicae, 108 (1992), 247-262.
[8] Dickey, R.W. - Infinite systems of nonlinear oscillation equations related to string, Proc. A.M.S. (1969), 459-469.
[9] Ebihara, Y.; Medeiros, L.A. and Milla Miranda, M. - Local solutions for a nonlinear degenerated hyperbolic equation, Nonlinear Analysis, 10 (1986), 27-40.
[10] Geng Di and Qu Chang Zheng - On nonlinear hyperbolic equation in unbounded domain, Applied Mathematics and Mechanics (English Edition), 23(3) (1992), 255-261.
[11] Lions, J.L. - Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Gauthier-Villars, 1968.
[12] Lions, J.L. - On some questions in boundary value problem of Mathematical Physics, Contemporary developments in Continuum Mechanics and Partial Differential Equations, North Holland, Math. Studies, Edited by G.M. de la Penha and L.A. Medeiros, 1977.
[13] Matos, M.P. - Mathematical analysis of the nonlinear model for the vibrations of a string, Nonlinear Analysis, Theory, Methods \& Aplications, 17(12) (1991), 1125-1137.
[14] Medeiros, L.A. and Milla Miranda, M. - On a nonlinear wave equation with damping, Revista Matemática de la Universidade Complutense de Madrid, 3(2,3) (1990).
[15] Menzala, G.P. - On global solutions of a quasilinear hyperbolic equations, Nonlinear Analysis, 3(5) (1979), 613-627.
[16] Nishihara, K. - Degenerate quasilinear hyperbolic equation with strong damping, Funkcialaj Ekvacioj, 27 (1984), 125-145.
[17] Nishihara, K. and Yamada, Y. - On global solutions of some degenerated quasilinear hyperbolic equations with dissipative terms, Funkcialaj Ekvacioj, 33 (1990), 151-159.
[18] Pohozaev, S. - On a class of quasilinear hyperbolic equations, Math. Sbornik, 95 (1975), 152-166.
[19] Rivera Rodrigues, P.H. - On local strong solutions of a nonlinear partial differential equation, Applicable Analysis, 10 (1980), 93-104.
[20] Rivera Rodrigues, P.H. - On a nonlinear hyperbolic partial differential equation, Revista de Ciencias, Univ. San Marcos, 74(1), (1986), 1-16.
[21] Yamada, Y. - Some nonlinear degenerate wave equation, Nonlinear Analysis, Theory, Methods \& Applications, 11(10) (1987), 1155-1168.

[^0]: Received: December 15, 1992.

