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NON LOCAL SOLUTIONS OF A NONLINEAR
HYPERBOLIC PARTIAL DIFFERENTIAL EQUATION

Ćıcero Lopes Frota

Abstract: In this work we prove that the mixed problem for a temporally nonlinear

Kirchhoff-Carrier model, for vibrations of a nonhomogeneous stretched string, has unique

nonlocal solution for small data. The solution is obtained in S.L. Sobolev spaces.

Introduction

The nonlinear model of Kirchhoff-Carrier, cf. Carrier [5], for vibrations of an
elastic string, of lenght L, is given by:
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where 0 ≤ x ≤ L and t > 0 represent the string in repose, u(x, t) is the vertical
displacement of the point x at the instant t, ρ is the mass density, h is the area of
the cross section of the string, L is the lenght of the string, Po the initial tension
on the string and E the Young’s modulus of the material.

The natural generalization of the model (1) is given by the following nonlinear
mixed problem
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∆u = f on Q = Ω× (0, T )

u = 0 on Σ = Γ× (0, T )

u(x, 0) = φo(x) on Ω

∂u

∂t
(x, 0) = φ1(x) on Ω
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where Ω is a bounded open set of Rn with smooth boundary Γ, M : [0,∞)→ R

is a positive real function and ∆ =
n
∑

i=1

∂2

∂x2i
is the Laplace operator.

Remark 1. In the Kirchhoff-Carrier model (1), M : [0,∞) → R is M(λ) =
Po

ρ.h
+

E

2Lρ
λ.

Several authors have investigated the nonlinear problem (2). When n = 1
and Ω = (0, L), it was studied by Dickey [8] and Bernstein [3] whom considered
φo and φ1 analytic functions with some growth conditions. Assuming Ω bounded
open set of Rn, φo and φ1 analytic functions, Pohozaev [18] obtained existence
and uniqueness of global solutions for the mixed problem (2). In Lions [12] he
formulated the Pohozaev’s results in an abstract context obtaining better results
and presenting a collection of problems. One of the problems proposed by Lions
[12] was the study of the problem (2) with M : Ω× [0,∞)→ R, i.e., the problem
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∆u = f on Q

u = 0 on Σ

u(x, 0) = φo(x) on Ω

∂u

∂t
(x, 0) = φ1(x) on Ω

that is, for nonhomogeneous materials. This case has it’s origin in the model (1)
when the physic elements ρ, h and E are not constants, but depends on the point
x in the string. In Rivera Rodrigues [20] the author proved the existence and
uniqueness of local solutions for the problem (3).

In a more general context it is correct to consider ρ, h and E changing not
only with the point x in the string but with the instant t too, i.e., ρ = ρ(x, t),
h = h(x, t) and E = E(x, t). In this case, we have the problem

(4)
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u(x, 0) = φo(x) on Ω
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where M : Ω× [0, T ]× [0,∞)→ R.
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In this work we study the problem (4) and making use of the same technique

used by Rivera Rodrigues [20], we prove that if φo, φ1, f and
∂M

∂t
are small

in some sense, then exist one, and only one, nonlocal solution for the problem

(4). It’s important to observe that it’s a good assumption to consider
∂M

∂t
small,

because in normal conditions ρ, h and E have a small variation with the time.
For the study of problem (2) with dissipative terms we have, for instance, Brito

[4] and Medeiros-Milla Miranda [14]. The problem (2) in the degenerate case
can be find in Arosio-Spagnolo [1], Ebihara-Medeiros-Milla Miranda [9], Arosio-
Garavaldi [2], Crippa [6], Yamada [21], Nishihara-Yamada [17] and Nishihara
[16].

The plan of this paper is the following:

1) Notations and preliminary results;

2) Assumptions and statement of the principal result;

3) Galerkin’s approximation and a priori estimates;

4) Proof of the theorem;

5) Uniqueness.

1 – Notation and preliminary results

Let Ω be a bounded open set of Rn with smooth boundary Γ. By L2(Ω) we
represent the usual space of Lebesgue square integrable functions on Ω whose
inner product and norm will be denoted by ( · , · ) and | · | respectively. In the
Sobolev space H1

o (Ω) we consider the norm
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Let (−∆) be the operator defined by {H1
o (Ω), L

2(Ω), (( · , · ))}. Then as we
well known (−∆) is an unbounded selfadjoint operator in L2(Ω) with domain

(7) D(−∆) =
{

u ∈ H1
o (Ω);∆u ∈ L2(Ω)

}

= H1
o (Ω) ∩H2(Ω)

and it has the following properties:
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(a) There exist mo > 0 such that

(8) (−∆u, u) ≥ mo |u|2 , ∀u ∈ D(−∆) ;

(b)

(9) (−∆u, u) = ||u||2 , ∀u ∈ D(−∆) ;

(c) There exist a sequence (λj)j∈N of real numbers and (wj)j∈N a sequence
of L2(Ω) vectors such that

(10) mo ≤ λ1 ≤ λ2 ≤ . . .

(11) −∆wj = λjwj , ∀ j ∈ N

(12) lim
j→∞

λj =∞

(13)
{wj} is a orthonormal complete set in L2(Ω) and or-
thogonal complete set inH1

o (Ω) and inH1
o (Ω)∩H2(Ω).

Remark 2. We introduce the equivalent norm

(14) ||u||H1
o (Ω)∩H

2(Ω) = | −∆u|, ∀u ∈ H1
o (Ω) ∩H2(Ω)

for smooth boundary Γ.

In order to complete this section we introduce a compactness result. It is a
version of Arzela’s theorem and it’s proof follows the same argument as the usual
proof of scalar Arzela’s theorem.

Lemma 1. Let E and F be Banach spaces, E ↪→ F with compact injection.
Let (σm)m∈N be a sequence of functions from the interval [a, b] ⊂ R into E.
If (σm)m∈N is uniformly bounded in [a, b] with respect to the norm of E and
equicontinuous with respect to the norm of F , then there exist a subsequence
(σmν )ν∈N of (σm)m∈N and a continuous function σ: [a, b]→ F such that

(15) lim
ν→∞

σmν (t) = σ(t) in F uniformly for t ∈ [a, b] .

Moreover, if E is a reflexive Banach space then we find that σ ∈ L∞(a, b;E).
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2 – Assumptions and principal result

Let Ω be as in section 1, T > 0 a real number. We consider a real function

M : Ω× [0, T ]× [0,∞) −→ R
(x, t, λ) 7−→ M(x, t, λ)

such that the following assumptions are satisfied:

(H.1) M ∈ L∞loc([0,∞);W 1,∞(Ω × (0, T ))), i.e., for each k > 0 we have M ∈
L∞(Ω × (0, T ) × (0, k)),

∂M

∂t
∈ L∞(Ω × (0, T ) × (0, k)) and

∂M

∂xi
∈

L∞(Ω× (0, T )× (0, k)) for i = 1, . . . , n.

(H.2) For each L > 0 we have
∂M

∂λ
∈ L∞(Ω× (0, T )× (0, L)).

(H.3) There exist a real number m1 > 0 such that m1 ≤M(x, t, λ), ∀x ∈ Ω,
t ∈ [0, T ] and λ ≥ 0.

Now we define

(16)

ko = 4(mom
3
1)
−1/2, k1 =

1

m1

θo = ess sup
→
x∈Ω
0<t<T

∣

∣

∣

∣

∂M

∂t
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∣

∣

∣
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1

2

[

1 + ||M ||L∞(Ω×(0,T )×(0,1))
]

k3 =
4

mom1

[(

k2 +
T

2

)

(

1 + e(1+k1θo)T
)

]

k4 =

∥

∥

∥

∥

∂M

∂λ

∥

∥

∥

∥

L∞(Ω×(0,T )×(0,k3))

(17) δ = min

{

1;m1/2
o ;

ln 2

3T [1 + Tkok4 + Tkok4 e(1+k1θo)T ]
;

[

ln 2

6Tkok2k4(1 + e(1+k1θo)T )

]1/2}

(18) kδ = k2δ
2 +

T

2
δ .

Theorem. LetM : Ω×[0, T ]×[0,∞)→ R be a real function satisfying (H.1)–
(H.3), φo ∈ H1

o (Ω) ∩ H2(Ω), φ1 ∈ H1
o (Ω) and f : [0, T ] → H1

o (Ω) a continuous
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function. If

(19) |∆φo|2 + ||φ1||2 + 0 ≤ t ≤ T → Máx ||f(t)||2 ≤ δ2

and

(20)

∥

∥

∥

∥

∂M

∂t

∥

∥

∥

∥

L∞(Ω×(0,T )×(0,k3))
≤ ln 2

3Tk1
.

Then there exist one, and only one, function u: [0, T ]→ H1
o (Ω) such that

(21) u ∈ C([0, T ];H1
o (Ω)) ∩ C1([0, T ];L2(Ω)) ∩ C2([0, T ]lH−1(Ω)) ,

(22)















u ∈ L∞(0, T ;H1
o (Ω) ∩H2(Ω))

u′ ∈ L∞(0, T ;H1
o (Ω))

u′′ ∈ L∞(0, T ;L2(Ω)) ,

(23)















u′′(t)−M(t, ||u(t)||2)∆u(t) = f(t) in L2(Ω), 0 ≤ t ≤ T

u(0) = φo

u′(0) = φ1 .

Remark 3. In (23)1 we are making use of the following notation: if ψ: Ω×
(0, T )→ R is a function then ψ(t): Ω→ R is defined by ψ(t)(x) = ψ(x, t).

3 – Galerkin’s approximation and a priori estimates

We consider Vo = {0} and Vm = [w1, . . . , wm] for m = 1, 2, . . . i.e., Vm is the
vector space spanned by w1, . . . , wm; where (wm)m∈N is as in the section 1. The
sequence of Galerkin’s approximation is defined by induction as follows: we put

uo: [0, T ] −→ Vo
t 7−→ uo(t) = 0

and for m = 1, 2, . . ., we consider

um: [0, Tm] −→ Vm
t 7−→ um(t) =

∑m
j=1 gjm(t)wj

the unique solution of the initial value problem, with the coefficient of −∆um(t)
depends on the time t:

(24)















u′′m(t)−M(t, ||um−1(t)||2)∆um(t) = fm(t) in Vm, ∀ t ∈ [0, Tm]

um(0) = ϕom

u′m(0) = ϕ1m
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where

(25) Tm = sup
{

τ ; 0 < τ ≤ Tm−1 and um: [0, τ ]→ Vm is solution of (24)
}

,

(26) fm(t) =
m
∑

j=1

(f(t), wj)wj , 0 ≤ t ≤ T ,

(27) ϕom =
m
∑

j=1

(φo, wj)wj ,

(28) ϕ1m =
m
∑

j=1

(φ1, wj)wj .

Remark 4. The Galerkin’s approximation is well defined. It’s sufficient we
note that the initial value problem (24) is equivalent to the following system of
ordinary differential equations:

(29)



































g′′jm(t) +
m
∑
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λkgkm(t)
(

M(t, ||um−1(t)||2)wk, wj

)

= (f(t), wj)

0 ≤ t ≤ Tm; j = 1, . . . ,m

gjm(0) = (φo, wj)

g′jm(0) = (φ1, wj) .

Estimate (i) From (24)1 we have the approximate equation

(30) (u′′m(t), v)−
(

M(t, ||um−1(t)||2
)

∆um(t), v
)

= (fm(t), v), ∀ v ∈ Vm .

Take v = −∆u′m(t) in (30) we get

1

2

d

dt
||u′m(t)||2 +

∫

Ω
M(x, t, ||um−1||2)∆um(x, t).∆u′m(x, t) dx = ((fm(t), u′m(t))),

since
∫

Ω
M
(

x, t, ||um−1(t)||2
)

∆um(x, t)∆u′m(x, t) dx =

=
1

2

d

dt

(

M(t, ||um−1(t)||2)∆um(t),∆um(t)
)

− 1

2

∫

Ω

∂M

∂t
(x, t, ||um−1(t)||2) (∆um(x, t))2 dx

− ((um−1(t), u
′
m−1(t)))

∫

Ω

∂M

∂λ
(x, t, ||um−1(t)||2) (∆um(x, t))2 dx



462 C.L. FROTA

we have

(31)
d

dt

{

1

2

[

||u′m(t)||2 +
(

M(t, ||um−1(t)||2)∆um(t),∆um(t)
)

]}

=

= ((fm(t), u′m(t))) +
1

2

∫

Ω

∂M

∂t
(x, t, ||um−1(t)||2) (∆um(x, t))2 dx

+ ((um−1(t), u
′
m−1(t)))

∫

Ω

∂M

∂λ
(x, t, ||um−1(t)||2) (∆um(x, t))2 dx,

∀ t ∈ [0, Tm], m = 1, 2, . . .

Lemma 2. Let be

(32)



















Zo(t) = 0

Zm(t) =
1

2

[

||um(t)||2 +
(

M(t, ||um−1(t)||2)∆um(t),∆um(t)
)]

0 ≤ t ≤ Tm, m = 1, 2, . . . ,

α = sup
0≤t≤Tm

Zm(t) , α′m =
2

mom1
αm ,

θm =

∥

∥

∥

∥

∂M

∂t

∥

∥

∥

∥

L∞(Ω×(0,T )×(0,α′m))
, βm =

∥

∥

∥

∥

∂M

∂λ

∥

∥

∥

∥

L∞(Ω×(0,T )×(0,α′m))
.

Then, Tm = T , αm is finite ∀m ∈ N and

(33) Zm(t) ≤
[

Zm(0) +
1

2δ

∫ t

0
||fm(s)||2 ds

]

e(δ+k1θm−1+koαm−1βm−1)t.

Proof: The proof will be done by induction on m. Clearly the solution of
the problem















g′′11(t) + λ1(M(t, 0)w1, w1) g11(t) = (f(t), w1)

g11(0) = (φo, w1)

g′11(0) = (φ1, w1)

is defined in all [0, T ]. This show us that T1 = T . Moreover if we consider the
assumption (H.3) on M we have

(34) |∆u1(t)|2 ≤
2

m1
Z1(t), ∀ t ∈ [0, T ] .

From (31) and (34) we get

Z ′1(t)− (δ + k1θo)Z1(t) ≤
1

2δ
||f1(t)||2 ,
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where δ is given by (17). By the last inequality we obtain

Z1(t) ≤
[

Z1(0) +
1

2δ

∫ t

0
||f1(s)||2 ds

]

e(δ+k1θo)t

and it proves that α1 is finite and (33) is true when m = 1. Now we make the
induction assumption, i.e., we assume that for m ≥ 1 we have Tm = T , αm finite
and (34) true for this m. Then (31) for m+ 1 implies

Z ′m+1(t) ≤
1

2δ
||fm+1(t)||2 + δZm+1(t)

+
1

2

∫

Ω

∣

∣

∣

∣

∂M

∂t
(x, t, ||um(t)||2)

∣

∣

∣

∣

(∆um+1(x, t))
2 dx

+ ||um(t)|| ||u′m(t)||
∫

Ω

∣

∣

∣

∣

∂M

∂λ
(x, t, ||um(t)||2)

∣

∣

∣

∣

(∆um+1(x, t))
2 dx .

By the other hand, we note that

(35)

||um(t)||2 ≤ 1

mo
|∆um(t)|2 ≤ 2

mom1
Zm(t)

≤ 2

mom1
αm = α′m, 0 ≤ t ≤ T.

It follows that:

Z ′m+1(t)− (δ + k1θm + koαmβm)Zm+1(t) ≤
1

2δ
||fm+1(t)||2 .

The above inequality shows that (33) is true for (m + 1), αm+1 is finite and
Tm+1 = T , i.e., the proof of Lemma 2 is complete.

We denote,

(36) τm = Zm(0) +
1

2δ

∫ T

0
||fm(t)||2 dt , m = 1, 2, . . . ,

and then the sequence (τm)m∈N is bounded. In fact, by (26), (27) and (28) we
have that

(37)















∆ϕom → ∆φo strong in L2(Ω)

ϕ1m → φ1 strong in H1
o (Ω)

fm(t)→ f(t) strong in H1
o (Ω), uniformly on [0, T ]

and from the hypothesis of small data (17) we obtain

(38) |∆ϕom|2 + ||ϕ1m||2 + 0 ≤ t ≤ T → Máx ||fm(t)||2 ≤ δ2, ∀m ∈ N .
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Therefore,

||ϕom||2 ≤
1

mo
|∆ϕom|2 ≤

1

mo
δ2 ≤ 1, ∀m ∈ N ,

and then,

τm =
1

2

[

||ϕ1m||2 +
∫

Ω
M(x, 0, ||ϕo(m−1)||2) (∆ϕom(x))2 dx

]

+
1

2δ

∫ T

0
||fm(t)||2 dt ≤ k2δ

2 +
T

2
δ = kδ .

We conclude that:

(39) 0 ≤ τm ≤ kδ , ∀m ∈ N ,

and

(40) Zm(t) ≤ τm e
(δ+k1θm−1+koαm−1βm−1)t, ∀ t ∈ [0, T ],m ∈ N .

Lemma 3. Exists a constant co (independent of m ∈ N and t ∈ [0, T ]) such
that

(41) Zm(t) ≤ 2co , ∀ t ∈ [0, T ], ∀m ∈ N .

Proof: We consider co = kδ[1 + e(1+k1θo)T ]. Then, we have by (39):

(42) τm ≤ co , ∀m ∈ N ,

and by (40)

Z1(t) ≤ τ1 e
(δ+k1θo)t ≤ kδ e

(1+k1θo)T ≤ co ≤ 2co ,

it shows that (41) is true form = 1. Now, we do the follows induction assumption:
given m ≥ 1 we assume that (41) is true for this m. In order to prove that (41)
is true for (m+ 1) we have

αm = sup
0≤t≤T

Zm(t) ≤ 2co

and

α′m =
2αm

mom1
≤ 4co
mom1

=
4

mom1

{

kδ[1 + e(1+k1θo)T ]

}

=

=
4

mom1

{(

k2δ
2 +

T

2
δ

)

(

1 + e(1+k1θo)T
)

}

≤ k3 .
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Therefore, we can see that

(43) βm ≤
∥

∥

∥

∥

∂M

∂λ

∥

∥

∥

∥

L∞(Ω×(0,T )×(0,k3))
= k4

and

(44) θm ≤
∥

∥

∥

∥

∂M

∂t

∥

∥

∥

∥

L∞(Ω×(0,T )×(0,k3))
≤ ln 2

3Tk1
.

By (40), (42), (43) and (44) we get

Zm+1(t) ≤ τm+1 e
(δ+k1θm+koαmβm)t ≤ co e

(δ+ ln 2

3T
+2kok4co)t .

We note that, from our choice we have

(

δ +
ln 2

3T
+ 2kok4co

)

=
[

1 + Tkok4 + Tkok4 e
(1+k1θo)T

]

δ +

+ 2kok2k4[1 + e(1+k1θo)T ] δ2 +
ln 2

3T
≤ ln 2

3T
+

ln 2

3T
+

ln 2

3T
=

ln 2

T
.

Therefore,

(45)

(

δ +
ln 2

3T
+ 2kok4co

)

t ≤ ln 2 , ∀ t ∈ [0, T ] ,

and then

Zm+1(t) ≤ 2co , ∀ t ∈ [0, T ] .

The above relation complete the proof of lemma 3.

We obtain from (41) the first estimate: There exists a constant c1 such that

(46) ||um(t)||2 + ||u′m(t)||2 + |∆um(t)|2 ≤ c1 , ∀ t ∈ [0, T ], ∀m ∈ N

Estimate (ii) We start observing that

∣

∣

∣M(t, ||um−1(t)||2)∆um(t)
∣

∣

∣

2
=

∫

Ω

∣

∣

∣M(x, t, ||um−1(t)||2)
∣

∣

∣

2
|∆um(x, t)|2 dx

≤ ||M ||L∞(Ω×(0,T )×(0,c1)) · c1

and

|fm(t)|2 =
m
∑

j=1

|(f(t), wj)|2 ≤ |f(t)|2 ≤
1

mo
||f(t)||2 ≤ δ2

mo
≤ 1 .
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Thus, using (24)1 we obtain the existence of a constant c2 such that

(47) |u′′m(t)|2 ≤ c2 , ∀ t ∈ [0, T ], ∀m ∈ N .

By (46), (47) and the fundamental theorem of calculus we choose t, s ∈ [0, T ]
and we have that

||um(t)− um(s)|| ≤ √c1 |t− s| ,(48)

|u′m(t)− u′m(s)| ≤ c2 |t− s| .(49)

In order to obtain an estimate for (u′′m) analogous to (48) and (49) we choose
t, s ∈ [0, T ] and by (24)1 we get

u′′m(t)− u′′m(s) =M(t, ||um−1(t)||2)∆(um(t)− um(s)) +

+
[

M(t, ||um−1(t)||2)−M(s, ||um−1(s)||2)
]

∆um(s) + (fm(t)− fm(s)) .

On the other hand, for v ∈ H1
o (Ω) we note that

∥

∥

∥M(t, ||um−1(t)||2).v
∥

∥

∥

2
=

=
m
∑

i=1

∫

Ω

∣

∣

∣

∣

∂M

∂xi
(x, t, ||um−1(t)||2).v(x) +M(x, t, ||um−1(t)||2)

∂v

∂xi
(x)

∣

∣

∣

∣

2

dx

≤ 2|v|2
n
∑

i=1

∥

∥

∥

∥

∂M

∂xi

∥

∥

∥

∥

2

L∞(Ω×(0,T )×(0,c1))
+ 2||M ||2L∞(Ω×(0,T )×(0,c1)).

n
∑

i=1

∣

∣

∣

∣

∂v

∂xi

∣

∣

∣

∣

2

≤ 2

[

||M ||L∞(Ω×(0,T )×(0,c1)) +
n
∑

i=1

∥

∥

∥

∥

∂M

∂xi

∥

∥

∥

∥

L∞(Ω×(0,T )×(0,c1))

][

|v|2 +
n
∑

i=1

∣

∣

∣

∣

∂v

∂xi

∣

∣

∣

∣

2 ]

.

Whence, there exists a constant c3 such that

(50)
∥

∥

∥M(t, ||um−1(t)||2).v
∥

∥

∥

2
≤ c3 ||v||2 , ∀ t ∈ [0, T ], ∀m ∈ N .

By the above estimate we have

(M(t, ||um−1(t)||2)∆(um(t)− um(s)), v) =

=
(

∆(um(t)− um(s)), M(t, ||um−1(t)||2).v
)

=
(

(um(s)− um(t),M(t, ||um−1(t)||2)v)
)

≤ √c3 ||v|| ||um(s)− um(t)||
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and using (48) we get

(51)
∣

∣

∣

(

M(t, ||um−1(t)||2)∆(um(t)− um(s)), v
)∣

∣

∣ ≤ √c1c3 ||v|| |t− s| .

Now, if we consider g(x, t) = (x, t, ||um−1(t)||2) then we have

M(x, t, ||um−1(t)||2)−M(x, s, ||um−1(s)||2) =

=

∫ t

s

∂

∂ξ
(M ◦ g)(x, ξ) dξ

=

∫ t

s

∂M

∂ξ
(x, ξ, ||um−1(ξ)||2) dξ

+ 2

∫ t

s

∂M

∂λ
(x, ξ, ||um−1(ξ)||2) ((um−1(ξ), u′m−1(ξ))) dξ .

Then we can see that there exists a constant c4 such that
∣

∣

∣M(x, t, ||um−1(t)||2)−M(x, s, ||um−1(s)||2)
∣

∣

∣ ≤ c4 |t− s|

and this estimate shows that there exists a constant c5 such that

(52)

∣

∣

∣

∣

(

[

M(t, ||um−1(t)|2)−M(s, ||um−1(s)||2)
]

∆um(s), v

)∣

∣

∣

∣

≤ c5 ||v|| |t− s| .

Finally, we note that

(53) |(fm(t)− fm(s), v)| ≤ 1

mo
||f(t)− f(s)|| ||v|| .

From (51), (52) and (53) we obtain that there exists a constant c6 such that

(54) ||u′′m(t)− u′′m(s)||H−1(Ω) ≤ c6

(

|t− s|+ ||f(t)− f(s)||
)

.

The estimate (ii) is the relations (47), (48), (49) and (54).

4 – Proof of the theorem

By estimates (i) and (ii) we have:

(um)m∈N uniformly bounded in [0, T ] with respect to the norm of H1
o (Ω) ∩

H2(Ω) and equicontinuous with respect to the norm of H1
o (Ω).

(u′m)m∈N uniformly bounded in [0, T ] with respect to the norm of H1
o (Ω) and

equicontinuous with respect to the norm of L2(Ω).
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(u′′m)m∈N uniformly bounded in [0, T ] with respect to the norm of L2(Ω) and
equicontinuous with respect to the norm of H−1(Ω).

Then, by lemma 1, there exists a function u: Ω×[0, T ]→ R and a subsequence
(umν )ν∈N extracted from (um)m∈N, such that

(55) u ∈ C([0, T ];H1
o (Ω)) ∩ C1([0, T ];L2(Ω)) ∩ C2([0, T ];H−1(Ω)) ,

(56)















umν (t)→ u(t) strongly in H1
o (Ω), uniformly in [0, T ]

u′mν
(t)→ u′(t) strongly in L2(Ω), uniformly in [0, T ]

u′′mν
(t)→ u′′(t) strongly in H−1(Ω), uniformly in [0, T ] .

Moreover, sinceH1
o (Ω)∩H2(Ω), H1

o (Ω) and L
2(Ω) are reflexive Banach spaces,

we still have

(57)















u ∈ L∞(0, T ;H1
o (Ω) ∩H2(Ω)

u′ ∈ L∞(0, T ;H1
o (Ω))

u′′ ∈ L∞(0, T ;L2(Ω)) .

The convergences don’t allow us to pass to the limit in the approximate equa-
tion. Indeed, the sequence (umν )ν∈N have the properties, but we can’t say the
same for (umν−1)ν∈N. In order to solve this problem we will prove the following
lemma.

Lemma 4. lim
m→∞

||um+1(t)− um(t)||2 = 0 uniformly on [0, T ].

Proof: For each m ∈ N we define wm = um+1 − um. Then

||um+1(t)− um(t)||2 =
n
∑

i=1

∫

Ω

(

∂wm

∂xi
(x, t)

)2

dx

and making use of the assumption (H.3) we can see that there exists a constant
c7 such that

(58) ||um+1(t)− um(t)||2 ≤

≤ c7

{

1

2

[

|w′m(t)|2 +
n
∑

i=1

(

M(t, ||um(t)||2)∂wm

∂xi
(t),

∂wm

∂xi
(t)

)]}

.

Hence, we are motivated to put

(59) ψm(t) =
1

2

[

|w′m(t)|2 +
n
∑

i=1

(

M(t, ||um(t)||2)∂wm

∂xi
(t),

∂wm

∂xi
(t)

)]
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and then, we will conclude with the proof of lemma showing that ψm(t) → 0
uniformly in [0, T ].

Differentiating ψm(t), we have

ψ′m(t) =
1

2

d

dt
|w′m(t)|2 +(60)

+
1

2

n
∑

i=1

(

∂M

∂t
(t, ||um(t)||2)∂wm

∂xi
(t),

∂wm

∂xi
(t)

)

+

+ ((um(t), u′m(t)))
n
∑

i=1

(

∂M

∂λ
(t, ||um(t)||2)∂wm

∂xi
,
∂wm

∂xi
(t)

)

+

+
n
∑

i=1

(

M(t, ||um(t)||2)∂wm

∂xi
(t),

∂w′m
∂xi

)

.

From the approximation equation we find

w′′m(t) +
[

M(t, ||um−1(t)||2)−M(t, ||um−1(t)||2)
]

∆um(t)−

−M(t, ||um(t)||2)∆wm(t) = fm+1(t)− fm(t)

and then

1

2

d

dt
|w′m(t)|2 =

(

M(t, ||um(t)||2)∆wm, w
′
m(t)

)

+

(

[

M(t, ||um(t)||2)−M(t, ||um−1(t)||2)
]

∆um(t), w′m(t)

)

+
(

fm+1(t)− fm(t), w′m(t)
)

.

From the above relation and (60) we obtain

(61) ψ′m(t) = Am(t) +Bm(t) + Cm(t) +Dm(t) + Em(t)

where

(62)















































































Am(t) = −
n
∑

i=1

(

∂M

∂xi
(t, ||um(t)||2)∂wm

∂xi
(t), w′m(t)

)

Bm(t) =

(

[

M(t, ||um(t)||2)−M(t, ||um−1(t)||2)
]

∆um(t), w′m(t)

)

Cm(t) = ((um(t), u′m(t)))
n
∑

i=1

(

∂M

∂λ
(t, ||um(t)||2)∂wm

∂xi
(t),

∂wm

∂xi
(t)

)

Dm(t) =
1

2

n
∑

i=1

(

∂M

∂t
(t, ||um(t)||2)∂wm

∂xi
(t),

∂wm

∂xi
(t)

)

Em(t) = (fm+1(t)− fm(t), w′m(t)) .
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By (59) and the estimates we find constants c8, c9, c10 and c11 such that

Am(t) ≤ c8 ψm(t), Bm(t) ≤ c9 [ψm−1(t)− ψm(t)]

Cm(t) ≤ c10 ψm(t), Dm(t) ≤ c11 ψm(t)

and Em(t) ≤ 1

2
|fm+1(t)− fm(t)|2 + ψm(t).

Then we prove that there exists a constant c12, independent of m and t ∈
[0, T ], such that

ψ′m(t)− c12 ψm(t) ≤ 1

2
|fm+1(t)− fm(t)|2 + c12 ψm−1(t)

and then,

ψm(t) ≤ ec12T
[

ψm(0) +
1

2

∫ T

0
|fm+1(t)− fm(t)|2 dt

]

+ c12 e
c12T

∫ t

0
ψm−1(s) ds .

Now we denote by

γm = ψm(0) +
1

2

∫ T

0
|fm+1(t)− fm(t)|2 dt ,

and choose

c13 = Máx
{

ec12T , c12 e
c12T , 0 ≤ t ≤ T → Máxψ1(t)

}

.

Then, we can see that

(63)











ψ1(t) ≤ c13

ψm(t) ≤ c13 γm + c13

∫ t

0
ψm−1(s) ds .

By induction we find

(64) ψm(t) ≤ c13

m−1
∑

j=0

(c13 + t)j

j!
γm−j , ∀ t ∈ [0, T ], m = 2, 3, . . .

If we consider (37) we get

(65) lim
m→∞

γm = 0

and, as we well know,

(66)
∞
∑

j=1

(c13T )
j

j!
= ec13T .
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Therefore, from (64), (65) and (66) we conclude that ψm(t)→ 0 uniformly in
[0, T ] and the proof of lemma 4 is complete.

The result of lemma 4 implies that

(67) lim
ν→∞

||umν−1(t)||2 = ||u(t)||2 uniformly in [0, T ] .

Then, we have the following convergences:

(68) M(t, ||umν−1(t)||2).v →M(t, ||u(t)||2).v
strongly in L2(Ω), uniformly in [0, T ], ∀ v ∈ L2(Ω) ,

(69) ∆umν (t)→ ∆u(t) weakly in L2(Ω), 0 ≤ t ≤ T .

The convergences (68) and (69) imply

(70) M(t, ||umν−1(t)||2)∆umν (t)→M(t, ||u(t)||2)∆u(t)
weakly in L2(Ω), 0 ≤ t ≤ T .

We have then by passage to the limit in ν that

u′′(t)−M(t, ||u(t)||2)∆u(t) = f(t) in L2(Ω), 0 ≤ t ≤ T .

Clearly we also have u(0) = φo and u′(0) = φ2.

5 – Uniqueness

Let u and v be satisfying (21), (22) and (23). Then, if we define w = u − v

we get

(71)

{

w′′(t) +M(t, ||v(t)||2)∆v(t)−M(t, ||u(t)||2)∆u(t) = 0

w(0) = w′(0) = 0 .

Now we put

(72) ψ(t) =
1

2

[

|w′(t)|2 +
n
∑

i=1

(

M(t, ||u(t)||2) ∂w
∂xi

(t),
∂w

∂xi
(t)

)]

.

Therefore, using again the same analysis used in the proof of lemma 4, we
obtain a constant c14 such that

ψ′(t)− c14 ψ(t) ≤ 0
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and this imply

(73) ψ(t) ≤ cc14t ψ(0) , ∀ t ∈ [0, T ] .

But, from (72) there exists a constant c15 such that

0 ≤ ψ(t) ≤ c15

[

|w′(t)|2 + ||w(t)||2
]

, 0 ≤ t ≤ T .

By (71)2, if we take t = 0 in the above relation, we have ψ(0) = 0. This fact
with (73) shows that ψ(t) = 0, 0 ≤ t ≤ T ; and then we have uniqueness.
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Ćıcero Lopes Frota,
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