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A NOTE ON THE ASYMPTOTICS OF
PERTURBED EXPANDING MAPS

Mark Pollicott

Abstract: Given any analytic expanding map f : M → M on a compact manifold

M , it is well-known that f :M → M is exponentially mixing with respect to the smooth

invariant measure µ. Our first result is that although for linear expanding maps on tori

the rate of mixing is arbitrarily fast, generically this is not the case.

For random compositions of ε-close analytic expanding maps g :M → M which also

preserve µ and we show that the rate of mixing for the composition has an upper bound

which can be made arbitrarily close to that for the single transformation f by choosing

ε > 0 sufficiently small.

1 – Expanding maps and rates of mixing

Let M be a compact manifold (without boundary) and let f : M → M be a
locally distance expanding map i.e. ∃ 0 < θ < 1 such that d(fx, fy) ≥ 1

θd(x, y),
for x, y ∈ M sufficiently close. Furthermore, we shall assume that f : M → M
is real analytic (i.e. we can choose some neighbourhood M ⊂ U ⊂ MC in the
complexification MC to which f has an analytic extension). It is well known
that the map f : M → M preserves a unique smooth probability measure µ
(cf. [Ma], for example). We can assume, without loss of generality, that µ is the
volume on M (otherwise this can be achieved by a simple conformal change in
the Riemannian metric on M).

We let Cω(M,C) denote the space of functions on M which have a uniformly
bounded analytic extension to the neighbourhood U , and for F,G ∈ Cω(M,C)
we denote the correlation function by

ρf (N) =

∫

F ◦ fN ·Gdµ−

∫

F dµ ·

∫

Gdµ for N ≥ 1 .
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Definition. We define the rate of mixing to be

ρ = sup
{

lim sup
N→∞

|ρf (N)|
1

N : F,G ∈ Cω(M,C) with

∫

F dµ = 0 =

∫

Gdµ
}

.

To understand this quantity we introduce the transfer operator
Lf : C

ω(M,C) → Cω(M,C) defined by (LfG)(x) =
∑

fy=x df (y)G(y) where

df (x) =
1

|Det(Dxf)| ∈ Cω(M). (We may reduce the size of the neighbourhood U ,

if necessary, to ensure this operator is well-defined). Using the standard identity
∫

F ◦ f ·Gdµ =
∫

F · Lf Gdµ (cf. [Ru1]) we can write

(1.1) ρf (N) =

∫

F · (LN
f G) dµ−

∫

F dµ ·

∫

Gdµ for N ≥ 1 .

This simple identity makes it clear that the spectrum of Lg influences rate of
mixing.

Proposition 1. The spectrum of the operator Lf : C
ω(M,C)→ Cω(M,C)

has the following properties

(a) There is a maximal positive eigenvalue β = β(f) > 0;

(b) The rest of the spectrum consists of isolated eigenvalues of finite multi-
plicity (accumulating at zero), all of modulus strictly less than β.

[Ru1], [Ru2].

In the particular case of interest, where µ is the unique absolutely continuous
invariant measure, the maximal eigenvalue β is always equal to unity. We imme-
diately have the following question: Are there any other non-zero eigenvalues
for Lg : C

ω(M) → Cω(M) than β ? By identity (1.1) the existance of such an
eigenvalue is equivalent to the rate of mixing not being arbitrarily fast.

To illustrate the solution we consider the case where M is the usual flat torus
and µ is the Haar measure.

Theorem 1.

(i) If f : Td → Td is an orientation preserving linear expanding map on
the flat torus Td = Cd/Cd, then rate of mixing is arbitrarily fast i.e.
ρ = 0 (equivalently, 1 is the only non-zero eigenvalue for Lf : C

ω(Td)→
Cω(Td));

(ii) There exists a neighbourhood f ∈ U ⊂ Cω(Td,Td) such that for an open
dense set of g ∈ U the rate of mixing is non-zero i.e. ρ 6= 0 (equivalently,
the operator Lf has other non-zero eigenvalues than unity).
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Proof: We begin by recalling that the linear operators Lf : Cω(Td) →
Cω(Td) are trace class (cf. [Ru1], [G] and [My]) (i.e. the eigenvalues {λi}

∞
i=1 for

Lf are summable). Furthermore, each of the traces

trace(Ln
f ) :=

∞
∑

i=1

λni , for n ≥ 1

is finite, and we have the identities

(1.2) trace(Ln
f ) =

∑

fnx=x

1

Det(Dxfn − 1)

for each n ≥ 1, where the sum on the right hand side of this identity is over all
periodic points of period n (cf. [Ru1], [My]).
Since we are considering a linear expanding map f : Td → Td, we have:

(a) If α > 1 is the number of pre-images, under f : M → M of any point
x ∈M then Det(Dxf

n) = αn for n ≥ 1;

(b) The number of periodic points (of order n) is given by Det(Dxf
n)− 1.

For part (a), we observe that Dxf (and thus each Dxf
n) is constant, and then

the value Dxf
n = αn, for n ≥ 1, comes from the change of volume.

For part (b), we need only apply the Lefschetz fixed point theorem, where for
the torus we can identify Df = f ∗ with the action on homology. In particular,

for 0 ≤ j ≤ d the j-th homology group takes the form Hj(T
d,C) =

⊕( d

j
)

0 Cd,

and the induced action
⊕( d

j
)

0 f∗ :
⊕( d

j
)

0 Cd →
⊕( d

j
)

0 Cd.
Assume that the matrixDxf

n has eigenvalues β1, . . . , βd, then by the Lefschetz
formula the number of fixed points is given by the alternating sum

d
∑

j=0

trace

(

( d

j
)

⊕

0

(fn)∗
)

=
d
∑

j=0

(−1)j+1
∑

distinct i1,...,ij

βi1 · · ·βij

= Det(Dxf
n − 1) .

Substituting (a) and (b) into the identity (1.2) gives that

∞
∑

i=1

λni = tr(L
n
i ) = 1, for n ≥ 1 .

We conclude from this family of identities, that there is exactly one non-zero
eigenvalue, and this must take the value unity. This completes the proof of part
(i).
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For part (ii), we consider the identity (1.2) for fixed n. To be definite, we
shall choose n = 1. It is clear, from the right hand side of this identity, that for
generic (small) Cω perturbations g of the linear map f , we can arrange that

trace(Lf ) =
∑

gx=x

1

Det(Dxg)− 1
6= 1

(where we are implicitly using the fact that by structural stability there is a
correspondence between the fixed points). Thus, by identity (1.2), we have that
∑∞

i=1 λi = trace(Lg) 6= 1 and we conclude that there are other non-zero eigenval-
ues than just β = 1. This proves part (ii).

Clearly, the proof of part (ii) of the theorem works equally well for any compact
manifold.

Corollary 1.1. Let f : T1 → T1 a map on the unit circle T1 defined by
f(z) = zn, for some n ≥ 2, where T1 = {z ∈ C : |z| = 1} is the unit circle, then
the corresponding weight function is df =

1
n .

(i) β = 1 is the only non-zero eigenvalue for Lf : C
ω(T1)→ Cω(T1);

(ii) There exists a neighbourhood f ∈ U ⊂ Cω(T1,T1) such that for an open
dense set of g ∈ U has other non-zero eigenvalues than just unity.

Remark 1. Theorem 1 also has implications for the spectrum of the operator
Lg : C

k(M) → Ck(M) acting on Ck functions, for k ≥ 1. For 1 ≤ r < ∞, the
spectrum in the region |z| > βθr + ε consists only of isolated eigenvalues (of
finite multiplicity and nullity), for any ε > 0 [Ru2], [Ta]. For sufficiently large
r > 0, we can find expanding maps g : Td → Td (arbitrarily close to f) such that
Lg : C

r(Td) → Cr(Td) has other eigenvalues in |z| > βθr. To see this, we first
choose an analytic function g, as in part (ii) of Theorem 1. If we assume that λ
is an eigenvalue for Lg : C

ω(Td)→ Cω(Td) which is different to 0 or 1. Since we
can choose an eigenfunction h ∈ Cω(Tn) associated to the eigenvalue λ, the same
value is also an eigenvalue for Lg : C

r(Td) → Cr(Td), for any r ≥ 1. Provided
r ≥ 1 is sufficiently large that βθr < |λ|, the value λ is an isolated eigenvalue.

Remark 2. If we considered manifolds with boundary, then the analogues
of this corollary would be slightly different. For example, given any k× k matrix
A with entries 0 or 1, we can associate a piecewise linear map g on the union I
of the intervals {Iij = [

i−1
k +

j−1
kni

, ik +
j

kni
]| : i = 1, . . . , k and j = 1, . . . , ni} where

nj = Card{1 ≤ i ≤ k | A(i, j) = 1}, which linearly maps Iij onto {Ii = [
i−1
k , ik ] :

i = 1, . . . , k}. With the choice of weight function d = 1, the spectrum of the
operator L : Cω(I)→ Cω(I) contains the eigenvalues of the matrix A.
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2 – A general result on operator norms

We want to formulate a general result for a bounded linear operator T: B→B
on Banach space (B, ‖ · ‖B). Given a bounded linear operator T : B → B we
define the operator norm by ‖T‖ = sup{‖Tv‖B : v ∈ B with ‖v‖B ≤ 1}. We
begin with the following definitions.

Definitions.

(i) The spectral radius of the operator T is defined to be

σ(T ) = lim sup
n→∞

‖Tn‖1/n ;

(ii) Given δ > 0 we define the δ-neighbourhood spectral radius

σδ(T ) = sup
{

lim sup
n→∞

‖Tn . . . T1‖
1/n : ‖T − Ti‖ ≤ δ

}

.

As is well-known, the spectral radius σ(T ) is finite (being bounded by the
norm of the operator i.e. σ(T ) ≤ ‖T‖) and the operator (λ − T ) : B → B is
invertible whenever |λ| > σ(T ).

Proposition 2. For any η > 0, we can choose δ0 > 0 such that σδ ≤ σ + η
whenever 0 < δ ≤ δ0.

Proof: Assume we are given η > 0 and that we choose δ0 sufficiently small,
as described below. Consider a product Tj1 . . . Tjn formed from a sequence
of bounded linear operators Tj1 , . . . , Tjn : B → B, for n ≥ 1, each satisfying
‖T − Tji‖ ≤ δ0, for 0 ≤ i ≤ n.
By applying the triangle inequality for the norm ‖ · ‖ (on bounded linear

operators on the Banach space), we get the upper bound
(2.1)
‖Tj1 . . . Tjn‖ ≤ ‖T

n‖+ ‖(Tj1 . . . Tjn)− Tn‖

≤ ‖Tn‖+
∥

∥

∥

n
∑

k=2

Tj1 . . . Tjk−1
.(T − Tjk).T

n−k + (T1 − T ).Tn−1
∥

∥

∥

≤ ‖Tn‖+
n
∑

k=2

‖Tj1 . . . Tjk−1
‖.‖T − Tjk‖.‖T

n−k‖+ ‖(T1 − T ).Tn−1‖ .

We want to fix a few values

(1) Fix any values ρ, β such that σ < ρ < β < σ + η.

(2) By definition of the spectral radius σ of the operator T , there exists a
constant C > 0 with ‖T n‖ ≤ Cρn, ∀n ≥ 1.
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(3) Fix any value K > C > 0.

(4) Choose δ0 sufficiently small that:

C

(

1 +
δ0
ρ

)

+K δ0

(

1

β
+

Cρ

β2(1− ρ
β )

)

≤ K and Cρ+ δ0 ≤ Kβ .

We claim that ‖Tj1 . . . Tjn‖ ≤ Kβn for n ≥ 1, and our proof will be by induc-
tion.

To start the induction we observe that ‖Tj1‖ ≤ ‖T‖+ δ0 ≤ Cρ+ δ0 ≤ Kβ (by
(2) and (4) above). To prove the inductive step, we assume that for some n ≥ 1
we have that

‖Tj1 . . . Tjr‖ ≤ Kβn for all 1 ≤ r ≤ n− 1 .

Substituting these bounds into the identity (2.1) we get the estimate
(2.2)

‖Tj1 . . . Tjn‖ ≤ ‖T
n‖+

n
∑

k=2

‖Tj1 . . . Tjk−1
‖.‖T − Tjk‖.‖T

n−k‖+ ‖T1 − T‖.‖T n−1‖

≤ Cρn +
n
∑

k=2

(Kβk−1) (δ0) (Cρ
n−k) + Cρn−1 δ0

= Cρn + Cρn−1δ0 +K C δ0

n−1
∑

k=2

βk−1 ρn−k +K βn−1 δ0

= Cρn
(

1 +
δ0
ρ

)

+K C βn−1 δ0

n−1
∑

k=2

(

ρ

β

)n−k

+K βn−1 δ0

= Cρn
(

1 +
δ0
ρ

)

+K C βn−1 δ0
ρ

β

((1− ( ρβ )
n−3)

(1− ρ
β )

)

+K βn−1δ0

≤ C

(

1 +
δ0
ρ

)

+K δ0

(

1

β
+

C

β2(1− ρ
β )

)

βn

≤ K βn ,

where for the last inequality we have used (4). This completes the inductive step,
and the proof of the claim.
We therefore conclude that whenever δ ≤ δ0, we have that

σδ(T ) = sup
{

lim sup
n→∞

‖Tj1 . . . Tjn‖
1/n : ‖T − Ti‖ ≤ δ

}

≤ lim sup
n→∞

(K βn)1/n = β < σ + η .

This completes the proof of the proposition.
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3 – Random compositions of expanding maps

For any ε > 0, we denote by Bµ(f, ε) the space of all locally distance expanding
maps g : M →M which are ε-close to f in the Cω topology and which preserve the
same measure µ. Let

⊕N
1 Bµ(f, ε) be the direct sum ofN copies of this neighbour-

hood space, for N = 1, 2, . . . ,∞, and let πN,N ′ :
⊕N

1 Bµ(f, ε) →
⊕N ′

1 Br
µ(f, ε),

for N ≥ N ′, be the natural map (by truncating sequences).

Definition. Given F,G ∈ Cω(M) and f = (fn)
∞
n=0 ∈

⊕∞
0 Br

µ(f, ε), and
N ≥ 1, we define a stochastic correlation function by

(3.1) ρf (N) =

∫

(

π∞,N (f)
∗F
)

.G dµ−

∫

F dµ.

∫

Gdµ for N ≥ 1 ,

where
(π∞,N (f)

∗F )(x) = F (fN ◦ . . . ◦ f0x) .

In the special case where fn = f , for all n ≥ 0, this reduces to the usual
correlation function (for the single expanding map f : M →M).
Providing ε > 0 is sufficiently small the transfer operators Lg : C

ω(M) →
Cω(M) are well-defined. Moreover, since each g : M →M preserves the measure
µ we have

∫

F ◦ g.G dµ =
∫

F.LgGdµ, ∀g ∈ Bµ(f, ε), and we can write

(3.2) ρf (N) =

∫

F.
(

LfN
LfN−1

. . .Lf2Lf1G
)

dµ−

∫

F dµ.

∫

Gdµ .

For each g ∈ Br
µ(f), we know that

(i) The volume d(Vol) on M is the eigenfunction for the simple eigenvalue 1
of the dual operator L∗

g;

(ii) The constant functions C are common eigenfunctions for Lg with associ-
ated eigenvalue 1. The associated eigenprojection P : Cω(M) → Cω(M)
takes the form P (F ) =

∫

Fd(Vol).

In particular, the operators Lg : C
ω(M)→ Cω(M) have the same eigenprojec-

tion P : Cr(M)→ Cr(M) for the eigenvalue 1. In order to eliminate the common
maximal eigenvalue 1, so that we can study the remainder of the spectrum which
determines the rate of convergence of the various correlation functions, we con-
sider the restriction Lg : B → B where B ⊂ Cω(M) denote the co-dimension one
subspace B = {F ∈ Cω(M) :

∫

Fd(Vol) = 0}.
For the correlation function ρf (N) we have

ρ = sup

{

lim sup
N→∞

∣

∣

∣

∫

F.(LfN
LfN−1

. . .Lf2Lf1G) dµ
∣

∣

∣

1

N : F,G ∈ B

}

,
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where ρ is the spectral radius σ of the operator Lf : B → B.

We would like to apply Proposition 2 from the preceeding section. This re-
quires knowing that as ε→ 0, the difference ‖Lf −Lg‖ (in the operator norm on
some appropriate Banach space of functions) tends to zero for g ∈ Bµ(f, ε). For
analytic functions it is easy to check (using Cauchy’s theorem) that we have the
strong estimate: for any ε > 0 there exists C > 0 such that for g ∈ Bµ(f, ε) we
have that ‖Lf − Lg‖ ≤ C.‖f − g‖. This brings us to the following result.

Theorem 2. Assume that f : M →M is a Cω expanding map with rate of
mixing ρ, then the rate of mixing of any composition of maps in Bµ(f, ε) has an
upper bound which can be made arbitrarily close to ρ for sufficiently small ε > 0
(i.e. ∀ ρ′ > ρ, ∃ ε > 0 such that ∀F,G ∈ Cω(M), ∃C ′ > 0 with ρf (N) ≤ C ′(ρ′)N ,
∀N ≥ 1, ∀f ∈

⊕∞
0 Bµ(f, ε)).

After writing this note, I received the pre-print [BY] in which the authors there
prove a similar result to Theorem 2 above (and many other results besides). The referee
informs me that our Theorem 2 can be deduced from their work, and I thank him for
this information.

Proof of Theorem: We first choose ρ′ − ρ > η > 0 and then choose δ0
sufficiently small that for ‖Lf −Lg‖B ≤ δ ≤ δ0 we have σδ < σ+ η. We then set
ε0 =

δ0
C , where C > 0 is the Lipshitz constant.

By the identity (3.2) we observe that

(3.3)
|ρf (N)|

1

N = lim sup
N→+∞

∣

∣

∣

∫

F.
(

LfN
LfN−1

. . .Lf2Lf1G
)

dµ
∣

∣

∣

1

n

≤ ‖F‖∞ ‖G‖∞ ‖LfN
LfN−1

. . .Lf2Lf1‖
1

N , ∀F,G ∈ B .

The identity (3.3) allows us to apply Proposition 2, and to deduce that

lim sup
n→∞

|ρf (n)|
1

n ≤ σδ ≤ σ + η .

This completes the proof.

Remark. In [BY] there is a section which treats certain types of random
Ck maps. Unfortunately, the corresponding “Lispschitz” estimate for Cr(M)
does not hold. The nearest approximations are estimates ‖(Lf − Lg)h‖Ck ≤
C.‖f − g‖Ck ‖h‖Ck+1 . I am grateful to Viviane Baladi for pointing out this diffi-
culty to me.
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4 – An application to interval maps

In [Ke], Keller considered perturbations of the Transfer operator associated to
interval maps f : I → I and an invariant probability measure µ. In this context,
it is possible to take the Banach space B of functions g : I → C of bounded
variation (i.e. var(g) = sup{

∑n
i=1 |f(ai) − f(ai−1)| : a0 < a1 < ... < an} < +∞)

with the norm

‖g‖ = var(g) + ‖g‖1 .

Assuming that m is an atomless invariant measure m we can associate a
Transfer operator Lf : B → B defined by Lfg =

d
dm (T (f.m)). For details of the

spectrum of this operator we refer to [Ke]. Keller introduced an interesting notion
of distance in the space of such transformations (motivated by the Skorohod
metric)

d(f1, f2) = inf

{

ε > 0: ∃A ⊂ I, m(A) > m(I)− ε,

∃ a diffeomorphism σ : I → I with f1|A = f2 ◦ σ|A

and ∀x ∈ A : |σ(x)− x| < ε,
∣

∣

∣

1

σ′(x)
− 1

∣

∣

∣ < ε

}

.

With this metric, Keller established the following relation between the Transfer
operators Lfi

associated to two maps fi (i = 1, 2):

‖Lf1 − Lf2‖ ≤ 12. d(f1, f2) .

We can repeat our argument as above, except that now we want to let Bm(f)
be a neighbourhood of the interval map f : I → I with respect to the above
metric. In this context, the following analogue of Theorem 2 is true.

Proposition 3. Assume that f : I → I and m are as defined above, then the
rate of mixing of any composition of maps in Bµ(f, ε) has an upper bound which
can be made arbitrarily close to ρ for sufficiently small ε > 0 (i.e. ∀ρ′ > ρ, ∃ε > 0
sufficiently small that ∀F,G ∈ C0(M), ∃C ′ > 0 such that ρf (N) ≤ C ′(ρ′)N , for
all N ≥ 1 and ∀f ∈

⊕∞
0 Bm(f, ε).)
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