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ON CERTAIN DIAMETERS OF BOUNDED SETS

Aref Kamal

Abstract: In this paper we prove that if the balanced convex closed subset A of the

normed linear space X, has a certain property called the property P0, then the Gelfand

n-width dn(A,X) is attained. If A is a balanced and compact subset of X then the

Bernstein n-width bn(A,X) is attained, and if A is a subset of the dual space X∗, and A

contains a ball B(0, r) of positive radius, then the linear n-width δn(A,X∗) is attained.

It is also shown that if X has a certain property called the property P1 then the compact

width a(A,X) is attained.

1 – Introduction

If A is a subset of the normed linear space X, then for each x ∈ X, the
distance of x from A, d(x,A) is defined to be

d(x,A) = inf
{

‖x− y‖; y ∈ A
}

.

If B is another subset of X, then the deviation of A from B, δ(A,B) is defined
to be

δ(A,B) = sup
{

d(x,B); x ∈ A
}

.

If n ≥ 0 is a non-negative integer, then the Kolmogorov n-width of the set A in
X, dn(A,X) id defined to be

dn(A,X) = inf
{

δ(A,N); N is an n-dimensional subspace of X
}

.
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The Kolmogorov n-width is an important diameter for sets, it has many ap-
plications in approxiamtion theory (see for example Brown [3], Deutsch, Mach
and Saatkamp [4], Kamal [8] and [9]). Beside the Kolmogorov n-width there are
other diameters of sets, which have their applications in approximation theory
(see for example Brown [3], Micchelli and Pinkus [14] and [15]). The Gelfand
n-width is defined to be

dn(A,X) = inf
{

sup{‖x‖;x∈A∩Ln}; Ln is an n-codimensional subspace of X
}

.

If S(X) is the unit sphere of the space X, then the Bernstein n-width is defined
to be

bn(A,X) = sup
{

sup{λ; λS(Xn+1) ⊆ A};

Xn+1 is an (n+ 1) dimensional subspace of X
}

.

If Fn(X,X) is the set of all bounded linear operators on X of rank ≤ n, then the
linear n-width is defined to be

δn(A,X) = inf
{

sup{‖x− T (x)‖; x ∈ A}; T ∈ Fn(X,X)
}

.

The properties of the n-widths, and the relations among them were studied
by several authors, for example, Singer [17], Pinkus [16] and Garkavi [6]. The n-
width dn(A,X) (resp. dn(A,X)) is said to be attained, if there is an n-dimensional
(resp. n-codimensional) subspace Y of X satisfying that, dn(A,X) = δ(A, Y )
(resp. dn(A,X) = sup{‖x‖; x ∈ A ∩ Y }). In this case the subspace Y is said to
be an optimal subspace for dn(A,X) (resp. dn(A,X)). The n-width bn(A,X) is
attained if there is an (n+1) dimensional subspace Y of X, satisfying bn(A,X) =
sup{λ;λS(X) ⊆ A}. Also in this case the subspace Y is an optimal subspace for
bn(A,X). The width δn(A,X) is attained if there is a bounded linear operator
T : X → X of rank ≤ n, such that δn(A,X) = sup{‖x− T (x)‖; x ∈ A}.

Another important diameter for sets is the compact width. If A is a bounded
subset of the normed linear space X, then the compact width of A, a(A,X) is
defined to be

a(A,X) = inf
{

δ(A,K); K is a compact subset of X
}

.

This width is attained if there is a compact set K in X, such that a(A,X) =
δ(A,K). For some applications of the compact width one may refer to Feder [5].

In most of the applications, the authors were concerned with certain known
sets. They study the relation among the diameters, and the optimization of
each of the diameters. (See for example Brown [3], Pinkus [16], Micchelli and
Pinkus [14] and [15].) The existence of optimal subspaces of sets depends on
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the sets itself and the space X. In some spaces X, a certain width is attained
for all bounded sets, and other specific widths are attained for sets with certain
properties regardless of the space X. Garkavi [6] showed that if X∗ is the dual
space of X, then the Kolmogorov width dn(A,X

∗) is attained for any bounded
set A in X∗. Pinkus [16] showed that if A is a bounded convex closed subset of
X, and A contains a ball of positive radius centered at zero, then the Gelfand
width dn(A,X) is attained. The question that one may ask is: are there other
results of this type?

In this paper the author studies this problem. In section two it is shown that
if A is a balanced convex closed subset of the normed linear space X, and A has
a certain property called P0, then dn(A,X) is attained. It is shown that if the
balanced convex closed set A contains a ball of positive radius centered at zero,
then it has the property P0, and thus the result of this section includes the result
of Pinkus [16]. Other examples of sets having the property P0, and examples of
sets that do not have the property P0 are given. In section three it is shown that
if A is a balanced compact subset of the normed linear space X, then bn(A,X) is
attained. Also in section three it is shown that if the non-empty subset A, of the
dual space X∗ contains a ball of positive radius centered at zero, then δn(A,X

∗)
is attained. In section four it is shown that if the Banach space X has a certain
property called P1, then for each bounded set A inX, the compact width, a(A,X)
is attained. The property P1 has many applications in approximation theory. It
is known that if X is uniformly convex or if X = C(Q), then X has this property.
In section four, examples of spaces having the property P1, and other examples
of spaces that do not have the property P1 are given. It is also shown that there
are spaces X for which a(A,X) is attained for each bounded set A, but X does
not have the property P1.

The rest of this introduction will cover some definitions and known results. If
Q is a compact Hausdorff space, and X is a normed linear space, then B(Q,X)
is the space of all bounded functions from Q to X, and C(Q,X) is the space of
all continuous functions from Q to X. The norm defined on both B(Q,X) and
C(Q,X) is the uniform norm; that is

‖f‖ = sup
{

‖f(x)‖; x ∈ Q
}

.

If X = IR (the space of real numbers), then B(Q, IR) and C(Q, IR) are denoted
by B(Q) and C(Q). The set A is said to be balanced if it is centrally symmetric.
If A is balanced, convex and closed, then the boundary of A, bd(A) = {x ∈ A;
λx /∈ A whenever |λ| > 1}. If A is a subset of X, then [A] denotes the subspace
of X generated by A. If A is balanced and convex then x ∈ [A] iff for each ε > 0
there is z ∈ A and a real number λ > 0, such that ‖x− λz‖ < ε. If Y is a closed
subspace of the normed linear space X, then Y ⊥ denotes the supspace of X∗
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consisting of all f ∈ X∗ satisfying f(x) = 0 for each x ∈ Y . As in most texts,
B(x, r) is the ball of radius r centered at x, and S(x, r) is the sphere of radius r
centered at x.

The proof of the following proposition can be found in Singer [17, page 22].

Proposition 1.1. Let X be a normed linear space, Y be a closed subspace
of X, and assume that x0 is an element in X. Then

d(x0, Y ) = sup
{

|f(x0)|; ‖f‖ ≤ 1 and f ∈ Y ⊥
}

.

2 – Optimal subspaces for the Gelfand width

Definition 2.1. Let X be a normed linear space, A a closed balanced convex
subset of X. The set A is said to have the property P0 if for each x0 ∈ bd(A),
there is ε > 0 and 0 < δ < 1, such that for each x ∈ B(x0, ε) ∩ S(0, ‖x0‖), if
βx ∈ bd(A) then |β| ≥ δ.

The property P0 is related to the smoothness of the boundary of A. If x0 ∈
bd(A), then for all the points x within a certain distance from x0 on the sphere
S(0, ‖x0‖), if the line [x] intersects the boundary of A, then one of the points of
intersection should be within a given distance from x0. If dim[A] < ∞ then A
has the property P0, but if [A] is of infinite dimension, then the boundary of A
should satisfy a certain weak form of smoothness in order to have the property
P0. For example if A contains a ball B(0, r) for some r > 0 in [A], then A has
the property P0. Indeed in this case one may choose ε > 0 to be any positive
number, and δ < 1 satisfying that δ > 1 − r

‖x0‖
. Not all balanced convex closed

sets have the property P0, the following example illustrates this.

Example 2.2. In the classical Banach spaces of sequences l1, let

x0 =

(

1,
1

2
,
1

4
,
1

8
, . . .

)

and for each positive integer n ≥ 1, let

xn =

(

1

2n
,

1

2n+1
, . . . ,

1

22n
, 0, 0, . . .

)

.

Let A be the closed balanced convex hull of {x0, x1, x2, . . .}, then for each n =
0, 1, 2, . . ., xn ∈ bd(A). Also lim 2nxn = x0. For each n = 1, 2, . . ., let δn =

2
‖2nxn‖

then lim δn = 1 and ‖2nλnxn‖ = ‖x0‖. Let zn = 2nλnxn, then lim zn = x0.
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Therefore for each ε > 0 and 0 < δ < 1, there is a positive integer M ≥ 1 for
which zn ∈ B(x0, ε) ∩ S(0, ‖x0‖) for each n ≥ M . But since xn = 1

2nλn
zn is a

point of intersection of the line [zn] with bd(A), it follows that βn =
1

2nλn
< δ for

all n that are large enough.

In Theorem 2.6 it will be shown that if A is a closed balanced convex subset of
the normed linear space X, satisfying the property P0, then for each non-negative
integer n ≥ 0, the Gelfand width dn(A,X) is attained. This result includes the
result of Pinkus [16].

The following proposition is due to Helfrich [7]. Its proof can be found also
in Pinkus [16].

Proposition 2.3. Let X be a normed linear space, and let Y be a subspace
of X. If A is a subset of Y , then for any non-negative integer n ≥ 0, dn(A,X) =
dn(A, Y ).

Let X be any normed linear space, and let A be a closed balanced convex
subset of X. By Proposition 2.3 one may assume that X = [A]. Let n ≥ 0 be any
non-negative integer, if n = 0 then Y0 = X is the zero-codimensional subspace of
X optimal for dn(A,X). Thus one may assume that n ≥ 1. Let a = dn(A,X).
If a = ∞ then any n-codimensional subspace Y0 of X is optimal subspace for
dn(A,X), and if a = 0 then dim[A] = n; that is, dimX = n, so Y0 = {0} is
an optimal subspace for dn(A,X). Therefore one may assume that 0 < a < ∞.
Define

S =
{

x ∈ A; ‖x‖ ≤ a, and if αx ∈ A then ‖αx‖ ≤ a
}

,

and for each i = 1, 2, . . . define

Si =
{

x ∈ A; ‖x‖ ≤ a+
1

i
, and if αx ∈ A then ‖αx‖ ≤ a+

1

i

}

.

The following lemma includes some of the properties of S and Si, its proof
follows from their definitions.

Lemma 2.4. Let X be a normed linear space, n ≥ 1 be a positive integer,
and let A be a balanced convex closed subset of X, satisfying 0 ≤ dn(A,X) <∞.
If a, S, and Si are as in the preceding argument, then the following statements
hold.

a) For each i = 1, 2, . . ., S ⊆ Si+1 ⊆ Si.

b) If xi ∈ Si for each i = 1, 2, . . ., and limxi = x0 then x0 ∈ S.

c) For each x ∈ bd(A), if ‖x‖ ≤ a then x ∈ S, and if ‖x‖ ≤ a+ 1
i
then x ∈ Si.
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Lemma 2.5. In Lemma 2.4, assume that X = [A], and for each i = 1, 2, . . .,
let Yi be an n-codimensional subspace ofX satisfying sup{‖x‖; x ∈ Yi∩A} ≤ a+ l

i
,

then

a) Yi ∩A ⊆ Si.

b) For each x ∈ Ym, there is a sequence {xi} in Sm, and a sequence of real
numbers {αi}, such that limαixi = x.

Proof: a) Let x ∈ Yi ∩ A and assume that x /∈ Si, then either ‖x‖ > a+ l
i
,

or there is a real number α, such that αx ∈ A and ‖αx‖ > a+ 1
i
. In both cases

one has sup{‖x‖; x ∈ Yi ∩A} > a+ 1
i
.

b) Let x0 ∈ Ym. If x0 ∈ [Ym ∩ A] then there is nothing to prove, so one may
assume that x0 /∈ [Y0∩A]. SinceX = [A], and A is balanced and convex, it follows
that there is a sequence {xi} in A, and a sequence of non-negative numbers {αi},
such that limαixi = x0. Also since A is balanced and closed, one can choose
each xi ∈ bd(A). If {αi} has a subsequence {αj} for each limαj = α0 <∞, then
if α0 = 0 it follows that 0 = x0 ∈ [Ym ∩ A], and if α0 6= 0 then limxj =

x0

α0
∈ A.

Therefore x0 ∈ [Ym ∩ A], so one may assume that limαi = ∞. But in this case
lim ‖xi‖ = 0. Thus there is a positive integer N ≥ 1, such that for each i > N ,
lim ‖xi‖ ≤ a+ 1

m
. Applying Lemma 2.4.c, one can show that the sequence {xi+N}

is in Sm.

2.6 Theorem. Let A be a closed balanced convex subset of the normed
linear space X, and let n ≥ 0 be a non-negative integer. If A has the property
P0 then dn(A,X) is attained.

Proof: Let a = dn(A,X). By the argument preceding Lemma 2.4, one may
assume that 0 < α < ∞, n ≥ 1, and X = [A]. Let S, Si, and Yi be as in
Lemma 2.5. Since for each i = 1, 2, ..., codYi = n, there are {f i1, f

i
2, ..., f

i
n} in X

∗,
satisfying ‖f ik‖ = 1 for each k = 1, 2, ..., n and such that

Yi =
{

x ∈ X; f i1(x) = f i2(x) = ... = f in(x) = 0
}

.

The sequence {(f i1, f
i
2, ..., f

i
n)}

∞
i=1 is bounded in

∏n
i=1X

∗, so there is an element
(f0

1,f
0
2, ...,f

0
n) ∈

∏n
i=1X

∗, and a subsequence {(f j1,f
j
2, ...,f

j
n)}

∞
j=1 of {(f i1,f

i
2, ...,f

i
n)},

such that for each k = 1, 2, ..., n, f 0
k is the w∗-limit of the sequence {f jk}

∞
j=1 in X

∗.
Without loss of generality, one may assume that for each x ∈ X, the sequence
{(f i1(x), f

i
2(x), ..., f

i
n(x))}

∞
i=1 converges to (f

0
1 (x), f

0
2 (x), ..., f

0
n(x)). Let Y0 = {x ∈

X; f0
1 (x) = f0

2 (x) = ... = f0
n(x) = 0}, then codY0 ≤ n. It will be shown that

Y0∩A ⊆ S. If this is true then sup{‖x‖; x ∈ Y0∩A} ≤ a, therefore any subspace
Y of Y0 which is of codimension n in X, is an optimal subspace for dn(A,X). Let
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x0 ∈ Y0 ∩ A, and assume that x0 ∈ bd(A). Since {(f i1(x0), f
i
2(x0), ..., f

i
n(x0))}

∞
i=1

converges to (0, 0, ..., 0), it follows by Proposition 1.1 that lim[d(x0, YI)] = 0.
Thus, for each i = 1, 2, ..., there is yi ∈ Yi such that the sequence {yi} converges
to x0. Therefore by Lemma 2.5, one can easily show that for each i = 1, 2, ...,
there is xi ∈ bd(A) ∩ Si, and a non-negative number αi such that limαixi = x0.
If x0 = 0 then x0 ∈ S, so one may assume that x0 6= 0. Let ε > 0 and δ > 0 be
the two positive numbers corresponding to x0 in the definition of Property P0 of
A, and for each i = 1, 2, ..., let

zi =
αi ‖x0‖

‖αi xi‖
· xi ,

then lim zi = x0 and for each i = 1, 2, ..., zi ∈ B(0, ‖x0‖). Thus there is a positive
integer M ≥ 1, such that for each i ≥ M one has zi ∈ B(x0, ε) ∩ S(0, ‖x0‖). On
the other hand,

xi =
‖αi xi‖

αi ‖x0‖
zi ∈ bd(A) ,

hence by the definition of Property P0,

‖αi xi‖

αi ‖x0‖
≥ 1− δ for each i ≥M .

Thus

αI ≤
‖αi xi‖

(1− δ) ‖x0‖
for each i ≥M .

But lim ‖αi xi‖
αi ‖x0‖

= 1, so the sequence {xi} is bounded in IR (the set of real

numbers). Let {αj} be a convergent subsequence of {αi}, and assume that
limαj = α0. Then 0 < α0 <∞, and therefore limxj =

x0

α0
. Thus by Lemma 2.4.b,

x0

α0
∈ S, and since x0 = α0(

x0

α0
) ∈ A, it follows that x0 ∈ S.

3 – Optimal subspaces for other n-widths

In this section it will be shown that if A is a balanced compact subset of the
normed linear space X, then for each non-negative integer n ≥ 0, the Bernstein
n-width bn(A,X) is attained. It will be shown also that if A is a non-empty
subset of the dual space X∗, and A contains a ball B(0, r) for some r > 0, then
for each non-negative integer n ≥ 0, the linear n-width δn(A,X

∗) is attained.

The linearly independent set {x1, x2, ..., xn} of the normed linear space X is
said to be an Auerbach set, if ‖xk‖ = 1 for each k = 1, 2, ..., n, and there are
linear functionals {f1, f2, ..., fn} in the dual space X∗ of X such that for each
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k = 1, 2, ..., n, ‖fk‖ = 1, and fk(xi) = δki; that is, fk(xk) = 1 and fk(xi) = 0
for i 6= k. By Proposition 1.1, if {x1, x2, ..., xn} is an Auerbach set in X, and
for any k = 1, 2, ..., n, Yk is the subspace of X generated by {x1, x2, ..., xn}\{xk},
then d(xk, Yk) = 1. Therefore if {(xi1, x

i
2, ..., x

i
n)}

∞
i=1 is a sequence in

∏n
i=1X such

that for each i = 1, 2, ..., the set {xi1, x
i
2, ..., x

i
n} is an Auerbach set, and for each

i = 1, 2, ..., n, the sequence {xik} converges to x
0
k in X, then the set {x0

1, x
0
2, ..., x

0
n}

is a linearly independent set in X. If the Auerbach set {x1, x2, ..., xn} is a basis
for the n-dimensional subspace Y of X, then it is called an Auerbach basis for Y .
In this case if x = a1x1+a2x2+ ...+anxn, then for each k = 1, 2, ..., n, |ak| ≤ ‖x‖.
Indeed if fk ∈ X

∗ satisfies ‖fk‖ = 1 and fk(xi) = δki, then ‖x‖ ≥ ‖fk(x)‖ = |ak|.
Proposition 3.1 shows that each n-dimensional normed linear space X has an

Auerbach basis. The proof of this proposition can be found in Lindenstrauss and
Tzafriri [11, page 16].

3.1 Proposition. If X is an n-dimensional normed linear space, then X has
an Auerbach basis.

3.2 Theorem. Let A be a non-empty balanced subset of the normed linear
space X, and let n ≥ 0 be a non-negative integer. If A is compact then the
Bernstein n-width, bn(A,X) is attained.

Proof: If n = 0 or bn(A,X) = 0 then the proof is obvious, so one may
assume that n ≥ 0 and bn(A,X) > 0. Let α = bn(A,X), and let {αi} be a strictly
increasing sequence of positive numbers converging to α. For each i = 1, 2, ..., let
Yi be an (n+1) dimensional subspace of X satisfying αi S(Yi) ⊆ A, where S(Yi)
is the unit sphere of Yi, and let {yi1, y

i
2, ..., y

i
n+1} be an Auerbach basis for Yi.

Furthermore for each k = 1, 2, ..., n + 1, let xik = αi y
i
k, then {x

i
1, x

i
2, x

i
n+1} ⊆ A.

The set A is compact, so there is a point

(x0
1, x

0
2, ..., x

0
n+1) ∈

n+1
∏

i=1

A ,

and a subsequence {(xj1, x
j
2, ..., x

j
n+1)}

∞
j=1 of {(xi1, x

i
2, ..., x

i
n+1)}

∞
i=1, such that for

each k=1, 2, ..., n, limxjk=x0
k. Let y

0
k=

1
α
x0
k, then ‖y

0
k‖=1, and limj→∞ yjk=y0

k.
By the argument preceding Proposition 3.1, the set {y0

1, y
0
2, ..., y

0
n+1} is linearly

independent. Let Y0 be the (n + 1) dimensional subspace of X generated by
{y0

1, y
0
2, ..., y

0
n+1}. It will be shown that αS(Y0) ⊆ A. That is if x ∈ S(Y0)

then αx ∈ A. If this is true then Y0 is an optimal subspace for bn(A,X). Let
x = a1y

0
1, a2y

0
2, ..., an+1, y

0
n+1 be in S(Y0), and let ε > 0 be given. Since A is

compact, it is enough to show that d(αx,A) < ε. For each k = 1, 2, ..., n+ 1, the
sequence {yjk} converges to y

0
k. Therefore if xj = α1y

j
1 + α2y

j
2 + ... + αn+1y

j
n+1,

then the sequence {xj} converges to x. Letting ε′ = ε
2+α

, there is a positive
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integer m ≥ 1 such that for each j ≥M one has ‖x− xj‖ < ε′. That is, for each
j ≥M ,

‖xj‖ ≤ ‖x‖+ ‖x− xj‖ < 1 + ε′ .

Using the fact that A is balanced and that αS(Yj) ⊆ A, it follows that for each
j ≥M one has

αj

1+ε′
xj ∈ A. Therefore for each j ≥M

d(αx,A) ≤

∥

∥

∥

∥

αx−
αj

1 + ε′
xj

∥

∥

∥

∥

≤
1

1 + ε′
‖αx− αjxj‖+

αε′

1 + ε′
‖x‖ .

But limαj = α, so one can choose j0 ≥ M such that ‖αx − αj0xj0‖ < 2ε′.
Therefore

d(αx,A) ≤
1

1 + ε′
‖αx− αj0xj0‖+

αε′

1 + ε′
‖x‖

<
2ε′

1 + ε′
+

αε′

1 + ε′
< 2ε′ + αε′ < ε .

3.3 Theorem. Let A be a non-empty subset of the dual space X∗ of the
normed linear space X, and let n ≥ 0 be a non-negative integer. If there is λ > 0
such that B(0, λ) ⊆ A, then the linear n-width δn(A,X) is attained.

Proof: If n = 0 then the proof is obvious, thus one may assume that n ≥ 1.
Let a = δn(A,X), and for each i = 1, 2, ..., let Fi : X

∗ → X∗ be a bounded linear
operator of rank = n satisfying sup{‖x − Fi(x)‖; x ∈ A} ≤ a + 1

i
. For each

x ∈ B(0, 1), λx ∈ B(0, λ) ⊆ A. Therefore,

‖Fi‖ ≤
1

λ
sup

{

‖Fi(x)‖; ‖x‖ ≤ λ
}

≤
1

λ
sup

{

‖x− Fi(x)‖; ‖x‖ ≤ λ
}

+
1

λ
sup

{

‖x‖; ‖x‖ ≤ λ
}

≤
1

λ
sup

{

‖x− Fi(x)‖; x ∈ A
}

+ 1

≤
1

λ

(

a+
1

i

)

+ 1 ≤
1

λ
(a+ 1) + 1 .

So the sequence {Fi} is bounded in Fn(X
∗, X∗). For each i = 1, 2, ..., let

{xi1, x
i
2, ..., x

i
n} be an Auerbach basis for the n-dimensional subspace Yi = Fi(X

∗)
of X∗, and let {f i1, f

i
2, ..., f

i
n} be the linear functionals on X∗, such that for each

k = 1, 2, ..., n, ‖f ik‖ = 1 and f ik(x
i
j) = δkj . Then for each x ∈ Yi,

x =
n
∑

k=1

f ik(x)x
i
k .
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Let gik = f ik ¯ Fi then g
i
k ∈ X

∗∗, ‖gik‖ ≤ ‖Fi‖, and for each x ∈ X∗,

Fi(x) =
n
∑

k=1

gik(x)x
i
k .

The sequence {(gi1, g
i
2, ..., g

i
n, x

i
1, x

i
2, ..., x

i
n)}

∞
i=1 is bounded in (

∏n
i=1X

∗∗)×(
∏n
i=1X

∗),
therefore there is an element (g0

1, g
0
2, ..., g

0
n, x

0
1, x

0
2, ..., x

0
n) in (

∏n
i=1X

∗∗)×(
∏n
i=1X

∗),
and a subsequence {(gj1,g

j
2,...,g

j
n, x

j
1,x

j
2,...,x

j
n)}

∞
j=1 of {(gi1,g

i
2,...,g

i
n, x

i
1,x

i
2,...,x

i
n)}

∞
i=1

satisfying for each k = 1, 2, ..., n, g0
k is the w

∗-limit of {gjk} in X
∗∗, and x0

k is the

w∗-limit of {xjk} in X∗. Define F0 : X
∗ → X∗ by F0(x) =

∑n
k=1 g

0
k(x)x

0
k, then

F0 is a bounded linear operator on X∗ of rank ≤ n, and for each x ∈ X∗, F0(x)
is the w∗-limit of the sequence {Fj(x)} in X

∗. Thus for each x in A

‖x− F0(x)‖ ≤ lim ‖x− Fj(x)‖ ≤ a .

So sup{‖x− F0(x)‖; x ∈ A} = δn(A,X
∗).

4 – Optimal sets for the compact width

4.1 Definition. The normed linear space X is said to have the property P1

if for each ε > 0 and r > 0 there is δ > 0 such that for each x and y in X, there
is z ∈ B(x, ε) satisfying the property that for each 0 < θ < δ

B(x, r + δ) ∩B(y, r + θ) ⊆ B(z, r + θ) .

The property P1 was studied by several authors, for example Mach [12], Mach
[13], Lau [10] and Amir, Mach and Saatkamp [1]. The following proposition
summarizes some of their results.

4.2 Proposition.

a) Lau [10]: If X is uniformly convex, then X has the property P1.

b) Mach [13]: If Q is a compact Hausdorff space, then both B(Q) and C(Q)
have the property P1.

c) Mach [12]: If Q is a compact Hausdorff space, and X is a uniformly convex
space, then both B(Q,X) and C(Q,X) have the property P1.

d) Amir, Mach, Saatkamp [1]: If X = L1(µ) where µ is a finite positive
measure, and dimX = ∞, then X does not have the property P1. Also
there is a finite dimensional space X, that does not have the property P1.



ON CERTAIN DIAMETERS OF BOUNDED SETS 331

In Theorem 4.3 it will be shown that if the Banach space X has the property
P1, then for each bounded subset A of X, the compact width a(A,X) is attained.
The inverse of this statement need not be true. In Example 4.4, it will be shown
that there are spaces that do not have the property P1, but the compact width
of any of its bounded subsets is attained.

4.3 Theorem. Let X be a Banach space. If X has the property P1, then
for each bounded subset A of X, a(A,X) is attained.

Proof: Let r = a(A,X), if r = 0 then the proof is obvious, so one may
assume that r > 0. For each i = 1, 2, ..., let εi =

1

2i , and let δi > 0 corresponds
to εi, and r in the definition of the property P1. Without loss of generality one
may assume that δi+1 < δi and that lim δi = 0. For each i = 1, 2, ..., there is a
finite set Di = {x

i
1, x

i
2, ..., x

i
m} in X satisfying δ(A,Di) ≤ r + δi. In what follows

an infinite sequence {Ci} of bounded subsets of X will be constructed with the
following properties

1) For each i = 1, 2, ..., Ci consists of a finite number of elements.

2) For each i = 1, 2, ..., δ(A,Ci) ≤ r + δi.

3) For each i = 1, 2, ..., δ(Ci+1, Ci) ≤ εi.

Let C1 = D1 and assume that for some positive n ≥ 1 the sets C1, C2, ..., Cn have
been chosen with the required properties. By the property P1 and the fact that
δn+1 < δn, it follows that for each y ∈ Dn+1 and each x ∈ Cn, there is zxy in
B(x, ε) satisfying

B(x, r + δn) ∩B(y, r + δn+1) ⊆ B(zxy, r + δn+1) .

Let Cn+1 = Cn ∪ {zxy; x ∈ Cn and y ∈ Dn+1}. Then δ(A,Cn+1) ≤ r + δn+1

and δ(Cn+1, Cn) ≤ εn. Let E =
⋃∞
n=1Cn and let C = E, the closure of E, then

δ(A,C) = r, so to complete the proof it is enough to show that E is relatively
compact. Let ε > 0 be given, and assume that ε ≥ εm for some positive integer
m. If x ∈ E then x ∈ Cm+k for some k = 1, 2, .... Thus

d(x,Cm) ≤
m+k
∑

i=m

δ(Ci+1, Ci) ≤
m+k
∑

i=m

εi <
∞
∑

i=m

εi =
∞
∑

i=m

1

2i
=

1

2m−1
≤ ε .

Therefore since Cm is a finite subset of E, it follows that E is relatively compact.

4.4 Example:

a) Let X be the classical Banach space of sequence l1. By Feder [5, Proposi-
tion 2.b and Proposition 6], a(A, l1) is attained for each bounded separable
subset A of l1. But the space l1 is separable, so for each bounded subset
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A of l1, the compact width a(A, l1) is attained. On the other hand, by
Proposition 4.2d, the space l1 does not have the property P1.

b) If A is a bounded subset of the finite dimensional space X, then A, the
closure of A, is compact, so a(A,X) = 0, and A is an optimal compact set
for a(A, x). Therefore ifX is a finite dimensional normed linear space, then
for each bounded set A in X, the compact width a(A,X) is attained. On
the other hand, by Proposition 4.2.d there is a finite dimensional normed
linear space X that does not have the property P1.
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