PORTUGALIAE MATHEMATICA Vol. 51 Fasc. 2 – 1994

SOME DISTRIBUTIONAL PRODUCTS WITH RELATIVISTIC INVARIANCE

C.O.R. SARRICO

Abstract: In [1, 2] we introduced a distribution product, invariant under the action of compact Lie groups of linear transformations. This product has application to nonrelativistic physics. Here we present a general version of the product, invariant under various groups, including the Lorentz group.

0 - Introduction

A Lorentz invariant product of distributions based in [1, 2] will imply the existence of a Lorents invariant function $\alpha \in \mathcal{D}(\mathbb{R}^4)$ such that $\int_{\mathbb{R}^4} \alpha = 1$. If such a function α exists, it will be invariant with the linear transformation defined by the matrix.

$$\begin{bmatrix} ch \theta & 0 & 0 & sh \theta \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ sh \theta & 0 & 0 & ch \theta \end{bmatrix} \text{ with } \theta \in \mathbf{I} \mathbf{R} ,$$

which is the same to say that

 $\alpha(x \operatorname{ch} \theta + t \operatorname{sh} \theta, y, z, x \operatorname{sh} \theta + t \operatorname{ch} \theta) = \alpha(x, y, z, t) \quad \text{for all } x, y, z, t \in \mathbb{R} .$

If we fix a point (x_0, y_0, z_0, t_0) in the "space-time" we see that α is a constant function on the line

 $(x, y, z, t) = (x_0 \operatorname{ch} \theta + t_0 \operatorname{sh} \theta, y_0, z_0, x_0 \operatorname{sh} \theta + t_0 \operatorname{ch} \theta) \quad \text{with} \ \theta \in \mathbb{R}.$

This line is not bounded in \mathbb{R}^4 because his projection on the *xot*-plane is the hiperbole $x^2 - t^2 = x_0^2 - t_0^2$. Thus, the only function $\alpha \in \mathcal{D}(\mathbb{R}^4)$ which is Lorentz invariant is the zero-function and we cannot have $\int_{\mathbb{R}^4} \alpha = 1$.

Received: February 20, 1992.

Hence, it is not possible to have a Lorentz invariant product of distributions applying the theory of [1, 2]. In the following we define a family of distributional products with relativistic invariance based in a generalization of the methods of [1, 2] applying the concepts of order of growth and integral of a distribution introduced by Sebastião e Silva [4, 5].

1 – Preliminaries on limits, integrals and orders of growth of distributions

Let $N \in \mathbb{N} = \{1, 2, 3, \ldots\}$. By C_{∞} we mean the set of complex valued distributions of finite order defined on \mathbb{R}^{N} . Recall the following concepts introduced by J. Sebastião e Silva [4, 5].

1.1. Let $f \in C_{\infty}$ and $\lambda \in \mathbb{C}$. We say that $f(t_1, \ldots, t_N)$ converge to λ as $(t_1, \ldots, t_N) \to (+\infty, \cdots, +\infty)$ and we write $f(+\infty, \ldots, +\infty) = \lambda$ iff there exists a sistem of integers $r_1, \ldots, r_N \geq 0$ and a continuous complex valued function $F(t_1, \ldots, t_N)$ defined on \mathbb{R}^N such that

a)
$$D_1^{r_1} \dots D_N^{r_n} F(t_1, \dots, t_N) = f(t_1, \dots, t_N)$$
 on \mathbb{R}^N ;
b) $\forall \delta > 0 \exists L > 0: t_1, \dots, t_N > L \Rightarrow \left| \frac{F(t_1, \dots, t_N)}{t_1^{r_1} \cdots t_N^{r_N}} - \frac{\lambda}{r_1! \cdots r_N!} \right| < \delta$

 D_k means the usual derivation operator relative to the variable t_k . Note that the concept of convergence when some variables converge to $+\infty$ and others to $-\infty$ is analogous.

δ.

1.2. We can define the generalized De Barrow symbol $[T(t_1, \ldots, t_N)]_{(u_1, \ldots, u_N)}^{(v_1, \ldots, v_N)}$ by setting

$$\left[T(t_1,\ldots,t_N)\right]_{(u_1)}^{(v_1)} = T(v_1,t_2,\ldots,t_N) - T(u_1,t_2,\ldots,t_N)$$

and

$$\left[T(t_1,\ldots,t_N)\right]_{(u_1,\ldots,u_N)}^{(v_1,\ldots,v_N)} = \left[T(t_1,\ldots,t_{N-1},v_N) - T(t_1,\ldots,t_{N-1},u_N)\right]_{(u_1,\ldots,u_{N-1})}^{(v_1,\ldots,v_N)}$$

Now, we will say that $f \in C_{\infty}$ is Silva-integrable on \mathbb{R}^N iff there exists a complex valued distribution $T(t_1, \ldots, t_N)$ such that

- **a**) $D_1 \dots D_N T(t_1, \dots, t_N) = f(t_1, \dots, t_N)$ on \mathbb{R}^N ;
- **b**) All parcels of the distribution defined on \mathbb{R}^{2N} by $[T(t_1, \ldots, t_N)]_{(u_1, \ldots, u_N)}^{(v_1, \ldots, v_N)}$ converge as $(v_1, \ldots, v_N) \rightarrow (+\infty, \ldots, +\infty)$ and $(u_1, \ldots, u_N) \rightarrow (-\infty, \ldots, -\infty)$.

SOME DISTRIBUTIONAL PRODUCTS WITH RELATIVISTIC INVARIANCE 285

In this case, we will write

$$\int_{\mathbf{R}^{N}} f = \lim_{\substack{(v_{1},...,v_{N}) \to (+\infty,...,+\infty) \\ (u_{1},...,u_{N}) \to (-\infty,...,-\infty)}} \left[T(t_{1},...,t_{N}) \right]_{(u_{1},...,u_{N})}^{(v_{1},...,v_{N})} \\ = \left[T(t_{1},...,t_{N}) \right]_{(-\infty,...,-\infty)}^{(+\infty,...,+\infty)}.$$

For instance, with $N = 1 \int_{\mathbb{R}} \cos t = 0$ in the sense of Silva, because $\cos t = D \sin t$ and $[\sin t]_{-\infty}^{+\infty} = \sin(+\infty) - \sin(-\infty)$. Meanwhile, $\sin(+\infty) = 0$ on account of $\sin t = D[-\cos t]$ and $\frac{\cos t}{t} \to \frac{0}{1!}$ as $t \to +\infty$. Also $\sin(-\infty) = 0$.

1.3. $f \in C_{\infty}$ is bounded on \mathbb{R}^N in the sense of Silva iff there exists a sistem of integers $r_1, \ldots, r_N \geq 0$ and a complex valued continuous function F defined on \mathbb{R}^N such that

- **a**) $D_1^{r_1} \dots D_N^{r_n} F(t_1, \dots, t_N) = f(t_1, \dots, t_N)$ on \mathbb{R}^N ;
- **b**) For any invertible linear transformation $A : \mathbb{R}^N \to \mathbb{R}^N$ the function $\frac{F \circ A(t_1,...,t_N)}{t_1^{r_1}...t_N^{r_n}}$ is bounded in the usual sense on the region $|t_1| > k, ..., |t_N| > k$ where k is a positive number.

Let $\alpha \in \mathbb{R}$ and $f \in C_{\infty}$. We write $f \in O(||t||^{\alpha})$ as $||t|| \to \infty$ in the sense of Silva if there are $f_0 \in C_{\infty}$ bounded in the sense of Silva and a number $\varepsilon > 0$ such that $f(t) = ||t||^{\alpha} f_0(t)$ when $||t|| > \varepsilon$. Recall that the concept of bounded distribution in the sense of Silva is more general that the same concept in the sense of Schwartz [3].

2 - The family of products

Let G be a group of unimodular transformations $L: \mathbb{R}^N \to \mathbb{R}^N \ (|\det L| = 1)$ such that there exists a C^{∞} -function $\alpha: \mathbb{R}^N \to \mathbb{C}$ obeying the conditions:

a) α is *G*-invariant;

- **b**) $\alpha \in O(||t||^p)$ as $||t|| \to \infty$ with p < -N, in the sense of Silva;
- c) $\int \alpha = 1$.

(Unless otherwise specified, all integrals are over ${\rm I\!R}^N$ and in the sense of Silva.)

2.1 Definition. Let $T \in \mathcal{D}'$ and $U \in \mathcal{D}'_n$ (\mathcal{D}'_n denotes the space of distributions with nowhere dense support). We say that there exists the product of T by U relative to the pair (G, α) iff

d) For each $x \in \mathcal{D}$ there exists an integer p < -N such that

 $T[\alpha*(Ux)]\in \mathcal{O}(\|t\|^p) \quad \text{ as } \ \|t\|\to\infty \ \text{ in the sense of Silva} \ ,$

e) The functional $x \to \int T[\alpha * (Ux)]$ is continuous on \mathcal{D} (endowed with the usual topology),

and we call product of T by U relative to the pair (G, α) , the distribution $T_{\dot{\alpha}} U$ defined by

$$\left\langle T_{\dot{\alpha}}U,x\right\rangle = \int T[\alpha*(Ux)] \quad \text{for all } x\in\mathcal{D}.$$

Note that if $f \in C_{\infty} \cap O(||t||^p)$ with p < -N then f is Silva integrable (see [4]).

This product verifies the distributive properties and is consistent with the product of $T \in \mathcal{D}'$ by $U \in \mathcal{D}'_n$ defined in [1, 2]. Indeed, if $\alpha \in \mathcal{D}$ then $\langle T_{\dot{\alpha}} U, x \rangle = \langle T, \alpha * (Ux) \rangle = \langle T\zeta^{-1}(U), x \rangle$ which is the (G, α) -result we have obtained in [1, 2].

Observe that the family of products defined here is really more general than that considered in [1, 2] in the sense that it can be applied to a wider class of groups. For instance:

2.2 Proposition. Let G be the Lorentz group in the 4-dimensional space. Then, there exists a C^{∞} -function α : $\mathbb{R}^4 \to \mathbb{C}$ such that conditions a), b), c) are verified.

Proof: Let $\alpha(x, y, z, t) = \frac{1}{\pi^{2i}} e^{i(x^2+y^2+z^2-t^2)}$. It is obvious that α is Lorentz invariant. To see that α verifies conditions b), let us note that $x\alpha = \frac{1}{2i} D_x \alpha$ and for $p = 2, 3, 4, \ldots, x^p \alpha = \frac{1}{2i} [D_x(x^{p-1}\alpha) - (p-1)x^{p-2}\alpha]$. Thus, for $p = 0, 1, 2, \ldots, x^p \alpha = \sum_{j \in \mathbb{N}_0} a_j D^j \alpha$ where only a finite number of $a_j \in \mathbb{C}$ are different from zero $(\mathbb{N}_0 = \mathbb{N} \cup \{0\})$. By a similar process we conclude that for $q = 0, 1, 2, \ldots, y^q \alpha = \sum_{\ell \in \mathbb{N}_0} b_\ell D_y^\ell \alpha$ and so

$$x^p y^q z^r t^s \alpha = \sum_{(j,\ell,m,n) \in \mathbb{N}_0^4} d_{j\ell m n} D_x^j D_y^\ell D_z^m D_t^n \alpha ,$$

where only a finite number of $d_{j\ell mn} \in \mathbb{C}$ are different from zero.

But, for every invertible linear transformation $A: \mathbb{R}^4 \to \mathbb{R}^4$ the function $\frac{\alpha \circ A(x,y,z,t)}{x^j y^\ell z^m t^n}$ is bounded in the usual sense in some region $|x| > x_0$, $|y| > y_0$, $|z| > z_0$, $|t| > t_0$ with $x_0, y_0, z_0, t_0 > 0$ and we conclude that $x^p y^q z^r t^s \alpha$ is bounded on \mathbb{R}^4 in the sense of Silva. Then, $(x^2 + y^2 + z^2 + t^2)^3 \alpha$ is bounded on \mathbb{R}^4 in the same sense, which proves that

$$\alpha \in \mathcal{O}\left(\|(x, y, z, t)\|^{-6}\right)$$
 as $\|(x, y, z, t)\| \to \infty$ in the sense of Silva.

SOME DISTRIBUTIONAL PRODUCTS WITH RELATIVISTIC INVARIANCE 287

Applying Theorem 14.2 of [4] we have

$$\int_{\mathbf{R}^4} \alpha = \frac{1}{\pi^2 i} \left(\int_{\mathbf{R}} e^{ix^2} dx \right) \left(\int_{\mathbf{R}} e^{iy^2} dy \right) \left(\int_{\mathbf{R}} e^{iz^2} dz \right) \left(\int_{\mathbf{R}} e^{-it^2} dt \right) = 1$$

because $\int_{\mathbb{R}} \sin(x^2) dx = \int_{\mathbb{R}} \cos(x^2) dx = 2\sqrt{\frac{\pi}{8}}$ are simply convergent integrals (Fresnel's integrals) and so the corresponding Silva-integrals exist and have the same value.

Meanwhile, the product of this approach is certainly more restricted in what concerns the left-hand side factor.

Applying 1.2 and 1.1 we can prove a proposition we need, which is an example of the power of the concepts introduced by S. Silva in [4, 5].

2.3 Proposition. If $f \in C_{\infty}$ is Silva integrable on \mathbb{R}^N , then all partial derivatives of f are Silva integrable and the integral of anyone of them is zero.

Now we can prove the usual derivation rule.

2.4 Proposition. If $T \in \mathcal{D}'$, $U \in \mathcal{D}'_n$, there exists $T_{\dot{\alpha}}U$ and one of the products $(D_kT)_{\dot{\alpha}}U$ or $T_{\dot{\alpha}}(D_kU)$ then there exists the other product and we have

$$D_k(T_{\dot{\alpha}}U) = (D_kT)_{\dot{\alpha}}U + T_{\dot{\alpha}}(D_kU), \quad k = 1, \dots, N.$$

Proof: Let $x \in \mathcal{D}$. It is easy to prove that

$$D_k[T(\alpha * Ux)] - (D_kT)(\alpha * Ux) - T[\alpha * (D_kU)x] = T[\alpha * U(D_kx)].$$

By assumption we have

$$\int D_k[T(\alpha * Ux)] - \int (D_kT)(\alpha * Ux) - \int T[\alpha * (D_kU)x] = \int T[\alpha * U(D_kx)],$$

the first term is zero by Proposition 2.3 and we can write

$$-\left\langle (D_kT)_{\dot{\alpha}}U,x\right\rangle - \left\langle T_{\dot{\alpha}}(D_kU),x\right\rangle = \left\langle T_{\dot{\alpha}}U,D_kx\right\rangle = -\left\langle D_k(T_{\dot{\alpha}}U),x\right\rangle$$

which proves the proposition. \blacksquare

This product is also invariant with translations and all transformations of G.

2.5 Proposition. If $T \in \mathcal{D}'$, $U \in \mathcal{D}'_n$, $L \in G$, $a \in \mathbb{R}^N$ and the product $T_{\dot{\alpha}}U$ exists, then:

a)
$$\tau_a(T_{\dot{\alpha}}U) = (\tau_a T)_{\dot{\alpha}}(\tau_a U);$$

b) $(T_{\dot{\alpha}}U) \circ L = (T \circ L)_{\dot{\alpha}}(U \circ L).$

Proof: Let $x \in \mathcal{D}$.

a)
$$\left\langle \tau_a(T_{\dot{\alpha}}U), x \right\rangle = \left\langle T_{\dot{\alpha}}U, \tau_{-a}x \right\rangle = \int T[\alpha * U(\tau_{-a}x)] = \int T \tau_{-a}[\alpha * (\tau_a U)x]$$

and applying theorem 13.8 of [4] we can write

$$\left\langle \tau_a(T_{\dot{\alpha}}U), x \right\rangle = \int (\tau_a T) \left[\alpha * (\tau_a U) x \right] = \left\langle (\tau_a T)_{\dot{\alpha}} (\tau_a U), x \right\rangle$$

and the invariance of the product with translations is proved.

$$\begin{aligned} \mathbf{b}) \quad \left\langle T_{\dot{\alpha}} U \circ L, x \right\rangle &= \left\langle T_{\dot{\alpha}} U, x \circ L^{-1} \right\rangle = \int T[\alpha * U(x \circ L^{-1})] \\ &= \int T \Big[\alpha * \left(\left((U \circ L) x \right) \circ L^{-1} \right) \Big] \end{aligned}$$

and again by theorem 13.8 of [4] we can write

$$\left\langle T_{\dot{\alpha}}U\circ L,x\right\rangle = \int (T\circ L) \Big[(\alpha * (((U\circ L)x)\circ L^{-1}))\circ L \Big] \ .$$

Noting that, if V is a distribution with compact support, $\alpha \in C^{\infty}$ and $L: \mathbb{R}^N \to \mathbb{R}^N$ is unimodular, then $(\alpha * V) \circ L = (\alpha \circ L) * (V \circ L)$, we have

$$\begin{split} \left\langle T_{\dot{\alpha}} U \circ L, x \right\rangle &= \int (T \circ L) \Big[(\alpha \circ L) * ((U \circ L)x) \Big] = \int (T \circ L) \Big[\alpha * ((U \circ L)x) \Big] \\ &= \left\langle (T \circ L)_{\dot{\alpha}} (U \circ L), x \right\rangle \,, \end{split}$$

which proves that the product is G-invariant.

3 – Examples and comments

3.1. Notice that if T is a distribution with compact support and $U \in \mathcal{D}'_n$ then there exists always the product $T_{\dot{\alpha}}U$ and we dont need the Silva integral to compute it because, in this case we have

$$\left\langle T_{\dot{\alpha}}U,x\right\rangle = \int T(\alpha * Ux) = \left\langle T(\alpha * Ux),1\right\rangle = \left\langle T,\alpha * Ux\right\rangle$$

For instance, let G be the Lorentz group in \mathbb{R}^4 and let α a C^{∞} -function obeying the conditions 2a), b), c). The product of two Dirac delta distributions is easily obtained

$$\left\langle \delta_{\dot{\alpha}} \delta, x \right\rangle = \left\langle \delta, \alpha * \delta x \right\rangle = \left\langle \delta, x(0) \cdot \alpha \right\rangle = x(0) \, \alpha(0) = \left\langle \alpha(0) \delta, x \right\rangle \; .$$

Thus, we can write $\delta_{\dot{\alpha}} \delta = \alpha(0) \delta$. Formally this is the same result we have obtained in [1] 1.5.6 relative to a group of a more restricted class which does not include the Lorentz group.

3.2. Let G be the Lorentz group in \mathbb{R}^4 , α a C^{∞} -function obeying the conditions 2a), b), c) and H the Heaviside function defined on \mathbb{R}^4 . We can compute $H_{\dot{\alpha}}\delta$ where δ is the Dirac distribution defined on \mathbb{R}^4 noting that

a) $H(\alpha * \delta \phi) = \phi(0) H \alpha$ for all $\phi \in \mathcal{D}(\mathbb{R}^4)$ (now we reserve the x letter to note the first coordinate of the generic point (x, y, z, t) of the "space-time") and $H \alpha \in O(||(x, y, z, t)||^p)$ in the sense of Silva when $||(x, y, z, t)|| \to \infty$ with p < -4 on account of condition 2b) for α .

b) The functional $\phi \to \int_{\mathbf{R}^4} \phi(0) H\alpha$ is continuous on $\mathcal{D}(\mathbf{R}^4)$ because $H\alpha$ is Silva-integrable on \mathbf{R}^4 and so this functional is equal to the distribution $(\int_{\mathbf{R}^4} H\alpha) \delta$.

Now, we will prove that $\int_{\mathbb{R}^4} H\alpha = \frac{1}{16}$ in the sense of Silva. Let $R: \mathbb{R}^4 \to \mathbb{R}^4$ be any one of the 16 transformations $(x, y, z, t) \to (\pm x, \pm y \pm z, \pm t)$ and $P(x, y, z, t) = x^2 + y^2 + z^2 - t^2$. We have $P \circ L = P$ for all Lorentz transformation L and so $P \circ L \circ R = P \circ R = P$ which proves that $L \circ R$ is also a Lorentz transformation and condition 2a) yields $\alpha \circ L \circ R = \alpha$. Then $\alpha \circ R = \alpha$ which proves that α is R-invariant. Putting $A = \{-1, 1\}$ we can write α as sum of 16 terms

$$\alpha(x,y,z,t) = \sum_{(i,j,k,\ell) \in A^4} \alpha(x,y,z,t) \, H(ix,jy,kz,\ell t) \ ,$$

thus

$$1 = \int_{{\rm I\!R}^4} \alpha = \sum_{(i,j,k,\ell) \in A^4} \int_{{\rm I\!R}^4} \alpha(x,y,z,t) \, H(ix,jy,kz,\ell t) \, dx \, dy \, dz \, dt$$

and it is easy to see that all terms of this sum are identical: for instance, applying the change of variable x = -s, y = u, z = v, t = w in the Silva integral we have

$$\begin{split} \int_{\mathbf{R}^4} \alpha(x, y, z, t) \, H(-x, y, z, t) \, dx \, dy \, dz \, dt &= \\ &= \int_{\mathbf{R}^4} \alpha(s, u, v, w) \, H(s, u, v, w) \, ds \, du \, dv \, dw \; . \end{split}$$

Then $\int_{\mathbf{R}^4} H\alpha = \frac{1}{16}$ and it is proved that $H_{\dot{\alpha}} \delta = \frac{1}{16} \delta$ is independent of the α function.

3.3. It is possible to extend this product (and also the product defined in [1, 2]) to a larger class of situations in a simple way. Let p be an integer ≥ 0 or $p = \infty$ and \mathcal{D}'^p the space of distributions of order $\leq p$ in the sense of Schwartz

[3]. If $T \in \mathcal{D}'^p$, $S = \beta + U \in C^p \oplus \mathcal{D}'_n$ and there exists $T_{\dot{\alpha}} U$ in the sense of 2.1 we can always define $T_{\dot{\alpha}} S$ putting $T_{\dot{\alpha}} S = T\beta + T_{\dot{\alpha}} U$ where $T\beta$ is the product in the sense of Schwartz [3].

ACKNOWLEDGEMENT – Special thanks are due to Prof. Vaz Ferreira of Bologna University for his valuable advices and continuous interest in this subject.

REFERENCES

- [1] SARRICO, C.O.R. About a family of distributional products important in the applications, *Portugaliae Mathematica*, 45(3) (1988), 295–316.
- [2] SARRICO, C.O.R. A note on a family of distributional products important in the applications, *Note di Matematica*, VII (1987), 151–158.
- [3] SCHWARTZ, L. Théorie des distributions, Hermann, Paris, 1966.
- [4] SILVA, J. SEBASTIÃO Integrals and orders of growth of distributions, reprinted from "Theory of Distribution", Proceedings of an International Summer Institute held in Lisbon, September 1964.
- [5] SILVA, J. SEBASTIÃO Novos elementos para a teoria do integral no campo das distribuições, Boletim da Academia das Ciências de Lisboa, XXXV (1963), 175–184.

C.O.R. Sarrico, CMAF, 2 Av. Prof. Gama Pinto 1699 Lisboa Codex – PORTUGAL