PERIODIC SOLUTIONS TO RETARDED AND PARTIAL FUNCTIONAL DIFFERENTIAL EQUATIONS

Panaiotis K. Pavlakos and Ioannis G. Stratis

Abstract

The existence of mild and strong periodic solutions to a retarded functional differential equation in a Banach space is established upon the condition that the non-linear term is periodic. These results are then applied to a class of parabolic partial functional differential equations.

0 - Introduction

In this note we are interested in studying periodicity questions concerning "different kinds" (mild, strong) of solutions to the retarded functional differential equation

$$
\begin{align*}
& \frac{d u(t)}{d t}+A u(t)=F\left(t, u_{t}\right), \quad t>0 \tag{0.1}\\
& u_{0}=\varphi
\end{align*}
$$

where A is the infinitesimal generator of a semigroup of linear operators $T(t)$, $t \geq 0$ and F is nonlinear, satisfying assumptions to be specified in the subsequent section, and periodic.

Moreover, the results related to the above RFDE will serve as a basis in establishing existence of periodic solutions for the partial functional differential equation
(0.2) $\quad v_{t}(x, t)=v_{x x}(x, t)+f\left(t, v(x, t-r), v_{x}(x, t-r)\right), \quad(x, t) \in[0, \pi] \times \mathbf{R}^{+}$, satisfying conditions of the form

$$
\begin{equation*}
v(0, t)=v(\pi, t)=0 \quad \text { and } \quad v(x, t)=\varphi(x, t), \quad t \in[-r, 0] \tag{0.3}
\end{equation*}
$$

for suitable f.

Periodicity problems for functional differential equations have been studied by many authors, see for example, [1], [5], [7], and the references therein. Travis and Webb [12], [13] have studied the problems of existence (and stability) of solutions of (0.1), using methods derived from the fundamental results of Segal [11].

Section 1 contains definitions and preliminaries to be used in the subsequent development. In Section 2 we establish the main results, assuming that the forcing term F is periodic. In Section 3, we use the results of Section 2 to study the equation $((0.2),(0.3))$.

1 - Notation and preliminaries

Throughout this paper E will denote a Banach space over a real or complex field with norm $\|\cdot\| . C:=C([-r, 0] ; E)$ will denote the Banach space of continuous E-valued functions on $[-r, 0]$, with the supremum norm, r being a positive real number. If u is a function with domain $[\sigma-r, \sigma+b)$, then for any $t \in[\sigma, \sigma+b)$, u_{t} will denote the element of C, defined by $u_{t}(\theta)=u(t+\theta),-r \leq \theta \leq 0$. $B(E, E)$ will denote the space of bounded, linear, everywhere defined operators from E to E. A strongly continuous semigroup on E is a family $T(t), t \geq 0$, of everywhere defined (possibly nonlinear) operators from E to E, satisfying $T(t+s)=T(t) T(s), s, t \geq 0$, and $T(t) x$ is continuous as a function from $[0, \infty)$ to E for each fixed $x \in E$. The infinitesimal generator A of $T(t), t \geq 0$, is the function from E to E defined by $A x=\lim _{t \rightarrow 0_{+}} \frac{T(t) x-x}{t}$, with domain $D(A)$ the set of all x for which this limit exists.

We will be dealing with the abstract ordinary functional differential equation in E, of the form

$$
\begin{align*}
& \frac{d u(t)}{d t}+A u(t)=F\left(t, u_{t}\right), \quad t>0 \tag{1.1}\\
& u_{0}=\varphi
\end{align*}
$$

We will make the following assumptions on the operator A :
(A1) A is closed, densely defined linear operator in E, and $-A$ is the infinitesimal generator of an analytic semigroup $T(t), t \geq 0$, satisfying

$$
\|T(t) x\|<\mu e^{\gamma t}\|x\| \quad \text { for } t>0, \quad x \in E
$$

where μ and γ are real constants.
Moreover we shall need assumptions on the fractional power A^{a} of A :
(A2) For $a \in[0,1),\left\|A^{a} T(t) x\right\| \leq \mu_{a} t^{-a} e^{\gamma t}\|x\|$, for $t>0, x \in E$, where μ_{a} is a real positive constant;
(A3) $A^{-a} \in B(E, E)$; so $E_{a}:=D\left(A^{a}\right)$ is a Banach space when endowed with the norm $\|x\|_{a}=\left\|A^{a} x\right\|$ for $x \in E_{a}$;
(A4) A^{-a} satisfies $\left\|[T(t)-I] A^{-a}\right\| \leq v_{a} t^{a}$ for $t>0$, where v_{a} is a real positive constant;
(A5) $T(t)$ is compact for each $t>0$.
C_{a} will denote the Banach space of continuous functions $C\left([-r, 0] ; E_{a}\right)$ with the norm $\|\varphi\|_{c_{a}}=\sup \left\{\left\|A^{a} \varphi(\theta)\right\|: \theta \in[-r, 0]\right\} . F$ is supposed to satisfy the assumption:
(F1) $F: D \rightarrow E$ is continuous, where D is an open set in $\mathbb{R} \times C_{a}$.
To conclude this section we give the definitions of the terms "mild" and "strong" solution of (1.1): as is well known, to (1.1) corresponds the following integral equation,

$$
\begin{array}{ll}
u(t)=T(t-\sigma) \varphi(0)+\int_{\sigma}^{t} T(t-s) F\left(s, u_{s}\right) d s, & t \in\left[\sigma, \sigma+n_{\varphi}\right) \tag{1.2}\\
u_{\sigma}=\varphi, & t \in[-r, 0]
\end{array}
$$

Then
i) u is a mild solution of (1.1), if it satisfies (1.2) and $u \in C\left(\left[\sigma-r, \sigma+n_{\varphi}\right) ; E_{a}\right)$;
ii) u is a strong solution of (1.1) if it satisfies (1.2) and $u \in C([\sigma-r$, $\left.\left.\sigma+n_{\varphi}\right) ; E_{a}\right) \cap C^{1}\left(\left(\sigma, \sigma+n_{\varphi}\right) ; E\right)$.

2 - Main results

We shall establish the proofs of our main results in a series of lemmata:
Lemma 2.1 (Local existence). Suppose that (A1), (A2), (A3), (A4), (A5) and (F1) hold. For each $(\sigma, \varphi) \in D$ there exists $n_{\varphi}>0$, such that the problem

$$
\begin{align*}
& \frac{d u(t)}{d t}+A u(t)=F\left(t, u_{t}\right), \quad t \in\left[\sigma, \sigma+n_{\varphi}\right) \tag{2.1}\\
& u_{\sigma}=\varphi
\end{align*}
$$

has a mild solution.
The proof can be found in [13].

Now let F be ω-periodic in t, i.e.
(F2) There exists $\omega>0: F(t+\omega, \psi)=F(t, \psi), t \in \mathbb{R}^{+}, \psi \in C_{a}$.
In order to be able to discuss periodicity of solutions, we need a continuation result:

Lemma 2.2 (continuation of solutions). Suppose that (A1) to (A5) hold and that (F1) is substitued by the stronger hypothesis
(F3) $F: D \rightarrow E$ is continuous, and maps closed, bounded sets of D into bounded sets in E.

Let u defined on $[\sigma-r, T)$ be a non-continuable beyond T solution of (2.1). Then either $T=+\infty$, or
for any closed, bounded set W in D, there is a t_{w} such that

$$
\left(t, u_{t}\right) \notin W \quad \text { for } t_{w} \leq t<T .
$$

Proof: The idea of the proof is that of Theorem 3.2 of [5], and is performed along the lines of the proof of Proposition 3.1 of [13]. The details follow: assume $T<+\infty$. Let us suppose, for contradiction, that the conclusion of the Lemma is not correct. Then we can find a closed, bounded set W in D such that for $\sigma \leq t<T,\left(t, u_{t}\right) \in W$.

Denote by ξ the $\sup \{F(t, \psi):(t, \psi) \in W\}$. Then

$$
\begin{aligned}
\|u(t+h)-u(t)\|_{a} \leq & \left\|(T(h)-I) A^{-(\beta-a)} A^{\beta} u(t)\right\| \\
& +\left\|\int_{t}^{t+h} A^{a} T(t+h-s) F\left(s, u_{s}\right) d s\right\| \\
\leq & v_{\beta-a} h^{\beta-a}\|u(t)\|_{\beta}+\frac{\xi}{1-a} \mu_{a} \max \left(1, e^{\gamma T}\right) h^{1-a}
\end{aligned}
$$

for $a<\beta<1$ and $t, t+h \in(\sigma, T), h>0$.
On the other hand,

$$
\begin{aligned}
\|u(t)\|_{\beta} & \leq\left\|A^{\beta-a} T(t-\sigma) A^{a} \varphi(0)\right\|+\left\|\int_{\sigma}^{t} A^{\beta} T(t-s) F\left(s, u_{s}\right) d s\right\| \\
& \leq \mu_{\beta-a} e^{\gamma(t-\sigma)}(t-\sigma)^{a-\beta}\|\varphi\|_{a}+\mu_{\beta} \xi \int_{0}^{t-a} e^{\gamma s} s^{-\beta} d s
\end{aligned}
$$

whereby $\|u(t)\|_{\beta}$ is bounded on compact subsets of (σ, T). Therefore

$$
\|u(t+h)-u(t)\|_{a} \leq k h^{\theta},
$$

for suitable $\theta=\theta(a, \beta)$, and hence u is uniformly continuous on $[\sigma-r, T)$, thus establishing the existence of $\lim _{t \rightarrow T} u(t)$. In this way, u can be continuously extended to $[\sigma-r, T]$. But $\left(T, u_{T}\right) \in D$, and so there exists a solution through (T, u_{T}) beyond T, contradicting the hypothesis of the Lemma.

If we consider F defined on $[\sigma, \infty) \times C_{a}$, then we can directly prove the following:

Corollary 2.1. Suppose that all hypothesis of Lemma 2.2 are valid. Then, either $T=+\infty$, or if $T<+\infty$ then

$$
\begin{equation*}
\limsup _{t \rightarrow T^{-}}\left\|u_{t}\right\|_{C_{a}}=+\infty \tag{2.2}
\end{equation*}
$$

Under the assumptions of Corollary 2.1, it follows that there exists a global solution, provided

$$
\limsup _{t \rightarrow T^{-}}\left\|u_{t}\right\|_{C_{a}}<+\infty
$$

We shall also need the following
Lemma 2.3. Let A satisfy (A1) and consider the initial value problem

$$
\begin{array}{ll}
\frac{d u(t)}{d t}+A u(t)=g(t), & t>0 \tag{2.3}\\
u(0)=x, & x \in E
\end{array}
$$

where g is an E-valued continuous function. Then (2.3) has a unique mild solution.

For a proof see [9], p. 106.
Now we consider the problem

$$
\begin{align*}
& \frac{d u(t)}{d t}+A u(t)=F\left(t, u_{t}\right) \tag{2.4}\\
& u(0)=\varphi
\end{align*}
$$

and we suppose that it has a global solution $u(t)$.
We also consider the initial value problem for the inhomogeneous ordinary differential equation

$$
\begin{align*}
& \frac{d z(t)}{d t}+A z(t)=F\left(t, u_{t}\right), \tag{2.5}\\
& z(0)=u(0) .
\end{align*}
$$

By Lemma 2.3, the problem (2.5) has a unique mild solution $z(t)$. Let $P: C\left(\left[-r, n_{\varphi}\right] ; E_{a}\right) \rightarrow E$ be the Poincar mapping, defined by

$$
\begin{equation*}
P u=z(\omega) . \tag{2.6}
\end{equation*}
$$

Finally, consider the initial value problem,

$$
\begin{align*}
& \frac{d u(t)}{d t}+A u(t)=F\left(t, u_{t}\right) \tag{2.7}\\
& u(0)=P u
\end{align*}
$$

which - by Lemma 2.3 - has, also, a unique mild solution $u(t)$.
Let $S: C\left(\left[-r, n_{\varphi}\right] ; E_{a}\right) \rightarrow C\left(\left[-r, n_{\varphi}\right] ; E\right)$ be the mapping defined by

$$
S u=u .
$$

We are now in a position to state and prove the basic tool for the proof of our main results.

Lemma 2.4. The problem (2.4) has a periodic solution if and only if the mapping S has a fixed point.

Proof: Let u be an ω-periodic solution of (2.4). Then u is, clearly, an ω periodic solution of (2.5) and hence $P u=u(\omega)$. Since u is ω-periodic $u(0)=u(\omega)$, and therefore $u(0)=P u$, whereby u satisfies (2.7) and so $S u=u$. Conversely, let u be a fixed point of S. By definition, u satisfies (2.5) and since $u(0)=z(0)$, Lemma 2.3 shows that $u(t) \equiv z(t)$ and hence $u(\omega)=z(\omega)$. Since $S u=u,(2.7)$ gives $u(0)=P u=z(\omega)$. We have thus concluded that $u(0)=u(\omega)$. But F is ω-periodic, and therefore $u(t)=u(t+\omega), t \in \mathbb{R}^{+}$, i.e. (2.4) has a periodic solution.

To finish up, we have:
Lemma 2.5. Let Q be the set defined by

$$
Q=\left\{\xi \in C\left(\left[-r, n_{\varphi}\right] ; E_{a}\right): \xi_{0}=0,\left\|\xi_{t}\right\|_{C_{a}} \leq \gamma \text { fort } \in\left[0, n_{\varphi}\right]\right\} .
$$

Then the mapping $S: Q \rightarrow C\left(\left[-r, n_{\varphi}\right] ; E_{a}\right)$ has at least one fixed point.
In order to prove Lemma 2.5 one can use Schauder's fixed point theorem. It therefore suffices to show that S maps Q into itself, S is continuous, and $S(Q)$ is relatively compact. These follow as in the proof of Lemma 2.1, of which Lemma 2.5 consists a restatement.

The proof of the following theorem is a direct combination of the previous lemmata.

Theorem 2.1. Consider the problem (2.4):

$$
\begin{aligned}
& \frac{d u(t)}{d t}+A u(t)=F\left(t, u_{t}\right) \\
& u_{0}=\varphi
\end{aligned}
$$

and let A satisfy (A1) to (A5) and F satisfy (F2) and (F3), with $D=[\sigma, \infty) \times C_{a}$. Let, moreover, u defined on $[\sigma-r, T)$ satisfy

$$
\begin{equation*}
\limsup _{t \rightarrow T^{-}}\left\|u_{t}\right\|_{C_{a}}<+\infty \tag{2.8}
\end{equation*}
$$

Then (2.4) has an ω-periodic mild solution.

We proceed to investigating under what conditions the mild solutions of (2.4) are actually strong solutions. Arguing as in [13], it is easy to prove the following:

Theorem 2.2. Consider (2.4), and suppose that A satisfies (A1) to (A5), while F satisfies (F2), (F3) with $D=[\sigma, \infty) \times C_{a}$, and
(F4) There exist constants $\lambda>0$ and $\theta \in(0,1]$ such that

$$
\left\|F\left(t_{1}, \psi_{1}\right)-F\left(t_{2}, \psi_{2}\right)\right\| \leq \lambda\left\{\left|t_{1}-t_{2}\right|^{\theta}+\left\|\psi_{1}-\psi_{2}\right\|_{C_{a}}^{\theta}\right\}
$$

holds in a neighbourhood Λ of any point of D for which $\left(t_{1}, \psi_{1}\right),\left(t_{2}, \psi_{2}\right) \in$ Λ.

Let u satisfy (2.8). Then every ω-periodic mild solution of (2.4) is an ω-periodic strong solution of (2.4).

We are concluding this section with a result concerning the positivity of solutions of (2.4). Its proof follows from standard arguments and is omitted for the sake of brevity.

Theorem 2.3. Suppose, additionally, that E is a partially ordered Banach space with a closed cone E^{+}. If F is positive, the semigroup $T(t)$ is positive, and $\varphi \in C^{+}$, where $C^{+}=\left\{h \in C: h(t) \in E^{+} \forall t \in[-r, 0]\right\}$ then the ω-periodic mild (cf. Theorem 2.1) or strong (cf. Theorem 2.2) solutions of (2.4) are positive.

3 - Application to parabolic partial functional differential equations

In this last section, we shall apply the results of Section 2 to the following problem, whose autonomous analogue is studied in [13]. Consider the problem

$$
\begin{equation*}
u_{t}(x, t)=u_{x x}(x, t)+f\left(t, u(x, t-r), u_{x}(x, t-r)\right) \tag{3.1}
\end{equation*}
$$

where $(x, t) \in[0, \pi] \times \mathbf{R}^{+}, r \in \mathbb{R}^{+}$, and

$$
\begin{array}{ll}
u(0, t)=u(\pi, t)=0, & t \geq 0 \\
u(x, t)=g(x, t), & (x, t) \in[0, \pi] \times[-r, 0] \tag{3.2}
\end{array}
$$

Let $f: \mathbb{R}^{+} \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be continuous in its first and second variables and Lipschitz continuous in its third variable, satisfying $f(0,0,0)=0$.

Assume that f satisfies, moreover,

$$
\begin{equation*}
|f(t, \xi, \eta)| \leq k(t)(1+|\xi|+|\eta|) \tag{3.3}
\end{equation*}
$$

where $k(\cdot)$ is continuous on (σ, ∞).
Such a condition has been considered by other authors as well, (e.g. see [6]).
We suppose that f is ω-periodic in t :

$$
\begin{equation*}
f(t+\omega, \xi, \eta)=f(t, \xi, \eta), \quad t \geq 0 \tag{3.4}
\end{equation*}
$$

Let $E=L^{2}([0, \pi])$ and let $A: E \rightarrow E$ be defined by

$$
A z=-z^{\prime \prime}
$$

$D(A)=\left\{z \in E: z, z^{\prime}\right.$ are absolutely continuous, $z^{\prime \prime} \in E$ and $\left.z(0)=z(\pi)=0\right\}$.
Let $a_{m}(T)=\left(\frac{2}{\pi}\right)^{1 / 2} \sin m T, m=1,2, \ldots$, be the orthonormal set of eigenvectors of A, and so

$$
A z=\sum_{m=1}^{\infty} m^{2}\left(z, a_{m}\right) a_{m}, \quad z \in D(A)
$$

It is well known that $-A$ is the infinitesimal generator of an analytic semigroup $T(t), t \geq 0$, in E, given by

$$
T(t) z=\sum_{m=1}^{\infty} e^{-m^{2} t}\left(z, a_{m}\right) a_{m}, \quad z \in E
$$

This $T(t)$ satisfies the inequality in (A1) with $\mu \geq 1, \gamma \geq-1$. Since

$$
A^{1 / 2} T(t) z=\sum_{m=1}^{\infty} m e^{-m^{2} t}\left(z, a_{m}\right) a_{m}, \quad z \in E
$$

and

$$
\left\|A^{1 / 2} T(t) z\right\|^{2} \leq \sup _{m \geq 1}\left\{m^{2} e^{-2 m^{2} t}\right\}\|z\|^{2}, \quad z \in E,
$$

and, moreover,

$$
t m^{2} e^{-2 t\left(m^{2}+\gamma\right)} \leq \frac{1}{2 e(1+\gamma)}
$$

A satisfies (A2) with $a=\frac{1}{2},-1<\gamma<0, \mu_{1 / 2}=\frac{1}{(2 e(1+\gamma))^{1 / 2}}$. On the other hand, since

$$
A^{-1 / 2} z=\sum_{m=1}^{\infty} \frac{1}{m}\left(z, a_{m}\right) a_{m}, \quad z \in E,
$$

and

$$
A^{-1 / 2} T(t) z=\sum_{m=1}^{\infty} \frac{1}{m} e^{-m^{2} t}\left(z, a_{m}\right) a_{m}, \quad z \in E,
$$

we have

$$
\left\|(T(t)-I) A^{-1 / 2} z\right\|^{2} \leq \sup _{m \geq 1}\left\{\frac{1}{m^{2}}\left(e^{-m^{2} t}-1\right)^{2}\right\}\|z\|^{2}
$$

and since

$$
\frac{1}{m^{2}}\left(e^{-m^{2} t}-1\right)^{2} \leq \frac{t}{2}
$$

(A3) is satisfied, as well as (A4) with $v_{1 / 2}=\frac{\sqrt{2}}{2}$.
Noting that the eigenvalues of $A^{1 / 2}$ are $\lambda_{m}=\frac{1}{m}$, we have that $A^{-1 / 2}$ is compact. But this is a necessary and sufficient condition for an analytic semigroup $T(t), t>0$ to be compact, and hence (A5) is also satisfied.

Now, let $F: \mathbb{R}^{+} \times C_{1 / 2} \rightarrow E$ be defined by

$$
F(t, \varphi)(x)=f\left(t, \varphi(-r)(x), \varphi(-r)^{\prime}(x)\right), \quad \varphi \in C_{1 / 2}, \quad x \in[0, \pi] .
$$

Since f is continuous in its first and second variables and Lipschitz continuous in the third, and since $z \in D\left(A^{1 / 2}\right)$ implies that z is absolutely continuous and $z^{\prime} \in E, F$ is well defined.

To prove the continuity of F, it suffices to show that the mapping $\phi: \mathbb{R}^{+} \times C_{1 / 2} \rightarrow \mathbb{R}^{+} \times E \times E$ defined by

$$
\phi(t, \varphi)=\left(t, \varphi(-r), \varphi(-r)^{\prime}\right)
$$

is continuous.

Indeed, we observe that

$$
\begin{aligned}
\left\|\varphi_{1}(-r)-\varphi_{2}(-r)\right\|_{E}^{2} & =\int_{0}^{\pi}\left|\varphi_{1}(-r)(T)-\varphi_{2}(-r)(T)\right|^{2} d T \\
& =\sum_{m=1}^{\infty}\left(\varphi_{1}(-r)-\varphi_{2}(-r), a_{m}\right)^{2} \\
& \leq \sum_{m=1}^{\infty} m^{2}\left(\varphi_{1}(-r)-\varphi_{2}(-r), a_{m}\right)^{2} \\
& \leq\left\|A^{1 / 2}\left(\varphi_{1}(-r)-\varphi_{2}(-r)\right)\right\|^{2} \\
& \leq\left\|\varphi_{1}-\varphi_{2}\right\|_{C_{1 / 2}}^{2},
\end{aligned}
$$

while, on the other hand

$$
\begin{aligned}
& \left\|\varphi_{1}(-r)^{\prime}-\varphi_{2}(-r)^{\prime}\right\|_{E}^{2}=\int_{0}^{\pi}\left|\varphi_{1}(-r)^{\prime}(T)-\varphi_{2}(-r)^{\prime}(T)\right| d t= \\
& \quad=\sum_{m=1}^{\infty} \sum_{k=1}^{\infty}\left(\varphi_{1}(-r)-\varphi_{2}(-r), a_{m}\right)\left(\varphi_{1}(-r)-\varphi_{2}(-r), a_{k}\right)\left(a_{m}^{\prime}, a_{k}^{\prime}\right) \\
& \quad=\sum_{m=1}^{\infty} \sum_{k=1}^{\infty}\left(\varphi_{1}(-r)-\varphi_{2}(-r), a_{m}\right)\left(\varphi_{1}(-r)-\varphi_{2}(-r), a_{k}\right)\left(-a_{m}^{\prime \prime}, a_{k}\right) \\
& \quad=\sum_{m=1}^{\infty}\left(\varphi_{1}(-r)-\varphi_{2}(-r), a_{m}\right)^{2} m^{2} \\
& \quad=\left\|A^{1 / 2}\left(\varphi_{1}(-r)-\varphi_{2}(-r)\right)\right\|^{2} \\
& \quad \leq\left\|\varphi_{1}-\varphi_{2}\right\|_{C_{1 / 2}}^{2},
\end{aligned}
$$

thus proving the referred to continuity.
By (3.3) it follows that F satisfies

$$
\|F(t, \varphi)\| \leq k(t)\left(1+\|\varphi\|_{C_{1 / 2}}\right)
$$

whereby we have that F maps closed, bounded subsets of $\mathbb{R}^{+} \times C_{1 / 2}$ into bounded sets of $L^{2}([0, \pi])$.

It remains to show that the solutions of ((3.1), (3.2)) are defined globally. This can fail only if there exist $t_{n} \rightarrow T<\infty$, such that $\left\|u_{t_{n}}\right\|_{C_{1 / 2}} \rightarrow \infty$. However, since

$$
\left\|u_{t}\right\|_{C_{1 / 2}}=\sup \left\{\left\|A^{1 / 2} u(\theta)\right\|: \theta \in[-r, 0]\right\}
$$

and u satisfies (1.1), we have

$$
\begin{aligned}
& \left\|u_{t}\right\|_{C_{1 / 2}} \leq\left\|A^{1 / 2-a} T(t-\sigma) A^{a} g(0)\right\|+\left\|\int_{\sigma}^{t} A^{1 / 2} T(t-s) F\left(s, u_{s}\right) d s\right\| \leq \\
& \quad \leq \mu_{1 / 2-a}(t-\sigma)^{a-1 / 2} e^{\gamma(t-a)}\|g\|_{C_{a}}+\int_{\sigma}^{t}\left\|A^{1 / 2} T(t-s)\right\| k(s)\left(1+\left\|u_{s}\right\|_{C_{1 / 2}}\right) d s
\end{aligned}
$$

for $\gamma \in(-1,0), \mu_{1 / 2-a} \in \mathbb{R}^{+}, a \in[0,1 / 2)$.
By Gronwall's inequality, it follows that $\left\|u_{t}\right\|_{C_{1 / 2}}$ remains bounded as $t \rightarrow T$.
We have, therefore, passed in the setting of Section 2, and Theorem 2.1 ensures that the equation (3.1) with data (3.2), and f satisfying the aforementioned assumptions, prossesses an ω-periodic mild solution.

ACKNOWLEDGEMENT - The author wish to thank the referee for substantial remarks.

REFERENCES

[1] Arino, O.A., Burton, T.A. and Haddock, J.R. - Periodic solutions to functional differential equations, Proc. Royal Soc. Edinburgh, 101A (1985), 253-271.
[2] Barbu, V. - Nonlinear Semigroups and differential equations in Banach spaces, Noordhoff, 1976.
[3] Dunford, N. and Schwartz, J.T. - Linear Operators I: General Theory, Wiley, 1958.
[4] Friedman, A. - Partial Differential Equations of Parabolic Type, Prentice Hall, 1964.
[5] Hale, J.K. - Theory of Functional Differential Equations, Springer, 1977.
[6] Henry, D. - Geometric Theory of Semilinear Parabolic Equation, Springer, LNM 840, 1981.
[7] Hino, Y., Murakami, S. and Naito, T. - Functional Differential Equations with infinite Delay, Springer, LNM 1473, 1991.
[8] Ladas, G.E. and Lakshmikantham, V. - Differential Equations in Abstract Spaces, Academic Press, 1972.
[9] Pazy, A. - Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, 1983.
[10] Pruss, J. - Periodic Solutions of semilinear evolution equations, Nonlinear Analysis, 3(5) (1979), 601-612.
[11] SEgAL, I.E. - Nonlinear semigroups, Ann. of Math., (2)78 (1963), 339-364.
[12] Travis, C.C. and Webb, G.F. - Existence and stability for partial functional differential equations, Trans. A.M.S., 200 (1974), 395-418.
[13] Travis, C.C. and Webb, G.F. - Existence, stability and compactness in the a-norm for partial functional differential equations, Trans. A.M.S., 240 (1978), 129-143.

[^0]
[^0]: P.K. Pavlakos and I.G. Stratis,

 Department of Mathematics, University of Athens, Panepistimiopolis, GR-15784 Athens - GREECE

