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ON ρ̃-SEPARABILITY IN
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Abstract: A characterization of the ρ̃-separable polynomial is given and a relation

between ρ̃-separability and separability is also obtained.

1 – Introduction

Throughout this paper, we let R be an arbitrary ring with 1, and R[X; ρ]
be the skew polynomial ring

∑

i=0 X
iR whose multiplication is given by aX =

Xρ(a), a ∈ R, where ρ is an automorphism of R. By R[X; ρ](0), we denote the set
of all monic polynomials g in R[X; ρ] with g R[X; ρ] = R[X; ρ] g. A polynomial
g in R[X; ρ](0) is called a separable (resp. Galois) polynomial if R[X; ρ]/gR[X; ρ]
is a separable (resp. Galois) extension of R. Let f be a polynomial in R[X; ρ](0)
with ρ-invariant coefficients. Then f is called a ρ̃-separable polynomial if the
derivative f ′ of f is invertible in R[X; ρ] modulo fR[X; ρ].

In [1] and [2], S. Ikehata studied ρ̃-separable polynomials in skew polynomial
rings and obtained many interesting results. The purpose of this paper is to
give one more equivalent condition of ρ̃-separability, and a relation between
ρ̃-separability and separability.

Throughout, we use the following notations:

C(A) = the center of a ring A.

Rρ =
{

a ∈ R | ρ(a) = a
}

.

f = Xn + an−1X
n−1 + . . .+ a1X + a0 ∈ R[X; ρ](0).
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S = R[X; ρ]/fR[X; ρ] =
{

∑n−1
i=0 ri x

i | ri ∈ R, x = X +R[X; ρ]f
}

.

πi : S → R is the projection map defined by πi(
∑n−1

i=0 ri x
i) = ri.

t : S → R is the trace map defined by t(u) =
∑n−1

i=0 πi(ux
i), for u ∈ S, and it is

easy to verify that t is a R-R-homomorphism.

Tf = |t(x
i xj)|n×n, n = deg f .

ρ∗ : R[X; ρ]→ R[X; ρ] is the ring automorphism defined by

ρ∗(
∑

i

Xi di) =
∑

i

Xiρ(di), for
∑

i

Xi di ∈ R[X; ρ] .

Bk =
{

s ∈ R | r s = s ρ−k(r), for r ∈ R
}

, for each integer k.

2 – Basic definition

Let IP be a ring with 1 and Q a subring of IP containing 1. Then IP is called
a separable extension of Q if there exist ai, bi in IP, i = 1, . . . , n for an integer
n, such that

∑

ai bi = 1 and
∑

i t(ai ⊗R bi) =
∑

i(ai ⊗ bi) t for each t in IP, and
the set {ai; bi}

n
i=1 is called a separable set; IP is called a Galois extension over Q

with Galois group G = {g1, . . . , gm} (a finite automorphism group of IP) for some
integer m, g1 = 1 in G, if there exist ci, di in IP, i = 1, . . . , k for some integer k
such that

∑

i ci gj(di) = δ1j (Kronecker delta) and Q = IP
G (= {t in IP | gi(t) = t

for each gi in G}), and the set {ci; di}
k
i=1 is called a Galois set.

Remark. By Prop. 1.3 in [5], Galois sets are separable sets.

3 – An equivalent condition of ρ̃-separable

An n × n matrix B = |bij | is called a ρ-matrix over R, if for every bij
(i, j = 1, . . . , n), there exists some integer l such that bij ∈ Bl.

Now we begin with the following lemma

Lemma 1. Let B = |bij | be an n× n-matrix over R. If B satisfies

1) ρ(bij) = bij , bij = bji, i, j = 1, 2, . . . , n, namely ρ(B) = B, Bt (the trans-
pose of B) =B;

2) B is a ρ-matrix;

3) B has a left (or right) inverse matrix A = |aij | which is a ρ-matrix;

then B is a matrix over C(Rρ), and det(B) is invertible in R.
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Proof: Since A is a ρ-matrix, then for every aij (i, j = 1, . . . , n) there exists
some integer l such that aij ∈ Bl. So by bst aij = aij ρ

−1(bst) = aij bst, and
AB = E (E is the unitary matrix) iff

∑n
i=1 aki bil = δkl (k, l = 1, 2, . . . , n) iff

∑n
i=1 bil aki = δkl (k, l = 1, 2, . . . , n) iff BtAt = E iff BAt = E, we obtain that

A = At is the inverse matrix of B. Since ρ(BA) = B ρ(A) = E, so ρ(A) = A. Now
we know that B and A are ρ-matrix such that ρ(A) = A and ρ(B) = B. These
conditions imply that A and B are matrices over C(Rρ). Finally, by BA = E,
we have that det(B) is invertible in R.

Given f ∈ R[X; ρ](0) ∩R
ρ[X], by [2], Tf is a matrix over C(R

ρ). Moreover, in
[1], S. Ikehata proved the following result.

Lemma 2. Let f ∈ R[X; ρ](0)∩R
ρ[X], then f is ρ̃-separable iff det(Tf ) = δ(f)

is invertible in R.

Then we prove the following theorem which gives another equivalent condition
of ρ̃-separability.

Theorem 3. Let f ∈ Rρ[X] ∩R[X; ρ](0), then the following are equivalent:

1) f is ρ̃-separable;

2) det(Tf ) = δ(f) is invertible in R;

3) Tf has a left inverse matrix which is a ρ-matrix.

Proof: 1) ⇔ 2). This is the result of Lemma 2.

3) ⇒ 2). By Lemma 1, it suffices to prove that Tf is a ρ-matrix.
For a ∈ R, since

a ti+1,j+1 = a t(xi+j) = t(a xi+j) = t(xi+j ρi+j(a))

= t(xi+j) ρi+j(a) = ti+1,j+1 ρ
i+j(a) .

So ti+1,j+1 ∈ B−i−j . Thus Tf is a ρ-matrix.

2) ⇒ 3). Let T ∗

f = |Ai+1,j+1|, where Ai+1,j+1 is the algebraic com-
plement of tj+1,i+1 (i, j = 0, 1, . . . , n− 1). Then T

∗

f Tf = δ(f)E. So it suffices to

prove that δ−1(f)T ∗

f is a ρ-matrix. For a ∈ R,

a t1,j1 t2,j2 · · · tj,jj tj+2,jj+2
· · · tn,jn =

= t1,j1 t2,j2 · · · tj,jj tj+2,jj+2
· · · tn,jn ρ

n(n−1)−i−j(a) ,
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where j1, j2, . . . , jj , jj+2, . . . , jn is a permutation of 1, 2, . . . , i, i+ 2, . . . , n. So

aAi+1,j+1 δ
−1(f) = Ai+1,j+1 ρ

n(n−1)−i−j(a) δ−1(f)

= Ai+1,j+1 δ
−1(f) ρ−i−j(a) .

So Ai+1,j+1 δ
−1(f) ∈ Bi+j . Thus T

−1
f = T ∗

f δ
−1(f) is a ρ-matrix.

4 – A relation between separability and ρ̃-separability

By Theorem 2.1 in [1], when f is ρ̃-separable, then f is separable. On the
contrary, the conclusion is not right. One of such example was given in [1], and one
more example will be given in the final part of this paper. The following theorem
at some extent shows the “distance” between the two kinds of separability.

Theorem 4. Let f ∈ Rρ[X] ∩R[X; ρ](0), then the following are equivalent:

1) f is ρ̃-separable;

2) f is separable with a separable set {xi, yi} such that
∑

i xi t(yi) = 1.

Proof: 2)⇒1). Suppose {xi; yi} to be a separable set such that
∑

i xi t(yi)=1,
where xi =

∑n−1
k=0 x

k pik, yi =
∑n−1

k=0 qik x
k. Then

∑

i

xi ⊗ yi =
∑

i

(

n−1
∑

k=0

xk pik
)

⊗
(

n−1
∑

s=0

qis x
s
)

=
n−1
∑

k=0

xk ⊗
(

∑

i

n−1
∑

s=0

pik qis x
s
)

.

Setting dks =
∑

i pik qis, zk =
∑n−1

s=0 dks x
s. Then

∑

i xi⊗ yi =
∑n−1

k=0 x
k⊗ zk. It is

easy to verify that {xk; zk} is still a separable set such that
∑

k x
k t(zk) = 1. Now

we prove that u =
∑n−1

k=0 x
k t(zk u), for u ∈ S. Since t is a R-R-homomorphism,

so we can define the map 1 ⊗ t from S⊗R S to S by (1 ⊗ t)(s1 ⊗ s2) = s1 t(s2).
From (1⊗ t)(u

∑n−1
k=0 x

k ⊗ zk) = (1⊗ t) (
∑n−1

k=0 x
k ⊗ zk u), we obtain that

u = u
n−1
∑

k=0

xk t(zk) =
n−1
∑

k=0

xk t(zk u) .

In particular,

xj =
n−1
∑

k=0

xk t(zkx
j) =

n−1
∑

k=0

xk t
(

n−1
∑

s=0

dks x
s+j

)

=
n−1
∑

k=0

n−1
∑

s=0

xk dks t(x
s+j) , j = 0, 1, . . . , n− 1 .
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So,
∑n−1

s=0 dks t(x
s+j) = δkj , k, j = 0, 1, . . . , n − 1. By setting A = |dk+1,s+1|, we

have ATf = E, where Tf = [ts+1,j+1]. Since {x
k; zk} is a separable set, then for

a ∈ R,

n−1
∑

k=0

xk ⊗ zk a = a
n−1
∑

k=0

xk ⊗ zk =
n−1
∑

k=0

xk ρk(a)⊗ zk =
n−1
∑

k=0

xk ⊗ ρk(a) zk .

So ρk(a) dks = dks ρ
−s(a), for a ∈ R. Thus dks ∈ Bk+s, and so A is a ρ-matrix.

Hence by theorem 3, f is ρ̃-separable.

1) ⇒ 2). In the proof of 2) ⇒ 3) of Theorem 3 , we know that
Tf has an inverse matrix which is a ρ-matrix. Setting T−1

f = |di+j,j+1|, and

yi+1
∑n−1

k=0 di+1,k+1 x
k, i = 0, 1, . . . , n−1. By the proof of Lemma 4.1, Lemma 4.2

and Theorem 4.3 in [7], we know that {yi+1;x
i} is a separable set. Since T−1

f Tf =
E,

n−1
∑

i=0

di+1,k+1 t(x
i) = δk0 , k = 0, 1, . . . , n− 1 ,

and so

n−1
∑

i=0

yi+1 t(x
i) =

n−1
∑

i=0

n−1
∑

k=0

di+1,k+1 x
k t(xi) =

n−1
∑

k=0

n−1
∑

i=0

xk di+1,k+1 t(x
k) = 1 .

Thus {yi+1;x
i} is a separable set such that

∑n−1
i=0 yi+1 t(x

i) = 1.

By the above proof, we can easily verify the following result.

Theorem 5. Let f ∈ R[X; ρ](0) be separable, and there exists a separable
set {xi; yi} such that

∑

i xi t(yi) = 1, then Tf has a left inverse matrix which is a
ρ-matrix.

Remark. When R is a commutative ring, then under the hypothesis of
theorem 5 we know that det(Tf ) is invertible in R.

5 – Application and example

Let f be a Galois polynomial with Galois group G, and tG =
∑

g∈G g be the
trace map from S to R. Let {xi; yi} be a Galois set, then

∑

i xi tG(yi) = 1. Now
we prove a lemma.

Lemma 6. Let f be a Galois polynomial with Galois group G, and tGρ
∗ =

ρ∗ tG. Then t = tG.
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Proof: Since S/R is a Galois extension, there exists a Galois set {xi; zi},
where xi =

∑n−1
k=0 x

k pik, zi =
∑n−1

k=0 qik x
k. Then

∑

i

xi ⊗ zi =
∑

i

(

n−1
∑

k=0

xk pik
)

⊗
(

n−1
∑

k=0

qis x
s
)

=
n−1
∑

k=0

xk ⊗
(

∑

i

n−1
∑

s=0

pik qis x
s
)

.

By setting dks =
∑

i pik qis and yk =
∑n−1

s=0 dks x
s, k = 0, 1, . . . , n−1,

∑

i xi⊗zi =
∑n−1

k=0 x
k⊗yk. It is easy to verify that {x

k; yk} is still a Galois set. Since t and tG
are R-R-homomorphisms, it suffices to prove that t(xl) = tG(x

l) (0 ≤ 1 ≤ n− 1).
Since tG is a R-R-homomorphism, so we can define the map 1⊗ tG from S⊗R S
to S by (1⊗ tG)(s1 ⊗ s2) = s1 tG(s2). Then

xi = xi
n−1
∑

k=0

xk tG(zk) = (1⊗ tG)
(

n−1
∑

k=0

xi xk ⊗ zk
)

= (1⊗ tG)
(

n−1
∑

k=0

xk ⊗ zk x
i
)

=
n−1
∑

k=0

xk tg(zk x
i) (0 ≤ i ≤ n− 1) ,

t(xl) =
n−1
∑

i=0

πi(x
lxi) =

n−1
∑

i=0

πi
(

n−1
∑

k=0

xl+k tG(zkx
i)
)

=
n−1
∑

k=0

n−1
∑

i=0

πi(x
l+k) ρ−i(tG(zkx

i))

=
n−1
∑

k=0

n−1
∑

i=0

πi(x
l+k)

(

(ρ∗)−i tG(ρ
∗)i
)

(xi zk)

=
n−1
∑

k=0

n−1
∑

i=0

πi(x
l+k) tG(x

i zk) =
n−1
∑

k=0

tG

(

(

n−1
∑

i=0

πi(x
l+k)xi

)

zk

)

=
n−1
∑

k=0

tG(x
l+k zk) = tG(x

l
n−1
∑

k=0

xk zk) = tG(x
l) (0 ≤ 1 ≤ n− 1) .

By Proposition 1.3 in [5], when f is a Galois polynomial, f is a separable
polynomial. Thus by Theorem 4, we obtain the following result.

Theorem 7. Let f ∈ R[X; ρ](0) be a Galois polynomial with Galois group
G, and tG ρ∗ = ρ∗ tG. Then Tf has a left inverse matrix which is a ρ-matrix. In
particular, when f ∈ Rρ[X] ∩R[X; ρ](0), f is ρ̃-separable.
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To show that the condition tG ρ∗ = ρ∗ tG is possible, we give the following
example.
Let f = X2 −Xa− b ∈ R[X; ρ](0) be a Galois polynomial. By Lemma 1.5 in

[3], its Galois group is {1, σ}, where σ is defined by σ(xb1+b0) = (a−x) b1+b0, for
xb1+ b0 ∈ S. Then tG(xb1+ b0) = ab1+2b0, ρ

∗tG(xb1+ b0) = ρ(a) ρ(b1)+2ρ(b0),
and tG ρ∗(xb1 + b0) = aρ(b1) + 2ρ(b0). Since f is Galois, f is separable. Then by
Lemma 2 in [4], ρ(a) = a. Hence tG ρ∗ = ρ∗ tG.
Next example will show that there exists a separable polynomial which is not

ρ̃-separable.
Setting R = Z/(4) ⊗ Z/(4), and ρ is the automorphism of R defined by

ρ(x1, x2) = (x2, x1), for (x1, x2) ∈ R. It is easy to verify that f = X2 − 1 ∈
R[X; ρ](0) ∩R

ρ[X]. By setting d = (1, 0), then d+ ρ(d) = 1. By Lemma 3 in [3],
f is separable. But det(Tf ) = δ(f) = 0. So by Theorem 4, f is not ρ̃-separable.

ACKNOWLEDGEMENTS – The author would like to thank Prof. G. Szeto, Prof. L.J.

Ma and Prof. S. Ikehata for their many suggestions and discussions.

REFERENCES

[1] Ikehata, S. – On separable polynomial and Frobenius polynomial in skew polyno-
mial rings, Math. J. Okayama Univ., 22 (1980), 115–129.

[2] Ikehata, S. – On separable polynomials and Frobenius polynomials in skew poly-
nomial rings II, Math. J. Okayama Univ., 25 (1983), 23–28.

[3] Nagahara, T. – On separable polynomials of degree 2 in skew plynomial rings,
Math. J. Okayama Univ., 19 (1976), 65–95.

[4] Nagahara, T. – Note on skew polynomials, Math. J. Okayama Univ., 25 (1983),
43–48.

[5] Miyashita, Y. – Finite outer Galois theory of non-commutative rings, J. Fac. Sci.

Hokkaido Univ., Ser. I, 19 (1966), 114–134.
[6] Miyashita, Y. – On a skew polynomial ring, J. Math. Soc. Japan, 31 (1979),

317–330.
[7] Szeto, G. – A characterization of separable polynomials over a skew polynomial

ring, J. Austral. Math. Soc. (series A), 38 (1985), 275–280.

Xiaolong Lou,

Mathematics Department, Zhongshan University,

Guangzhou – P.R. CHINA


