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ON A CLASS OF GROUPS
WITH LAGRANGIAN FACTOR GROUPS

Fernando Tuccillo

Abstract: We classify the 2-dual minimal non supersoluble groups, whose factor

groups satisfy the converse of the Lagrange’s theorem. From this classification we de-

duce that there is no upper bound for the 3-rank, as for the 2-rank, of a group with

lagrangian factor groups. We conjecture that the groups with lagrangian factor groups

are p-supersoluble, for each prime p 6= 2, 3.

1 – Introduction

A lagrangian group is a finite group which satisfies the converse of the La-
grange’s theorem, that is a groupG possessing, for every divisor of |G|, a subgroup
of that order. It is immediate to verify that the property is inherited neither by
subgroups nor by factor groups. In 1939 O. Ore ([4]) showed that the inheritance
by subgroups and factor groups is equivalent to supersolubility. In the following
year G. Zappa ([6]) improved the Ore’s result, by showing that the groups with
lagrangian subgroups are the supersoluble groups. With regard to the groups
with lagrangian factor groups, it is immediate to verify that they are not neces-
sarily supersoluble. Nevertheless, many classes of groups with lagrangian factor
groups are classes of supersoluble groups, as shown in 1974 in [2] and in 1984 in
[1]. The results of [1] we refer to are based on the classification — contained in
the same work — of the non supersoluble lagrangian groups, whose proper fac-
tor groups are supersoluble. From such classification the following propositions
directly derive.

Proposition A. There is no upper bound for the 2-rank of a group with
lagrangian factor groups.
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Moreover:

Proposition B. If G is a non supersoluble lagrangian group, with supersol-
uble proper factor groups, then π(G) = {2, 3}.

Proposition C. The 2-rank of a non supersoluble lagrangian group, with
supersoluble proper factor groups, is a power of 2 and its 3-rank is equal to
1. Moreover: for every integer m ≥ 1, there is, up to isomorphisms, only one
lagrangian group, with supersoluble proper factor groups, whose 2-rank is 2m.

This paper provides some new examples of non supersoluble groups with la-
grangian factor groups; precisely gives a classification of the 2-dual minimal non
supersoluble(1) groups with lagrangian factor groups. Such classification directly
leads to following propositions, which generalize the preceding A, B and C propo-
sitions.

Proposition A′. There is no upper bound for the p-rank of a group with
lagrangian factor groups, if p = 2 or 3.

Moreover:

Proposition B′. If G is a Ŝ2-group with lagrangian factor groups, then
|π(G)| ≤ 3 and {2, 3} ⊆ π(G). (S is the class of supersoluble groups.)

Proposition C′. The 2-rank of a Ŝn-group (n = 1 or 2) with lagrangian
factor groups is a power of 2 and its 3-rank is a power of 3.

Moreover: for every ineger m ≥ 1, there is, up to isomorphisms, only one
Ŝ2-group, with lagrangian factor groups, whose 2-rank is 2

m and whose 3-rank is
32

m−1
.

Conjecture. Do the groups with lagrangian factor groups be p-supersoluble,
for every prime p different from 2 and 3?

The author conjectures that the factor groups of a group G are lagrangian if
and only if there exists a supersoluble immersion of G{2,3} in G and the factor
groups of G{2,3} are lagrangian. The sufficient condition has been proved in [1].

(1) If P is a class of groups, the class P̂n (n ∈ IN0) of the groups n-dual minimal non
P -groups, is defined inductively as follows:

P̂0 = P ; G ∈ P̂n iff G /∈

n−1⋃

i=0

P̂i and G/N ∈

n−1⋃

i=0

P̂i for every 1 6= N / G .
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2 – Some classes of Ŝ2-groups with lagrangian factor groups

With reference to [1], the following notations are used.

S(m), m ≥ 1, denotes the subgroup of GL(2m, 2):

S(m) =
〈
c`, bh | ` = 1, ..., 2

m−1; h = 0, ...,m− 1
〉
,

where: 〈c`| ` = 1, ..., 2
m−1〉 is the matrix group of degree 2m consisting of all

block diagonal matrices [Aαi δi,j ]i,j=1,...,2m−1 , with A =

[
0 1
1 1

]
; b0 is the block

diagonal matrix [B δi,j ]i,j=1,...,2m−1 , with B =

[
0 1
1 0

]
; bh is the permutation

matrix [I2 δi,σh(j)]i,j=1,...,2m−1 , where σh is the permutation of degree 2
m−1:

σh = (1, 1 + 2
h−1) · · · (2h−1, 2h) (2h + 1, 2h + 1 + 2h−1) · · · (2h + 2h−1, 22h) · · ·

· · · (2m−1 − 2h + 1, 2m−1 − 2h−1 + 1) · · · (2m−1 − 2h−1, 2m−1)

(h = 1, ...,m − 1), (i.e., 〈bh| h = 1, ...,m − 1〉 is an elementary abelian regular
permutation group of degree 2m−1). In [1] the holomorph of the additive group of
V (2m, 2) by S(m) has been denoted with Σ(m). We can obviously assume that:

c` = [A
α(i,`) δi,j ]i,j=1,...,2m−1 ,

with α(1, `) = 1, for each ` = 1, ..., 2m−1, and α(σh(i), `) = 2γ`,h α(i, `)
(i, ` = 1, ..., 2m−1; h = 1, ...,m− 1), where

` =
m−1∑

h=0

γ`,h 2
m−1−h (` = 1, ..., 2m−1)

is the binary representation of `. It follows α(i, `) ≡ ±1 (mod 3), hence, because
A3 = I2, we can assume α(i, `) = ±1 for each i, ` = 1, ..., 2

m−1, and we have the
following presentation for Σ(m).

2.1. Σ(m) =
〈
x2i−1, x2i, c`, bh | i, ` = 1, ..., 2

m−1; h = 0, ...,m− 1
〉
.

Relations:

∆0





x22i−1=x
2
2i=[xu, xv]=1 (i=1, ..., 2m−1; u, v=1, ..., 2m)

c3`=b
2
h=[c`1 , c`2 ]=[bh1 , bh2 ]=1 (`,`1,`2=1, ..., 2

m−1; h,h1,h2=0, ...,m−1)

b−10 c` b0=c
−1
` ; b

−1
h c` bh = c2

γ`,h

` (`=1, ..., 2m−1; h=1, ...,m−1) ,
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∆1




c−1` x2i−1 c` = x

δ
−1,α(i,`)

2i−1 x2i

c−1` x2i c` = x2i−1 x
δ1,α(i,`)

2i

(i = 1, ..., 2m−1) ,

∆2

{
b−10 x2i−1 b0 = x2i; b−10 x2i b0 = x2i−1 (i = 1, ..., 2m−1) ,

∆3

{
b−1h x2i−1 bh=x2σh(i)−1; b

−1
h x2i bh=x2σh(i) (i=1, ..., 2m−1; h=1, ...,m−1).

In order to simplify the description, we report the main result of [1].

2.2 Theorem ([1]). The non supersoluble lagrangian groups, with supersol-
uble proper factors groups, are, up to isomorphisms, the groups Σ(m).

2.3 The groups Σ∗(m). Let m be an integer ≥ 1. If N is an elemen-
tary abelian group of order 22

m
, with the identification AutN = GL(2m, 2), let

χ : Σ(m) → AutN be the product of the canonical homomorphism Σ(m) →
Σ(m)/O2(Σ(m)) ' S(m) and the embedding of S(m) in GL(2m, 2). We shall
refer to a group extension of N by Σ(m) with coupling χ as a group of type
Σ∗(m). In particular, we denote the split extension with Σ(m). It is immediate
to verify that Σ(m) is a Ŝ2-group with lagrangian factor groups. With the fol-
lowing proposition we provide the structure of the groups Σ∗(m), non isomorphic
to Σ(m), and show that they are Ŝ2-groups with lagrangian factor groups.

Proposition 2.3.1. Let G be a group of type Σ∗(m) and G 6= Σ(m). Then:

i) G = K . O2(G), with K ' S(m) and O2(G) = F (G) abelian of type
(22, ..., 22) and order 22

m+1
;

ii) Φ(G) = Φ(O2(G));

iii) K Φ(G) ' G/Φ(G) ' Σ(m);

iv) G is a Ŝ2-group with lagrangian factor groups.

Proof: As G is of type Σ∗(m), G/N ' Σ(m) where N is a minimal nor-
mal subgroup of G of order 22

m
; we have then N ≤ Φ(G) because G is not

a split extension of N . It follows that Φ(G) = N and F (G) = O2(G), because
Φ(Σ(m)) = 1 and F (Σ(m)) = O2(Σ(m)). On the other hand, since G/N ' Σ(m),
N = Φ(G) is minimal normal in G and CG(N) = O2(G). That being stated, as-
sume G = MO2(G), with M ∩ O2(G) = Φ(G). We have that Φ(G) = N is
a minimal normal subgroup of M and CM (N) = N . Hence M = K . Φ(G)
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(see, for instance, [3], II Satz 3.3); it follows G = K . O2(G), K ' S(m) and
K Φ(G) ' Σ(m). Using all what we have obtained, it is easy to verify that G
is a Ŝ2-group with lagrangian factor groups, if we notice that Φ(G) is the only
minimal normal subgroup of G.
Suppose that O2(G) is elementary abelian. Since O2(K) = 1 and |π(K)| = 2,

O2(G) is a completely reducible GF (2)[K]-module (see [5], Lemma 1.5) and thus
the contradiction that G splits on Φ(G) is reached.
It follows, recalling that Φ(G) is the only minimal normal subgroup of G and

O2(G)/Φ(G) is minimal normal in G/Φ(G), that Φ(G) = Φ(O2(G)) = O2(G)
2;

therefore, being K Φ(G) ' Σ(m), if O2(G) is abelian, O2(G) is of type (2
2, ..., 22).

In order to show that O2(G) is abelian, we assume, with reference to presentation
2.1 of Σ(m) ' G/Φ(G):

O2(G) =
〈
x2i−1, x2i | i = 1, ..., 2

m−1
〉
, x2u, [xu, xv] ∈ Φ(G) (u, v = 1, ..., 2

m) ,

K =
〈
c`, bh | ` = 1, ..., 2

m−1; h = 0, ...,m− 1
〉
,

with relations:

∆′
1




c−1` x2i−1 c` = x

δ
−1,α(i,`)

2i−1 x2i y2i−1,`

c−1` x2i c` = x2i−1 x
δ1,α(i,`)

2i y2i,`

(i, ` = 1, ..., 2m−1) ,

∆′
2

{
b−10 x2i−1 b0 = x2i z2i−1

b−10 x2i b0 = x2i−1 z2i
(i = 1, ..., 2m−1) ,

∆′
3

{
b−1h x2i−1 bh = x2σh(i)−1w2i−1,h

b−1h x2i bh = x2σh(i)w2i,h
(i = 1, ..., 2m−1; h = 1, ...,m− 1) ,

where:

yu,`, zu, wu,h ∈ Φ(G) (u = 1, ..., 2m; ` = 1, ..., 2m−1; h = 1, ...,m− 1) .

From ∆′
r (r = 1, 2, 3) it immediately follows that the subgroup 〈[x2i−1, x2i]|

i = 1, ..., 2m−1〉 is normal in G and is centralized by 〈c`, b0| ` = 1, ..., 2
m−1〉. We

have then [x2i−1, x2i] = 1, for each i = 1, ..., 2
m−1, because CG(Φ(G)) = O2(G).

Thus, if m = 1, O2(G) is abelian.
Let then m ≥ 2. Notice first that α(i, 2m−1) = 1, for each i = 1, ..., 2m−1.

From ∆′
1, with c = c2m−1 , we get, since O2(G) has class at most 2, that:

(2.3.1.1)

c−1[x2i−1, x2j−1] c = [x2i, x2j ] ,

c−1[x2i, x2j ] c = [x2i−1, x2j−1] [x2i−1, x2j ] [x2i, x2j−1] [x2i, x2j ] ,

c−1[x2i−1, x2j ] c = [x2i, x2j−1] [x2i, x2j ]
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(i, j = 1, ..., 2m−1). From here we get:

c−1[x2i−1, x2j ] [x2i, x2j−1] c = [x2i−1, x2j ] [x2i, x2j−1] ,

from which:

(2.3.1.2) [x2i−1, x2j ] = [x2i, x2j−1] (i, j = 1, ..., 2m−1) ,

because CN (c) = 1, since 〈c〉 / K and K acts irreducibly on N . On the other
hand, as the matrix [α(i, `)] is non singular, for each pair of different indexes i and
j between 1 and 2m−1, there exists ` ∈ {1, ..., 2m−1} such that α(i, `) = −α(j, `).
In this case we get from ∆′

1 and (2.3.1.2) that:

c−1` [x2i, x2j−1] c` =

= [x2i−1, x2j−1]
δ
−1,α(j,`) [x2i, x2j ]

δ1,α(i,`) [x2i−1, x2j ]
1+δ1,α(i,`)δ−1,α(j,`) =

= c−1` [x2i−1, x2j ] c` =

= [x2i−1, x2j−1]
δ
−1,α(i,`) [x2i, x2j ]

δ1,α(j,`) [x2i−1, x2j ]
1+δ

−1,α(i,`)δ1,α(j,`) ,

from which:

(2.3.1.3) [x2i−1, x2j−1] [x2i, x2j ] = [x2i−1, x2j ] (i, j = 1, ..., 2m−1) .

On the other hand, we get from ∆′
1:

c−1` [x2i−1, x2j−1] c` = [x2i−1, x2j ]
δ
−1,α(i,`)+δ−1,α(j,`) [x2i, x2j ] =

= [x2i−1, x2j ] [x2i, x2j ]

and therefore, from (2.3.1.3), we get:

c−1` [x2i−1, x2j−1] c` = [x2i−1, x2j−1] .

It follows, since CN (c`) = 1, [x2i−1, x2j−1] = 1 (i, j = 1, ..., 2
m−1), from which

and (2.3.1.1) we get:

[x2i, x2j−1] = [x2i−1, x2j ] = [x2i, x2j ] = 1

and thus O2(G) is abelian.

It follows easily from the previous proposition, by routine calculations, that
there is (up to isomorphism) only one group of type Σ∗(m), non-isomorphic to
Σ(m); precisely the following group Σ̂(m)

Σ̂(m) =
〈
x2i−1, x2i, cj , bh | i, j = 1, ..., 2

m−1; h = 0, ...,m− 1
〉
.
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Relations:

x42i−1=x
4
2i=[xu, xv]=1 (i=1, ..., 2m−1; u, v=1, ..., 2m) ,

c3j=b
2
h=[cj1 , cj2 ]=[bh1 , bh2 ]=1 (j,j1,j2=1, ..., 2

m−1; h,h1,h2=0, ...,m−1) ,

b−10 cjb0=c
−1
j , b−1h cjbh=cσh(j) (j=1, ..., 2m−1; h=1, ...,m−1) ,

c−1j x2i−1cj=x2i−1, c−1j x2icj=x2i (i 6=j=1, ..., 2m−1) ,

c−1i x2i−1ci=x2i, c−1i x2ici=x
−1
2i−1x

−1
2i (i=1, ..., 2m−1) ,

b−10 x2i−1b0=x2i, b−10 x2ib0=x2i−1 (i=1, ..., 2m−1) ,

b−1h x2i−1bh=x2σh(i)−1, b−1h x2ibh=x2σh(i) (i=1, ..., 2m−1, h=1, ...,m−1) .

2.4 The groups Ω(m). Let m be an integer ≥ 1. From the presentation 2.1
of Σ(m) we get easily, for any c ∈ C = 〈c`| ` = 1, ..., 2

m−1〉, that:

c x2i−1 c
−1 = x

λ(i,c)
2i−1 x

µ(i,c)
2i

c x2i c
−1 = x

µ(i,c)
2i−1 x

λ(i,c)+µ(i,c)
2i

(i = 1, ..., 2m−1) ,

where λ(i, c) and µ(i, c) are integers modulo 2 ((λ(i, c), µ(i, c)) 6= (0, 0)).

Considered the regular GF (3)[C]-module N , the following positions give N a
structure or GF (3)[Σ(m)]-module irreducible, on which Σ(m) acts faithfully:

cx2i−1 = (−1)λ(i,c)+µ(i,c) c

cx2i = (−1)λ(i,c) c
(i = 1, ..., 2m−1) ,

ca = c a

cbh = b−1h c bh

(a ∈ C; h = 0, ...,m− 1) ,

where c ∈ C, being C the canonical base of N = GF (3)[C]. The holomorph of
the additive group of N by Σ(m) is denoted with Ω(m).

Proposition 2.4.1. Ω(m) is a Ŝ2-group with lagrangian factor groups.

Proof: For each t = 1, ..., 2m−1 and for each of the ( 2
m−1

t ) subsets It,k =
{`1, ..., `t} of {1, ..., 2

m−1} of order t, we consider the subset of C:

Ct,k =
{
cβ1

`1
· · · cβt`t | β1, ..., βt = ±1

}
(k = 1, ..., (2

m−1

t )) .
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Assuming D = 〈x2i−1, x2i, bh| i = 1, ..., 2
m−1; h = 0, ...,m− 1〉 and W = GF (3)1,

we have obviously that
∑

cCt,k
W c is a D-submodule of N , hence Ω(m) has sub-

groups of order 3n · 22
m+m, where n =

∑2m−1

t=0 rt 2
t with 0 ≤ rt ≤ (

2m−1

t ). From
this result the statement easily follows.

3 – Classification of the Ŝ2-groups with lagrangian factor groups

Proposition 3.1. Let G be a Ŝ2-group with lagrangian factor groups. If
Φ(G) 6= 1, then Φ(G) is minimal normal in G and G/Φ(G) ' Σ(m) (for some
m ≥ 1).

Proof: Let N be a minimal normal subgroup of G with N ≤ Φ(G). Assume
that N 6= Φ(G). Since the proper factor groups of G/N are supersoluble, we

have that G/Φ(G) ' G/N
Φ(G)/N is supersoluble and therefore G is supersoluble,

which contradicts the hypothesis. The statement G/Φ(G) ' Σ(m) follows from
Theorem 2.2.

Proposition 3.2. Let G be a Ŝ2-group with lagrangian factor groups, with
Φ(G) 6= 1. If G has a minimal normal subgroup different from Φ(G), then |Φ(G)|
is prime (= 2 or 3).

Proof: Let N be a minimal normal subgroup of G, different from Φ(G), then
assuming G = K . N (K maximal subgroup of G), we have, by Proposition 3.1,

Σ(m) ' G/Φ(G) = K/Φ(G) . Φ(G).NΦ(G) and therefore K/Φ(G) ' S(m); it follows,

as obviously Φ(G) ≤ Φ(K), that K is supersoluble and so, since Φ(G) is minimal
normal in G, |Φ(G)| is prime.

Proposition 3.3. Let G be a Ŝ2-group with lagrangian factor groups, with
Φ(G) 6= 1. If Φ(G) is the only minimal normal subgroup of G and |Φ(G)| is not
prime, then G is a group of type Σ∗(m) (non isomorphic to Σ(m)).

Proof: Since G/Φ(G) ' Σ(m) and Φ(G) is the only minimal normal sub-
group of G, as O2(Σ(m)) = F (Σ(m)), we have that Φ(G) ≤ O2(G) = F (G) and
O2(G) ≤ CG(Φ(G)). That being stated, by arguing as in the proof of the Propo-
sition 2.3.1, we get G = K . O2(G), with K ' S(m) and Φ(G) = Φ(O2(G)) =
O2(G)

2; therefore, in order to complete the proof, we need only to show that
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K Φ(G) ' Σ(m). We can assume, as in the proof of the Proposition 2.3.1:

O2(G) =
〈
x2i−1, x2i | i = 1, ..., 2

m−1
〉
,

K =
〈
c`, bh | ` = 1, ..., 2

m−1; h = 0, ...,m− 1
〉
,

with the relations ∆′
1, ∆

′
2 and ∆

′
3. From these it immediately follows that

KO2(G)
2 (= K Φ(G)) is a holomorphic image of Σ(m), hence, obviously,

K Φ(G) ' Σ(m).

Proposition 3.4. Let G be a Ŝ2-group with lagrangian factor groups, with
Φ(G) = 1. Then one of the following conditions holds:

i) G is a (split) extension of a group of prime order by a group Σ(m);

ii) G is isomorhic to Σ(m) (for some m);

iii) G is isomorphic to Ω(m) (for some m).

Proof: Let N be a minimal normal subgroup of G, such that the proper
factor groups of G/N are supersoluble and G/N is not supersoluble. We have
(Theorem 2.2) that G/N ' Σ(m) (for some m ≥ 1) and so G = K . N , with
K ' Σ(m). If |N | is not prime, i.e., the condition i) does not hold, we have, since
G is lagrangian, N ≤ O2(G) or N ≤ O3(G). Assuming |N | = pn (p = 2 or 3 and
n > 1), we examine the two cases separately.

1st case: p = 2.
Since O2(K) 6= 1, we have N < O2(G) = O2(K)N and therefore, since

N ∩ Z(O2(G)) 6= 1, we get O2(G) = O2(K) × N ; from this, since O2(K) is
minimal normal in K, O2(K) is minimal normal in G, hence, since G/O2(K) is
non supersoluble, we have G/O2(G) ' Σ(m

′) (2m
′

= n), and then, obviously,
m = m′ and so G ' Σ(m).

2nd case: p = 3.
We have, obviously, that CG(N) = N , therefore, with the identification K =

Σ(m), N is an irreducible GF (3)[Σ(m)]-module, on which Σ(m) acts faithfully.
That being stated, assume O2(Σ(m)) = D. We have, by Clifford’s theorem, that,
as D is (non cyclic) elementary abelian, N is imprimitive and that the isotypic
D-submodules of N are the irreducible D-submodules and thus have dimension
1.
If U = GF (3)u is an irreducible D-submodule, we can assume:

ux2i−1 = ux2i = (−1)εi u (i = 1, ..., 2m−1) .

It follows that U b0 is D-isomorphic to U , and so, since U b0 and U are D-isotypic,
U b0 = U . On the other hand, with h ∈ {1, ...,m− 1} (m ≥ 2), we can assume, as



214 F. TUCCILLO

to suitable cases {y2i−1, y2i| i = 1, ..., 2
m−1} of D:

uy2i−1 = uy2i = ubhy2i−1b
−1
h = ubhy2ib

−1
h .

It follows, as previously, U bh=U , and so U b=U for any b∈〈bh| h=0, ...,m−1〉.
We have then thatN is an irreducibleDC-module, where C = 〈c`| `=1, ..., 2

m−1〉.
It follows, since N is imprimitive, that the action of C on the irreducible
D-submodules of N is transitive, and therefore, as C is abelian, N is a regular
C-module, that is, up to isomorphisms, N = GF (3)[C]. After these preliminary
remarks, as in K = Σ(m) we have (see 2.4)

(3.4.1)
c x2i−1 c

−1 = x
λ(i,c)
2i−1 x

µ(i,c)
2i

c x2i c
−1 = x

µ(i,c)
2i−1 x

λ(i,c)+µ(i,c)
2i

(i = 1, ..., 2m−1; c ∈ C) ,

we can assume in G, with the identification N = GF (3)[C]:

cx2i−1 = (−1)f(i,c) c

cx2i = (−1)g(i,c) c
(i = 1, ..., 2m−1; c ∈ GF (3)[C] = N) ,

where f(i, c) and g(i, c) are integers modulo 2. From 2.1 and (3.4.1) we easily
get:

f(i, c) = λ(i, c) + µ(i, c) ,

g(i, c) = λ(i, c) .

Hence we get G ' Ω(m).

From the previously proved propositions follows the theorem, which provides
the aforesaid classification of the Ŝ2-groups with lagrangian factor groups.

Theorem 3.5. A group G is a Ŝ2-group with lagrangian factor groups, if
and only if one of the following conditions holds:

i) G is an extension of a group of prime order by a group Σ(m);

ii) G is isomorphic to Σ(m);

iii) G is isomorphic to Σ̂(m);

iv) G is isomorphic to Ω(m).
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