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ON THE IDEMPOTENT RANKS OF CERTAIN SEMIGROUPS
OF ORDER-PRESERVING TRANSFORMATIONS

G.U. Garba

Abstract: The ranks of the semigroups On, POn and SPOn (the semigroups

of order-preserving singular selfmaps, partial and strictly partial transformations on

Xn = {1, ..., n} respectively), and the idempotent ranks of On and POn were studied by

Gomes and Howie [2]. In this paper we generalize their results in line with Howie and

McFadden [7], by considering the semigroups L(n, r), M(n, r) and N(n, r), where, for

2 ≤ r ≤ n − 2, L(n, r) = {α ∈ On : |Imα| ≤ r}, M(n, r) = {α ∈ POn : |Imα| ≤ r} and

N(n, r) = {α ∈ SPOn : |Imα| ≤ r}.

1 – Introduction

By the rank of a semigroup S we shall mean the cardinality of any subset A
of minimal order in S such that 〈A〉 = S. The cardinality of the smallest subset
A consisting of idempotents for which 〈A〉 = S is called the idempotent rank of
S.

Let Xn = {1, ..., n}, let Tn be the full transformation semigroup on Xn, and
let Singn = {α ∈ Tn : |Imα| ≤ n−1} be the semigroup of all singular selfmaps on
Xn. In [4], Singn was shown to be idempotent-generated; its rank and idempotent
rank were shown by Gomes and Howie [1] to be equal to n(n − 1)/2. This was
generalized by Howie and McFadden [7], who considered the semigroup

K(n, r) = {α ∈ Tn : |Imα| ≤ r} ,

where 2 ≤ r ≤ n − 1, and showed that both the rank and the idempotent rank
are equal to S(n, r), the Stirling number of the second kind, defined by

S(n, 1) = S(n, n) = 1 , S(n, r) = S(n− 1, r − 1) + rS(n− 1), r (n ≥ r ≥ 1) .
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The semigroup On = {α ∈ Singn : (∀x, y ∈ Xn) x ≤ y ⇒ xα ≤ yα} of all
order-preserving singular selfmaps of Xn, was shown to be idempotent-generated
by Howie [5]; its rank and idempotent rank were shown to be n and 2n − 2
respectively, by Gomes and Howie [1]. In section 2 of this paper, we show that
both the rank and the idempotent rank of

L(n, r) =
{

α ∈ On : |Imα| ≤ r
}

,

where 2 ≤ r ≤ n− 2, are equal to (n
r
).

Gomes and Howie [2] also considered the semigroup POn=On∪{α: domα⊂
Xn, (∀x, y ∈ domα) x ≤ y ⇒ xα ≤ yα} of all partial order-preserving trans-
formations of Xn (excluding the identity map). They showed that POn is idem-
potent-generated, its rank is equal to 2n− 1, and its idempotent rank is 3n− 2.
In section 3 we show that the rank and the idempotent rank of

M(n, r) =
{

α ∈ POn : |Imα| ≤ r
}

,

where 2 ≤ r ≤ n− 2, are both equal to
∑n

k=r(
n
k
)(k−1

r−1
).

In the final section we turn our attention to the semigroup SPOn = POn\On

of strictly partial order-preserving maps ofXn. This semigroup is not idempotent-
generated, and as pointed out by Gomes and Howie [2], the question of its idem-
potent rank does not arise. However, they showed that its rank is 2n− 2. In this
paper we show that the semigroup

N(n, r) =
{

α ∈ SPOn : |Imα| ≤ r
}

,

where 2 ≤ r ≤ n− 2, is idempotent-generated, and that its rank and idempotent
rank are both equal to

∑n−1

k=r (
n
k
)(k−1

r−1
).

2 – Order-preserving singular selfmaps

By [6, Proposition 2.4.5 and Exercise 2.10] we have that in On

αLβ if and only if Imα = Imβ ,

αRβ if and only if kerα = kerβ ,

αJ β if and only if |Imα| = |Imβ| .

Thus On is the union of J -classes J1, J2, ..., Jn−1, where

Jr =
{

α ∈ On : |Imα| = r
}

.
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The (kerα)-classes are convex subsets C of Xn, in the sense that

x, y ∈ C and x ≤ z ≤ y ⇒ z ∈ C .

We shall refer to an equivalence ρ on the set Xn as convex if its classes are convex
subsets of Xn, and we shall say that ρ is of weight r if |Xn/ρ| = r. Thus Jr has
(n−1

r−1
) R-classes corresponding to the (n−1

r−1
) convex equivalences of weight r on

Xn, and (
n
r
) L-classes corresponding to the (n

r
) subsets of Xn of cardinality r.

Lemma 2.1. Every element α in Jr (r ≤ n− 2) is expressible as a product
of elements in Jr+1.

Proof: Let

α =

(

A1 A2 ... Ar

b1 b2 ... br

)

.

Then at least one block, say Ai, contains more than one element. Let c = min{ai :
ai ∈ Ai}. Suppose that {b1, b2, ..., br} has a gap in position j, and let y be such
that bj−1 < y < bj . We distinguish four cases.

Case 1. i = j − 1. Let

β =

(

A1 ... Ai−1 c Ai\{c} Ai+1 ... Ar

1 ... i− 1 i i+ 1 i+ 3 ... r + 2

)

and

δ =

(

1 ... i− 1 {i, i+ 1} i+ 2 i+ 3 ... r + 1 A′

b1 ... bi−1 bi y bi+1 ... br−1 br

)

where A′ = Xn\{1, 2, ..., r + 1}. Then β, δ ∈ Jr+1 and α = βδ.

Case 2. i < j − 1. Suppose here that β and δ are given by

(

A1 ... Ai−1 c Ai\{c} Ai+1 ... Aj−1 Aj ... Ar

1 ... i− 1 i i+ 1 i+ 2 ... j j + 2 ... r + 2

)

and
(

1 ... i− 1 Y i+ 2 ... j j + 1 j + 2 ... r + 1 A′

b1 ... bi−1 bi bi+1 ... bj−1 y bj ... br−1 br

)

respectively, where Y = {i, i+ 1}. Then β, δ ∈ Jr+1 and α = βδ.

Case 3. i = j. Let

β =

(

A1 ... Ai−1 c Ai\{c} Ai+1 ... Ar

1 ... i− 1 i+ 1 i+ 2 i+ 3 ... r + 2

)

and

δ =

(

1 ... i− 1 i {i+ 1, i+ 2} i+ 3 ... r + 1 A′

b1 ... bi−1 yi bi bi+1 ... br−1 br

)

.
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Then β, δ ∈ Jr+1 and α = βδ.

Case 4. i > j − 1. Suppose β and δ are given by

(

A1 ... Aj−1 Aj ... Ai−1 c Ai\{c} Ai+1 ... Ar

1 ... j − 1 j + 1 ... i i+ 1 i+ 2 i+ 3 ... r + 2

)

and
(

1 ... j − 1 j j + 1 ... i {i+ 1, i+ 2} i+ 3 ... r + 1 A′

b1 ... bj−1 y bj ... bi−1 bi bi+1 ... br−1 br

)

respectively. Then β, δ ∈ Jr+1 and α = βδ. Hence the proof.

It follows from this Lemma that 〈Jr〉 = L(n, r). If we let Er be the set of
all idempotents in Jr, then by Lemma 1 in [3], and Theorem 1.1 in [5] we have
Jr ⊆ 〈Er〉. Thus

L(n, r) = 〈Er〉 .

From Lemma 3 in [7] we deduce that the rank of L(n, r) must be at least the
number of L-classes in Jr. Thus we have

rank(L(n, r)) ≥

(

n
r

)

.

We now show

Theorem 2.2. For 2 ≤ r ≤ n− 2, we have

rank(L(n, r)) = idrank(L(n, r)) =

(

n
r

)

.

Proof: The proof depends on a Lemma very similar to Lemma 6 in [7]. By
a transversal A of an equivalence relation π on a set X we mean a subset of X
with the property that each a in A belongs to precisely one π-class.

Lemma 2.3. Let π1, π2, ..., πm (where m = (n−1

r−1
), r ≥ 3) be a list of the

convex equivalences of weight r on Xn. Suppose that there exist distinct subsets
A1, A2, ..., Am of cardinality r of Xn with the property that Ai is a transversal
of πi−1, πi (i = 2, ...,m) and A1 is a transversal of π1, πm. Then each H-class
(πi, Ai) consists of an idempotent εi, and there exist idempotents εm+1, ..., εp
(where p = (n

r
)) such that {ε1, ε2, ..., εp} is a set of generators for L(n, r).

Assuming the listing of convex equivalences and subsets as in Lemma 2.3
above, we now show that every idempotent in Er is expressible as a product of
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the p idempotents ε1, ε2, ..., εp. Notice first that the product εiεi−1 (i = 2, ...,m)
is an element of height r, since we have a configuration

εi−1 ◦
∗ εi

in which the H-class labeled ◦ consists of an idempotent. Moreover, the element
εiεi−1 is in the position ∗ by Lemma 1 in [7]. By the same token the product
ε1εm is of height r, and εm L ε1εmR ε1.

Choose the idempotents εm+1, ..., εp so that ε1, ε2, ..., εp covers all the L-classes
in Jr. Then if η is an arbitrary idempotent in Jr there exists a unique i ∈ {1, ..., p}
such that ηLεi, and a unique j ∈ {1, ...,m} such that ηRεj ,

εk ... ... εi
...

...
εj−1 ◦ ...

εj ... η

Moreover, there is a unique k ∈ {1, ...,m} such that εiRεk. (If i ∈ {1, ...,m}
then of course k = i.) If k = j then η = εi and there is nothing to prove. If k < j
then

η = εj εj−1 · · · εk+1 εi .

If k > j then

η = εj · · · ε1 εm · · · εk+1 εi .

We have shown that every idempotent in Jr can be expressed as a product of
the p = (n

r
) idempotents, ε1, ..., εp. Hence

L(n, r) = 〈ε1, ε2, ..., εp〉 .

It remains to prove that the listing of convex equivalences and images postu-
lated in the statement of Lemma 2.3 can actually be carried out. Let n ≥ 4 and
2 ≤ r ≤ n− 2, and consider the Proposition:

P (n, r). There is a way of listing the convex equivalences of weight r as
π1, π2, ..., πm (with m = (n−1

r−1
) and π1 having {r, r + 1, ..., n} as the only non-

singleton class, π2 having {r − 1, r} and {r + 1, ..., n} as the only non-singleton
classes, πm having {r− 1, ..., n− 1} as the only non-singleton class) so that there
exist subsets A1, ..., Am of Xn of cardinality r with the property that Ai is a
transversal of πi−1, πi (i = 2, ...,m) and A1 is a transversal of π1, πm.
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We shall prove this by a double induction on n and r, the key step being a
kind of Pascal’s Triangle implication

P (n− 1, r − 1) and P (n− 1, r) ⇒ P (n, r) .

First, however, we anchor the induction with two Lemmas.

Lemma 2.4. P (n, 2) holds for every n ≥ 4.

Proof: Consider the list π1, ..., πn−1 of convex equivalences of weight 2 on
Xn, where

πi = 1 2 3 · · · i/i+ 1 · · ·n .

Let

A1 = {1, n} , A2 = {1, 3} and Ai = {i− 1, n}

for i=3, ..., n−1. Then it is easy to verify that π1, π2, ..., πn−1 and A1, A2, ..., An−1

have the required property.

Lemma 2.5. P (n, n− 2) holds for every n ≥ 4.

Proof: The proof is by induction. We shall show that for k ≥ 4,

P (k, k − 2) ⇒ P (k + 2, k) .

For n = 4 the result follows from Lemma 2.4, and for n = 5 we have the list of
the six convex equivalences and the six subsets as follows:

1/2/3 4 5 {1, 2, 5} ,

1/2 3/4 5 {1, 2, 4} ,

1 2/3/4 5 {1, 3, 4} ,

1 2/3 4/5 {1, 3, 5} ,

1 2 3/4/5 {2, 4, 5} ,

1/2 3 4/5 {1, 4, 5} .

Suppose inductively that P (k, k − 2) holds (k ≥ 4). Thus we have a list
π1, π2, ..., πm (with m = (k−1

k−3
)) of convex equivalences of weight k − 2 on Xk,

and a list A1, A2, ..., Am of subsets of Xk of cardinality k − 2 such that Ai is a
transversal of πi−1, πi (i = 2, ...,m) and A1 is a transversal of π1, πm. We may
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also assume that

π1 has {k − 2, k − 1, k} as the only non-singleton class ,

π2 has {k − 3, k − 2} and {k − 1, k} as the only non-singleton class ,

πm has {k − 3, k − 2, k − 1} as the only non-singleton class ,

A2 = Xk\{k − 2, k} .

Let σ1, ..., σk be the list of convex equivalences of weight k on Xk+1, where

σi has {k − i+ 1, k − i+ 2} as the only non-singleton class .

(Thus in particular σ1, σ2 and σk have {k, k + 1}, {k − 1, k} and {1, 2} as the
only non-singleton classes respectively.) Let τ1, τ2, ..., τk−1 be the list of convex
equivalences of weight k − 1 on Xk, where

τi has {k − i, k − i+ 1} as the only non-singleton class.

(In particular each of τ1, τ2 and τk−1 has {k − 1, k}, {k − 2, k − 1} and {1, 2} as
the only non-singleton class respectively.) Define the convex equivalences

π′i = πi ∪ {(k + 1, k + 1)} ∪ {(k + 2, k + 2)}, for i = 1, ...,m ,

σ′i = σi with k + 2 adjoined to the class containing k + 1, i = 1, ..., k ,

τ ′i = τi with k + 1 adjoined to the class containing k,

and k + 2 as a singleton class, for i = 1, ..., k − 1 .

Then arrange them as follows:

σ′1, ..., σ
′

k, τ
′

k−1, ..., τ
′

2, π
′

2, ..., π
′

m, π′1, τ
′

1 . (2.6)

Notice that these convex equivalences are all distinct, and (2.6) is a complete list
of the convex equivalences of weight k on Xk+2, since m+ k + k − 1 = (k+1

k−1
).

We now define the subsets

A′i = Ai ∪ {k + 1, k + 2} for i = 1, ...,m ,

Bi = Xk+2\{k − i+ 2, k + 2} for i = 2, ..., k ,

Ci = Xk+2\{k − i+ 1, k + 1} for i = 1, 3, ..., k ,

D = Xk+2\{k − 1, k} .

It follows from the hypothesis that A′i is a transversal of π
′

i−1, π
′

i for i = 3, ...,m
and that A′1 is a transversal of π

′

m, π
′

1. It is also not difficult to verify that, for
i = 2, ..., k, Bi is a transversal of σ

′

i−1, σ
′

i; for i = 3, ..., k − 1, Ci is a transversal
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of τ ′i−1, τ
′

i ; C1 is a transversal of σ
′

1, τ
′

1; Ck is a transversal of σ
′

k, τ
′

k−1
; A′2 is a

transversal of τ ′2, π
′

2; and finally D is a transversal of π′1, τ
′

1. It therefore remains
to show that the subsets

C1, B2, ..., Bk, Ck, Ck−1, ..., C3, A
′

2, A
′

3, ..., A
′

m, A′1, D (2.7)

are all distinct. It is clear that the A′’s, B’s and C’s are all distinct. (The A′’s
contain k+1 and k+2, the B’s contain k+1 but not k+2, while the C’s contain
k + 2 but not k + 1.) Also D is distinct from the B’s and the C’s (since the
latter must not contain k + 1 or k + 2). Note that for i = 1, 2, ...,m the L-class
characterized by Ai contains at least two idempotents (since Ai is a transversal
of πi−1 and πi for i = 2, ...,m and A1 is a transversal of π1 and πm). But the
L-class characterized by D\{k + 1, k + 2} contains only one idempotent, namely

(

1 2 ... k − 3 {k − 2, k − 1, k}
1 2 ... k − 3 k − 2

)

.

Hence D\{k+1, k+2} is not one of the A’s, and consequently D is distinct from
the A′’s. So all the subsets in (2.7) are distinct.

Lemma 2.8. Let n ≥ 6 and 3 ≤ r ≤ n − 3. Then P (n − 1, r − 1) and
P (n− 1, r) together imply P (n, r).

Proof: From the assumption P (n− 1, r) we have a list σ1, σ2, ..., σm (where
m = (n−2

r−1
)) of convex equivalences of weight r on Xn−1 and a list A1, ..., Am of

distinct subsets of Xn−1 of cardinality r such that Ai is a transversal of σi−1, σi

(i = 2, ...,m) and A1 is a transversal of σm, σ1. We may also assume that

σ1 has {r, ..., n− 1} as the only non-singleton class ,

σ2 has {r − 1, r} and {r + 1, ..., n− 1} as the only non-singleton classes ,

σm has {r − 1, ..., n− 2} as the only non-singleton class ,

A2 = {1, 2, ...., r − 1, r + 1} .

From the assumption P (n−1, r−1) we have a list τ1, ..., τt (where t = (
n−2

r−2
))

of convex equivalences of weight r − 1 on Xn−1 and a list B1, ..., Bt of distinct
subsets of cardinality r − 1 on Xn−1 such that Bi is a transversal of τi−1, τi

(i = 2, ..., t) and B1 is a transversal of τt, τ1. We may also assume that

τ1 has {r − 1, ..., n− 1} as the only non-singleton class ,

τ2 has {r − 2, r − 1} and {r, ..., n− 1} as the only non-singleton classes ,

τt has {r − 2, ..., n− 2} as the only non-singleton class ,

B2 = {1, 2, ...., r − 2, r} .
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Now, for i = 1, ...,m let

σ′i = σi with n adjoined to the class containing n− 1 ,

for j = 1, ..., t let
τ ′j = τj ∪ {(n, n)} .

Then arrange the convex equivalences as follows:

σ′1, ..., σ
′

m, τ ′2, ..., τ
′

t , τ
′

1 . (2.9)

Note that m + t = (n−1

r−1
). Hence above is a complete list of all the convex

equivalences of weight r on Xn. Next we define

A = {1, 2, ..., r − 1, n} ,

B′i = Bi ∪ {n} for i = 1, ..., t ,

and arrange the subsets as follows:

A,A2, A3, ..., Am, B′2, ..., B
′

t, B
′

1 . (2.10)

Then Ai is a transversal of σ
′

i−1, σ
′

i (i = 2, ...,m); B
′

i is a transversal of τ
′

i−1, τ
′

i

(i = 3, ..., t); B′1 is a transversal of τ
′

t , τ
′

1; A is a transversal of σ
′

1, τ
′

1 and B′2 is a
transversal of σ′m, τ

′

2.
It is clear that A2, ..., Am, B′1, ..., B

′

t are all distinct subsets of Xn of cardinality
r, and A is distinct from A2, ..., Am. If A = B′i for some i = 1, ..., t, then

A\{n} = Bi = {1, 2, ..., r − 1} .

But the L-class characterized by {1, 2, ..., r−1} has only one idempotent, namely

(

1 2 3 ... r − 2 A′

1 2 3 ... r − 2 r − 1

)

,

where A′ = Xn\{1, 2, ..., r − 2}. This is contrary to the hypothesis that the
L-class characterized by Bi must contain at least two idempotents. Hence all the
subsets are distinct. Thus the induction step is complete, and we may deduce
that P (n, r) is true for all n ≥ 4 and all r such that 2 ≤ r ≤ n− 2.
The pattern of deduction is

P (4, 2)

P (5, 2) P (5, 3)

P (6, 2) P (6, 3) P (6, 4)

P (7, 2) P (7, 3) P (7, 4) P (7, 5)
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3 – Order-preserving partial transformation semigroups

As usual, we shall refer to an element α in POn, and indeed in the larger
semigroup Pn of all partial transformations of Xn, as being of type (k, r), or
belonging to the set [k, r] if | domα| = k and |Imα| = r.
The J -class Jr = {α ∈ POn : |Imα| = r} is the union of the sets [k, r], where

r ≤ k ≤ n. The number of L-classes in Jr is the number of image sets in Xn

of cardinality r, namely (n
r
). The number of R-classes in Jr is the number of

convex equivalences of weight r on all the subsets of Xn of cardinality k, where
r ≤ k ≤ n. This number is

∑n
k=r(

n
k
)(k−1

r−1
).

Lemma 3.1. Jr ⊆ (Jr+1)
2 for 1 ≤ r ≤ n− 3.

Proof: Let α in Jr be in [k, r], 2 ≤ r ≤ k ≤ n. If k = r, the result follows
from Lemma 3.4 in [2], that [r, r] ⊆ ([r + 1, r + 1])2. If k > r, then the proof of
Lemma 2.1 above applies equally to this case by adjusting A′ to {r + 2}.

From Lemma 3 in [7] we also deduce that the rank ofM(n, r) must be at least
as large as the number of R-classes in Jr. Thus we have

rank(M(n, r)) ≥
n
∑

k=r

(

n
k

)(

k − 1
r − 1

)

.

Theorem 3.2. For 1 ≤ r ≤ n− 2,

rank(M(n, r)) = idrank(M(n, r)) =
n
∑

k=r

(

n
k

)(

k − 1
r − 1

)

.

The proof follows the same basic strategy as that of Theorem 2.2. It depends
on the following Lemma.

Lemma 3.3. Let A1, ..., Am (where m = (n
r
) and r ≥ 2) be a list of subsets

of Xn with cardinality r. Suppose that there exist distinct convex equivalences
π1, ..., πm of weight r on Xn with the property that Ai−1, Ai are both transversals
of πi (i = 2, ...,m) and Am, A1 are both transversals of π1. Then each H-class
(πi, Ai) consists of an idempotent εi, and there exist idempotents εm+1, ..., εp
(where p =

∑n
k=r(

n
k
)(k−1

r−1
)) such that {ε1, ..., εp} is a set of generators for M(n, r).

Assuming the listing of convex equivalences and images as in Lemma 3.3
above, we now show that every idempotent in Jr is expressible as a product of
the p idempotents ε1, ε2, ..., εp.
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Notice first that εi−1 εi (i = 2, ...,m) is an element of height r, since we have
a configuration

εi−1 ∗
◦ εi

in which the H-class labeled ◦ contains an idempotent. Moreover, by Lemma 1
in [7], the element εi−1εi is in position ∗. By the same token, the product εmε1 is
also of height r, and εmRεmε1Lε1.

Choose the idempotents εm+1, ..., εp so that ε1, ..., εp cover all the R-classes in
Jr. Then if η is an arbitrary idempotent in Jr there exists a unique i in {1, ..., p}
and a unique j in {1, ...,m} such that ηRεi and ηLεj .

εk
◦ εk+1

...

... εj

...
...

εi η

Moreover, there is a unique K in {1, ...,m} such that εiLεk. (If i ∈ {1, ...,m}
then of course k = i.) If k = j then η = εi and there is nothing to prove. If k < j
then

η = εi εk+1 εk+2 · · · εj .

If k > j then

η = εi εk+1 · · · εm ε1 · · · εj .

Note that in On, the number of L-classes in any J -class exceeds the number of
R-classes, in POn the number of L-classes in a J -class is smaller than the number
of R-classes. This accounts for the difference of the strategies in Lemmas 2.3 and
3.3.

It remains to prove that the listing of images and convex equivalences postu-
lated in the statement of Lemma 3.3 can actually be carried out. Let n ≥ 4 and
2 ≤ r ≤ n− 2, and consider the Proposition:

P (n, r). There is a way of listing the subsets of Xn of cardinality r as
A1, ..., Am (with m = (n

r
), A1 = {1, 2, ..., r}, A2 = {1, 2, ..., r − 1, r + 1}, Am =

{1, 2, ..., r − 1, n}) so that there exist distinct convex equivalences π1, ..., πm of
weight r with the property that Ai−1, Ai are both transversals of πi (i = 2, ...,m)
and Am, A1 are both transversals of π1.
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The proof is by double induction on n and r, the key step being again a
Pascal’s triangular implication

P (n− 1, r − 1) and P (n− 1, r) ⇒ P (n, r) .

First, however, we anchor the induction with two Lemmas.

Lemma 3.4. P (n, 2) holds for every n ≥ 4.

Proof: The proof is by induction. For n = 4 we have the list of 6 subsets
and 6 equivalences as follows:

{1, 2} 1/2 4 ,

{1, 3} 1/2 3 ,

{2, 3} 1 2/3 ,

{2, 4} 2/3 4 ,

{3, 4} 2 3/4 ,

{1, 4} 1 3/4 .

Suppose inductively that P (n − 1, 2) holds (n ≥ 5). Thus we have a list
A1, ..., At (where t = (n−1

2
)) of subsets of Xn−1 of cardinality 2, and a list

π1, ..., πt of distinct convex equivalences of weight 2 such that for i = 2, ..., t
the sets Ai−1, Ai are both transversals of πi and At, A1 are both transversals of
π1. Suppose moreover that A1 = {1, 2}, A2 = {1, 3} and At = {1, n− 1}. Let

Bi = {i, n}

for i = 1, ..., n− 1, and define

π′1 = π1 with n− 1 being replaced by n ,

σ1 = 1 2/n− 1 n ,

σi = i i+ 1/n for i = 2, ..., n− 2 ,

σn−1 = 1 n− 1/n .

Arrange the subsets and the convex equivalences as follows:

A1, A2, ..., At, B2, B3, ..., Bn−1, B1 ,

π′1, π2, ..., πt, σ1, σ2, ..., σn−2, σn−1 .

Then, it is easy to verify that the subsets and the convex equivalences as arranged
above satisfy P (n, 2). Notice that these subsets are all the subsets of Xn of
cardinality 2, and the convex equivalences are all distinct.
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Lemma 3.5. P (n, n− 2) holds for every n ≥ 4.

Proof: We shall show that for k ≥ 4,

P (k, k − 2) ⇒ P (k + 2, k) .

But first we show that P (4, 2) and P (5, 3) are true.
For n = 4, the result follows from Lemma 3.4. For n = 5, we have the list of

10 subsets and 10 equivalences as follows:

{1, 2, 3} 1/2/3 5 ,

{1, 2, 4} 1/2/3 4 ,

{1, 3, 4} 1/2 3/4 ,

{2, 3, 4} 1 2/3/4 ,

{2, 3, 5} 2/3/4 5 ,

{2, 4, 5} 2/3 4/5 ,

{3, 4, 5} 2 3/4/5 ,

{1, 4, 5} 1 3/4/5 ,

{1, 3, 5} 1/3 4/5 ,

{1, 2, 5} 1/2 3/5 .

Suppose inductively that P (k, k − 2) holds (k ≥ 4). Thus we have a list
A1, ..., Am (where m = ( k

k−2
)) of subsets of Xk of cardinality k − 2, and a list

π1, ..., πm of distinct convex equivalences of weight k−2 such that for i = 2, ...,m
the sets Ai−1, Ai are both transversals of πi and Am, A1 are both transversals of
π1. We may also assume that

A1 = {1, 2, ..., k − 2} , A2 = {1, 2, ..., k − 3, k − 1}

and

Am = {1, 2, ..., k − 3, k} .

Let B1, ..., Bk+1 be the list of subsets of Xk+1 of cardinality k, where Bi =
Xk+1\{k+2−i}. (Thus in particular B1={1, 2, ..., k} and Bk+1={2, 3, ..., k+1}.)
Let C1, ..., Ck be the list of subsets of Xk of cardinality k − 1, where Ci =
Xk\{k + 1 − i}. (In particular C1 = {1, 2, ..., k − 1} and Ck = {2, 3, ..., k}.)
Define

A′i = Ai ∪ {k + 1, k + 2} for i = 1...,m ,

C ′i = Ci ∪ {k + 2} for i = 1, ..., k .

Notice that the subsets A′1, ..., A
′

m, B1, ..., Bk+1, C
′

1, ..., C
′

k are all distinct, and
form a complete list of subsets of Xk+2, of cardinality k, since m+ k+ (k+1) =
(k+2

k
).
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Denote by |i, j| the convex equivalence of weight n−1 on a set T of n elements,
where {i, j} is the only non-singleton class. Then define

σi = |k + 2− i, k + 3− i| on Xk+1 for i = 2, ..., k + 1 ,

τi = |k + 1− i, k + 2− i| on Xk ∪ {k + 2} for i = 2, 4, ..., k − 1 ,

π′i = πi ∪ {(k + 1, k + 1)} ∪ {(k + 2, k + 2)} for i = 1, 3, ...,m ,

δ1 = |k, k + 2| on Xk ∪ {k + 2} ,

δ2 = |k + 1, k + 2| on Xk+2\{1} ,

δ3 = |k, k + 1| on Xk+2\{k − 2} ,

δ4 = |k, k + 1| on Xk+2\{k − 1} .

Now, arrange the subsets and the convex equivalences as follows:

B1, B2, ..., Bk+1, C
′

k, C
′

k−1, ..., C
′

3, A
′

2, A
′

3, ..., A
′

m, A′1, C
′

2, C
′

1 ,

δ1, σ2, ..., σk+1, δ2, τk, ..., τ4, δ3, π
′

3, ..., π
′

m, π′1, δ4, τ2 .

With this arrangement it is easy to verify that the subsets and the convex equiv-
alences satisfy P (k + 2, k).

Since an R-class characterized by a convex equivalence of weight n − 1 on a
set of n elements contains only two idempotents, the convex equivalences above
are unique, and therefore distinct.

Lemma 3.6. Let n ≥ 5 and 3 ≤ r ≤ n − 3. Then P (n − 1, r − 1) and
P (n− 1, r) together imply P (n, r).

Proof: From the assumption P (n − 1, r) we have a list A1, ..., Am (where
m = (n−1

r
)) of the subsets of Xn−1 with cardinality r and a list σ1, ..., σm of

distinct convex equivalences of weight r such that Ai−1, Ai (i = 2, ...,m) are
transversals of σi, and A1, Am are transversals of σ1. We may also assume that

A1 = {1, 2, ..., r} , A2 = {1, ..., r − 1, r + 1} , Am = {1, ..., r − 1, n− 1}

and σ2 has {r, r + 1} as the only non-singleton class.

From the assumption P (n−1, r−1) we have a list B1, ..., Bt (where t = (
n−1

r−1
))

of subsets of Xn−1 of cardinality r − 1, and a list τ1, ..., τt of distinct convex
equivalences of weight r − 1 such that Bj−1, Bj (j = 2, ..., t) are transversals of
τj , and B1, Bt are transversals of τ1. We may also assume that

B1 = {1, 2, ..., r − 1} , B2 = {1, ..., r − 2, r} , Bt = {1, .., r − 2, n− 1}

and that τ2 has {r − 1, r} as the only non-singleton class.
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Let
B′i = Bi ∪ {n} (i = 1, ..., t) .

Then A1, ..., Am, B′1, ..., B
′

t is a complete list of the subsets of Xn of cardinality r.
(Notice that m+ t = (n

r
).) Define

σ′1 = σ1 with n− 1 replaced by n ,

τ ′i = τi ∪ {(n, n)} for i = 1, 3, ..., t ,

while τ ′2 is an equivalence of weight r whose only non-singleton class is {n−1, n}.
Then σ2, ..., σm, τ ′1, ..., τ

′

t are all distinct (since the σ’s do not contain n, while the
τ ′’s contain n). Also σ′1 is distinct from all of them, since σ′1 contains r and n
in the same equivalence class; and τ ′2 is distinct from all the others, since it has
n− 1 and n in the same equivalence class.
Arrange the subsets and the convex equivalences as follows:

A1, A2, ..., Am, B′2, ..., B
′

t, B
′

1 ,

σ′1, σ2, ..., σm, τ ′2, ..., τ
′

t , τ
′

1 .

With this arrangement it is easy to verify that the convex equivalences and the
subsets satisfy P (n, r).

The pattern of deduction here is

P (4, 2)

P (5, 2) P (5, 3)

P (6, 2) P (6, 3) P (6, 4)

P (7, 2) P (7, 3) P (7, 4) P (7, 5)

Remark 3.7. Observe that in Lemmas 3.4, 3.5 and 3.6 (proof) all the convex
equivalences used have only one non-singleton class, except for τ ′2 in Lemma 3.6
which has two. In all cases the non-singleton class (or classes) contained only
two elements, and since n ≥ 4, r = 2 in 3.4, n ≥ 4, r = n − 2 in 3.5 and n ≥ 5,
r ≤ n − 3 in 3.6 the convex equivalences are all partial. Thus in the generating
set {ε1, ..., εp} of Lemma 3.3, ε1, ..., εm need not be full idempotents.

We shall find this useful in the next section.
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4 – Strictly partial order-preserving transformations

It is clear that the number of L-classes in a J -class Jr of SPOn is (
n
r
), and

the number of R-classes is
∑n−1

k=r (
n
k
)(k−1

r−1
).

Similar to Lemmas 2.1 and 3.1 we have:

Lemma 4.1. For 1 ≤ r ≤ n− 3, we have Jr ⊆ (Jr+1)
2.

Proof: The proof of Lemma 2.1 applies to this case also by adjusting A′ to
{r + 2}.

The next result proves that N(n, r) is idempotent-generated.

Proposition 4.2. Let En−2 be the set of all idempotents in Jn−2. Then
Jn−2 ⊆ 〈En−2〉.

Proof: Notice that Jn−2 = [n−1, n−2]∪ [n−2, n−2]. We shall first consider
an element α ∈ [n− 2, n− 2]. Let domα = Xn\{i, j} and assume that i < j, and
Imα = Xn\{k, l} with k < l. Let ε be the partial identity on domα. We now
distinguish several cases.

Case 1. i = k.

a) j < l. Let A = domα ∪ {j}. For s = 1, ..., l − j define the idempotents εs

on A by
{j + s− 1, j + s} εs = j + s− 1 and x εs = x

for all x ∈ A\{j + s− 1, j + s}. Then

α = ε ε1 ε2 · · · εl−j .

b) j > l. Let A = domα ∪ {j}. For s = 1, ..., j − l define the idempotents εs

on A by
{j − s, j − s+ 1} εs = j − s+ 1 and x εs = x

for all x in A\{j − s, j − s+ 1}. Then α = ε ε1 · · · εj−l.

c) j = l. Here α is an idempotent.

Case 2. j = l.

a) i < k. Let A = domα ∪ {i}. For s = 1, ..., k − i, define εs by

{i+ s− 1, i+ s} εs = i+ s− 1 and x εs = x

for all x ∈ A\{i+ s− 1, i+ s}. Then

α = ε ε1 · · · εk−i .
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b) i > k. Let A = domα ∪ {i}. For s = 1, ..., i− k define εs by

{i− s, i− s+ 1} εs = i− s+ 1 ,

and x εs = x for all x in A\{i− s, i− s+ 1}. Then α = ε ε1 · · · εi−k.

Case 3.

a) i < k < j < l. Let A = domα ∪ {i}, B = Xn\{k}. For s = 1, ..., k − i and
t = 1, ..., l − j, define εs and ηt as follows:

{i+ s− 1, i+ s} εs = i+ s− 1 and x εs = x

for all x ∈ A\{i+ s− 1, i+ s};

{j + t− 1, j + t} ηt = j + t− 1 and x ηt = x

for all x ∈ B\{j + t− 1, j + t}. Then

α = ε ε1 · · · εk−i η1 · · · ηl−j .

b) k < i < l < j. Let A = domα ∪ {i}, B = Xn\{k}. For s = 1, ..., i− k and
t = 1, ..., j − l define εs and ηt as follows:

{i− s, i− s+ 1} εs = i− s+ 1 , x εs = x (x ∈ A\{i− s, i− s+ 1}) ,

{j − t, j − t+ 1} ηt = j − t+ 1 , x ηt = x (x ∈ B\{j − t, j − t+ 1}) .

Then α = ε ε1 · · · εi−k η1 · · · ηj−l.

Case 4.

a) i < k < l < j. Let A = domα ∪ {i}, B = Xn\{k}. For s = 1, ..., k − i and
t = 1, ..., j − l define εs and ηt as follows:

{i+ s− 1, i+ s} εs = i+ s− 1 and x εs = x

for all x ∈ A\{i+ s− 1, i+ s},

{l + t− 1, l + t} ηt = l + t and x ηt = x

for all x ∈ B\{l + t− 1, l + t}. Then

α = ε ε1 · · · εk−i ηj−l · · · η1 .

b) k < i < j < l. Let A = domα ∪ {i}, B = Xn\{k}. For s = 1, ..., i− k and
t = 1, ..., l − j define εs and ηt as follows:

{i− s, i− s+ 1} εs = i− s+ 1 , x εs = x (x ∈ A\{i− s, i− s+ 1}) ,

{l − t, l − t+ 1} ηt = l − t , x ηt = x (x ∈ B\{l − t, l − t+ 1}) .



202 G.U. GARBA

Then α = ε ε1 · · · εi−k η1 · · · ηl−j .

Case 5.

a) i < j < k < l. Let A = domα ∪ {i}. For s = 1, .., j − i− 1, t = 1, ..., k − j
and u = 1, ..., l − k − 1 define εs, ηt and δu as follows:

{i+ s− 1, i+ s} εs = i+ s− 1 and x εs = x

for all x ∈ A\{i+ s− 1, i+ s};

{j − 1, j + 1} εj−1 = j − 1 and x εj−i = x

for all x ∈ A\{j − 1, j + 1};

{j + t− 1, j + t+ 1} ηt = j + t− 1 and x ηt = x

for all x ∈ Bt = Xn\{j + t− 1, j + t, j + t+ 1};

{k + u, k + u+ 1} δu = k + u and x δu = x

for all x ∈ Xn\{k, k + u, k + u+ 1}. Then

α = ε ε1 · · · εj−i η1 · · · ηk−j δ1 · · · δl−k−1 .

b) k < l < i < j. Let A = domα ∪ {j}. For s = 1, ..., j − i− 1, t = 1, ..., i− l
and u = 1, ..., l − k − 1 define ηs, ηt and δu as follows:

{j − s, j − s+ 1} εs = j − s+ 1 , x εs = x (x ∈ A\{j − s, j − s+ 1}) ,

{i− t, i− t+1} ηt = i− t+1 , x ηt = x (x ∈ Bt = Xn\{i− t−1, i− t, i− t+1}) ,

{l − u− 1, l − u} δu = l − u , x δu = x (x ∈ Xn\{l − u− 1, l − u, l − u+ 1}) .

Case 6. i < j = k < l. Let A = domα ∪ {i}. For s = 1, ..., j − i − 1 and
t = 2, ..., l − j define εs, η1 and ηt as follows:

{i+ s− 1, i+ s} εs = i+ s− 1 and x εs = x

for all x ∈ A\{i+ s− 1, i+ s};

{j − 1, j + 1} η1 = j − 1 and x η1 = x

for all x ∈ A\{j − 1, j + 1};

{j + t− 1, j + t} ηt = j + t− 1 and x ηt = x
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for all x ∈ A\{j + t− 1, j + t}. Then

α = ε ε1 · · · εj−i−1 η1 · · · ηl−j .

Now, if α ∈ [n− 1, n− 2] then it can be expressed as follows:

(

a1 ... ai−1 {ai, ai+1} ai+2 ... an−1

b1 ... bi−1 bi bi+1 ... bn−2

)

.

But then
α = ε β ,

where

ε =

(

a1 ... ai−1 {ai, ai+1} ai+2 ... an−1

a1 ... ai−1 ai ai+2 ... an−1

)

and

β =

(

a1 ... ai−1 ai ai+2 ... an−1

b1 ... bi−1 bi bi+1 ... bn−2

)

.

Note that ε is an idempotent, and that β ∈ [n− 2, n− 2]. Hence α is expressible
in terms of idempotents in En−2.

Theorem 4.3. For 1 ≤ r ≤ n− 2 we have

rank(N(n, r)) = idrank(N(n, r)) =
n−1
∑

k=r

(

n
k

)(

k − 1
r − 1

)

.

Proof: The reason for choosing ε1, ..., εm in the generating set {ε1, ..., εp}
for M(n, r) to be non-full idempotents (see Remark 3.7) is to make the corre-
sponding result for N(n, r) much easier to deduce; since we may choose the same
idempotents ε1, ..., εm and εm+1, ..., εq (where q =

∑n−1

k=r (
n
k
)(k−1

r−1
)) from the re-

maining R-classes to obtain the generating set {ε1, ..., εq} of N(n, r). And the
result follows from Lemma 3 in [7].
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