
PORTUGALIAE MATHEMATICA

Vol. 51 Fasc. 2 – 1994

INFINITE A-TENSOR PRODUCT ALGEBRAS

Athanasios Kyriazis

In this paper we study similarities between the spectra of a finite tensor
product of topological algebras, as presented in [6], and those of the “infinite
topological A-tensor products”.

Namely given an arbitrary family of locally convex A-algebras, i.e. locally
convex algebras with “coefficients” from a locally convex algebra A (not neces-
sarily equal to C), the infinite topological A-tensor product algebra is defined by
means of the direct system of the finite projective tensor product locally convex
A-algebras (Definition 1.1). This type of tensor product is different from that al-
ready defined in [7], where we consider finite inductive tensor productA-algebras.
Moreover this is an extension of the usual (complex) infinite tensor product of [4,
11, 14] (cf. also [5]), where the given algebras are unital and their “coefficients”
are taken from C. The relationship between these two tensor products is given
by Proposition 1.1.

Furthermore we consider the relationship between the numerical spectrum
(Gel’fand space) and the generalized A-spectrum of the infinite topological
A-tensor product of a family of unital locally convex A-algebras and the cor-
responding spectra of the factor algebras. Thus we get analogous results to the
finite case, extending those of [6, 10, 11, 15].

On the other hand, the investigation of the complete infinite topological
A-tensor product algebras enables us to take results of [12, 13, 15] within the
present more general context (cf. §5).

1. Let (Ei)i∈K be a family of locally convex A-algebras (where A is a
given locally convex algebra; cf. [6]) and F(K) the set of finite subsets of K.
For any α ∈ F(K) consider Eα ≡

⊗
i∈α

π
A
Ei as the finite projective tensor prod-

Received : July 30, 1991; Revised : January 24, 1992.

1980 Mathematics Subject Classification: Primary 46M05, 46M15; Secondary 46M10.



174 ATHANASIOS KYRIAZIS

uct (locally convex) A-algebra being (within an isomorphism of locally convex
A-algebras) uniquely defined, independently of any “enumeration” of α ∈ F(K)
(cf. [3: Chap. I, p. 50 ff.], [6: Proposition 2.1] and also [11: p. 216]). Moreover, let
0 6= x̃ ≡ (x̃i) ∈

∏
i∈K Ei be an idempotent element of the algebra Ẽ ≡

∏
i∈K Ei,

i.e. (x̃)2 = x̃. For each α, β ∈ F(K), with α ⊆ β, one defines the map

(1.1) fβα : Eα → Eβ : xα ≡
⊗
i∈α

Axi 7→ yβ ≡
⊗
j∈β

Ayj ,

with yj = xi if j = i ∈ α and yj = x̃j if j ∈ β ∩ Cα, that is

(1.2) yβ =
⊗
i∈β

Ayi =
(⊗
j∈α

Axi

)
⊗A

( ⊗
j∈β∩Cα

Ax̃j

)
≡ xα ⊗A x̃β∩Cα .

The map (1.1) is a continuousA-algebra morphism such that the family (Eα, fβα)
defines a direct system of locally convex A-algebras, in such a way that we set
the following.

Definition 1.1. Let (Ei)i∈K be a family of locally convex A-algebras
with idempotent elements. We call (stabilized) infinite (projective) topological
A-tensor product algebra the corresponding locally convex direct limit
A-algebra of the system (Eα, fβα) (cf. [8]); that is we have

(1.3)
⊗
i∈K

AEi ≡ lim
→

α∈F(K)

(⊗
i∈α

π
AEi

)
.

In case Ei, i ∈ K, are locally convex A-algebras with continuous multipli-
cations, then

⊗
i∈α

π
A
Ei, α ∈ F(K) is an algebra of the same type, such that (1.3)

yields the following isomorphism of locally convex A-algebras

(1.4)
⊗̂
i∈K

AEi = l̂im
→
α

(⊗̂
i∈α

π
AEi

)

(“̂” means the completion; cf. also [8: §1, (1.8)]). Moreover one has an analogous
argument for locally m-convex A-algebras by considering on (1.3) the respective
final locally m-convex topology (cf. [10: Chapter II , Definition 9.1] and also [8]).

In a similar manner we have already defined another type of infinite (induc-
tive) topological A-tensor product algebra (cf. [7: (4.3)]). These two infinite ten-
sor products are isomorphic for suitable algebras, for instance in case of Fréchet
locally convex A-algebras (Ei)i∈K .

One gets a realization of the preceding analogous to the finite case
(cf. [6: §2]) within the usual (complex) infinite topological tensor product algebra
(cf. [10: Chapter X, Definition 5.2]).
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For A = C we obtain via (1.3) the infinite topological (C-) tensor product
algebra which coincides with that of [9: Chapter X, Definition 5.1] for x̃i = 1i,
i ∈ K (identities of Ei, i ∈ K); i.e. one gets

(1.5)
⊗
i∈K

Ei = lim
→

α∈F(K)

(⊗
i∈α

πEi

)
, α ∈ F(K) ,

where, for each α ∈ F(K),
⊗
i∈α

πEi is the (usual) finite projective (C-) tensor

product algebra.
Now, let Ei, i ∈ K, be locally convex A-algebras with idempotent elements

and
⊗
i∈α

πEi, α ∈ F(K), the finite projective tensor product algebra. For each

a ∈ A,
⊗
i∈α

xi ∈
⊗
i∈α

πEi, α ∈ F(K), the relation

(1.6) a ·
(⊗
i∈α

xi

)
=

⊗
i∈α

yi ,

with yj = a · xj , j ∈ α, and yj = xi, i 6= j, constitutes
⊗
i∈α

πEi a locally con-

vex A-algebra such that (
⊗
i∈α

πEi, fβα) defines a direct system of locally convex

A-algebras. On the other hand, for every α ∈ F(K), let Iα be the closed vector
subspace of

⊗
i∈α

πEi generated by the set

{
⊗
i∈α

yi −
⊗
i∈α

zi :
yi=xi, i 6=k

zi=xi, i 6=k
and

yj=aj

zk=axk

(j 6=k) : a∈A,
⊗
i∈α

xi ∈
⊗
i∈α

πEi

}
.

In particular, this is a closed 2-sided A-ideal of
⊗
i∈α

πEi, such that (Iα)α∈F(K)

constitutes a direct system of closed 2-sided A-ideals of (
⊗
i∈α

πEi)α.

Proposition 1.1. Let (Ei)i∈K be a family of locally convex A-algebras with
idempotent elements and I := lim

→
Iα the direct limit of the above system (Iα)α.

Then, one gets

(1.7)
⊗
i∈K

AEi =
⊗
i∈K

Ei/I

(cf. (1.3), (1.5)) within an isomorphism of locally convex A-algebras. For Fréchet
locally convex A-algebras Ei, i ∈ K, we have the following isomorphism of (com-
plete) locally convex A-algebras

(1.8)
⊗̂
i∈K

AEi =
⊗̂
i∈K

Ei/I .
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Before the proof we set the next.

Lemma 1.1. Let (Eα, fβα) be a direct system of locally convex A-algebras
and (Iα, tβα ≡ fβα|Iα) a direct system of closed 2-sided A-ideals of (Eα, fβα),
such that tβα(Iα) ⊆ Iβ, α ≤ β in K. Then (Eα/Iα)α∈K is a direct system of
locally convex A-algebras, such that

lim
→

(Eα/Iα) = lim
→

Eα/ lim
→

Iα

within an isomorphism of locally convex A-algebras.

Proof: For α ≤ β, Iα is the inverse image of t−1
βα(Iβ), such that the induced

mapping f̃βα : Eα/Iα → Eβ/Iβ is a monomorphism of A-algebras. Thus the
projections pα : Eα → Eα/Iα induce a continuous projection p : lim

→
Eα →

lim
→

(Eα/Iα) whose kernel is equal to lim
→

Iα. So we have a continuous isomorphism

of locally convex A-algebras u : lim
→

Eα/ lim
→

Iα → lim
→

(Eα/Iα) which is also open

for the relative final topologies.

Proof of Proposition 1.1: For each α ∈ F(K),
⊗
i∈α

πEi/Iα is a locally con-

vex A-algebra, such that
⊗
i∈α

πEi/Iα =
⊗
i∈α

π
A
Ei, within an isomorphism of locally

convex A-algebras (cf. [6: Proposition 2.1]).

Hence, Lemma 1.1 and (1.3), (1.5) imply (1.7). Moreover, concerning (1.8) I
is a closed 2-sided ideal since I := lim

→
Iα = lim

→
ker(pα) ∼= ker p (see also proof of

Lemma 1.1 and [1: Chap. 3, §7, no. 6, (27)]).

2. In this Section we examine the (numerical) spectrum (Gel’fand space [10])
of the infinite A-tensor product algebra as above, taking an analogous decompo-
sition of it as in the finite case.

Throughout the sequel we suppose that Ei, i ∈ K, are unital such the iden-
tities are considered as the idempotent elements x̃i, i ∈ K.

The next theorem extends results of this author [6: Theorem 3.1] as well as
of A. Mallios [10: Chapter XII, Theorem 2.1 and Corollary 2.1].

Theorem 2.1. Let (Ei)i∈K be a family of (unital) locally convex
A-algebras and

⊗
i∈K

AEi the corresponding infinite topological A-tensor product

algebra. Then one has

(2.1) M
( ⊗
i∈K

AEi

)
= ×

i∈K
M(A)+M(Ei)
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within a homeomorphism. Moreover, let the algebras Ei, i ∈ K, have continuous
multiplications and locally equicontinuous spectra, such that for all except of
finite many of them the corresponding spectra are equicontinuous. Then, one
has the next homeomorphism

(2.2) M
( ⊗̂
i∈K

AÊi

)
= ×

i∈K
M(A)+M(Ei) .

Proof: By (1.1) and [10: Chapter V, Theorem 3.1] we have

(2.3) M
( ⊗
i∈K

AEi

)
= lim

←
α∈F(K)

M
(⊗
i∈α

π
AEi

)

within a homeomorphism. Moreover, the next relation constitutes an extension
of [6: Theorem 3.1]

(2.4) M
(⊗
i∈α

π
AEi

)
= ×

i∈α
M(A)+M(Ei) ,

where the equality presents a homeomorphism while the second member means
the pullback of M(Ei), i ∈ α, over M(A)+ (:=M(A) ∪ {0}).
Thus, ( ×

i∈α
M(A)+M(Ei))α defines an inverse system of topological spaces whose

limit is the pullback of M(Ei) over M(A)+ for all i ∈ K, that is

(2.5) ×
i∈K
M(A)+M(Ei) = lim

←
α

(
×
i∈α
M(A)+M(Ei)

)

within a homeomorphism. So, (2.1) is an immediate consequence of (2.3), (2.4)
and (2.5). On the other hand, the algebra

⊗
i∈K

AEi has a locally equicontinuous

spectrum (cf. [6: Theorem 2.1] and also [10: Chapter XII, Theorem 2.2]) such
that

(2.6) M
( ⊗̂
i∈K

AÊi

)
=M

( ⊗
i∈K

AEi

)

within a homeomorphism (cf. (1.4), [10: Chapter V, Theorem 2.1 and Lemma
2.2]). So (2.2) follows from (2.1), (1.4).

Remark 2.1. Let (Ei)i∈K be a family of locally convex A-algebras and
µi : M(Ei)→M(A)+, i ∈ K, the continuous maps defined via

(2.7) µi(Xi)(a) :=
Xi(axi)

Xi(xi)
,
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where Xi ∈ M(Ei), a ∈ A and xi ∈ Ei with Xi(xi) 6= 0 (cf. [6: (3.5)]). Then for
any α ∈ F(K) the (finite cartesian product) continuous maps

(2.8) µα ≡
∏

i∈α

µi :
∏

i∈α

M(Ei) ∼=
homeo.

M
(⊗
i∈α

πEi

)
→ (M(A)+)α

(cf. [10: Chapter XII, p. 216, (2.13)]) define an inverse system of continuous
maps, such that the relative inverse limit (continuous map) is given by

(2.9) µ := lim
←
α

µα : lim
←
α

(∏

i∈α

M(Ei)
)

∼=
homeo.

∏

i∈K

M(Ei) →

→ lim
←
α

(M(A)+)α ∼= (M(A)+)K

(cf. [10: Chapter XII, Lemma 2.1]). If (∆+
α ) is the inverse system of diagonals

of (M(A)+)α, α ∈ F(K) and ∆+ the diagonal of (M(A)+)K , then ∆+ ∼=
homeo.

lim
←

∆+
α (cf. [6]), such that one has

(2.10) µ−1(∆+) = lim
←
α

(µ−1
α (∆+

α )) ,

within a homeomorphism (cf. also [1: p. 80, Proposition 2]).

On the other hand, by considering the direct system of closed 2-sided ideals
(Iα)α∈F(K) as in Proposition 1.1, the family (h(Iα))α consisting of the hull of
Iα (the set of those elements of M(Eα) vanishing on Iα, cf. [10: Chapter IX,
Definition 1.1]), constitutes an inverse system of topological spaces such that

(2.11) h(lim
→

Iα) = lim
←

h(Iα) = lim
←

(µ−1
α (∆+

α )) = µ−1(∆+)

within homeomorphisms (cf. (2.9) and also [6: Theorem 2.1], [7: Scholium 2.1]).
Thus (2.1), (2.10), (2.12) yield

(2.12) M
( ⊗
i∈K

AEi

)
= h(lim

→
Iα) = µ−1(∆+) = ×

i∈K
M(A)+M(Ei)

within homeomorphisms. Moreover, by considering the completions of the above
algebras the next homeomorphisms follow from (2.2), (2.7), (2.12)

(2.13) M
( ⊗̂
i∈K

AÊi

)
= h(lim

→
Iα) = µ−1(∆+) = ×

i∈K
M(A)+M(Êi) .

The last relations (2.12), (2.13) generalize relative applications analogous for
the finite case (cf. [6: Theorem 2.1]).
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3. In the present section we are interested in the generalized A-spectrum
of

⊗
i∈K

AEi and its completion with respect to (w.r.t.) a locally convex A-algebra

G, getting thus analogous decompositions to [6: Proposition 3.1] in the present
infinite case.

So, consider a family (Ei)i∈K , of (unital) locally convex A-algebras and
MA(Ei, G) the generalized A-spectrum of Ei w.r.t. a unital locally convex A-
algebra G with continuous multiplication; i.e. the set of (non-zero) continuous
A-morphisms of Ei to G endowed with the simple convergence topology on Ei

from Ls(Ei, G) (cf. [6: §3]). Then for any α ∈ F(K) consider Qα the (closed)
subset of

∏
i∈αMA(Ei, G) consisting of all elements (fi)i∈α such that

(3.1)
⊙

i∈α

fσ(i)(xσ(i)) =
⊙

i∈α

fτ(i)(xτ(i)) ≡
⊙

i∈α

fi(xi) .

Here (xi) ∈
∏

i∈α Ei, σ, τ ∈ Aut(α) (: automorphisms of α) and “
⊙

” denotes
(the ring) multiplication in G. The last relation remains “the same” w.r.t. each
“enumeration” of the finite set α ∈ F(K) (cf. [2: Chapter I, p. 45, Corollary of
the Proposition 2]) such that one gets (3.1) by an easy extension (to finite many
factors) of [6: p. 53, (3.6)]. Moreover, for any α ⊆ β in F(K), if tfβα is the
transpose map of (1.1) in MA(

⊗
i∈α

π
A
Ei, G) the family

(3.2) (Qα,
tfβα|Qα)

defines an inverse system of topological spaces (cf. also [8: (3.1), (3.2)]) such that

(3.3) lim
←
α

Qα ⊆ lim
←
α

(∏

i∈α

MA(Ei, G)
)

∼=
homeo.

∏

i∈K

MA(Ei, G)

(cf. [6: Chapter XII, Lemma 2.1]).

Theorem 3.1. Let (Ei)i∈K be a family of (unital) locally convex A-algebras
and G a unital locally convex A-algebra with continuous multiplication. Then,

(3.4) MA

( ⊗
i∈K

AEi, G
)
= lim
←
α

Qα ⊂
→

∏

i∈K

MA(Ei, G)

within homeomorphisms (cf. (3.3)). In particular, for G commutative, one has
the next homeomorphism

(3.5) MA

( ⊗
i∈K

AEi, G
)
=

∏

i∈K

MA(Ei, G) .

Proof: By (1.1) and [8: (3.1)] one obtains

(3.6) MA

( ⊗
i∈K

AEi, G
)
= lim
←
α

MA

(⊗
i∈α

π
AEi, G

)
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within a homeomorphism. Moreover, for any α ∈ F(K), an extension of
[6: Proposition 3.1] to finite many factors gives the next homeomorphism

(3.7) MA

(⊗
i∈α

π
AEi, G

)
= Qα

(cf. also (3.1)), such that (3.3), (3.6), (3.7) imply (3.4). Furthermore for G
commutative, (3.5) is an immediate consequence of (3.1), (3.3), (3.4).

4. In this Section we extend several results of [10: Chapter VI, §§1, 2], [12,13]
concerning the local equicontinuity of the generalized A-spectra of topological A-
algebras through the corresponding Gel’fand map. These results are useful for

the study of
⊗̂
i∈K

AÊi in connection with the functor MA(·, G) (cf. §5 below).

Thus, if E, G are topological A-algebras the generalized Gel’fand A-map is
defined as the A-morphism

(4.1) G : E → Cc(MA(E,G), G) : x 7→ G(x) := x̂ (: f 7→ x̂(f) := f(x)) ,

where in the range of G we mean the A-algebra of continuous maps ofMA(E,G)
into G, endowed with the topology of compact convergence. Moreover, one gets

(4.2) ̂x⊗A y = x̂⊗A ŷ |Q

(cf. [6: Theorem 3.1]), where x̂, ŷ, ̂x⊗A y are the generalized Gel’fand
A-transforms of x ∈ E, y ∈ F , x ⊗A y ∈ E⊗̂τ

A
F respectively. (We use here

the hypotheses of [6: Theorem 3.1]). Furthermore, the map (4.1) is continuous
if, and only if, every compact subset of MA(E,G) is equicontinuous (cf. [10:
Chapter VI, Theorem 1.1 and Remark 5.1]). On the other hand, if E, G are
locally convex A-algebras with G semi-Montel, then

(4.3) MA(E,G) is locally equicontinuous if, and only if, MA(E,G)
is locally compact and the map (4.1) is continuous.

(cf. [10: Chapter VI, Corollary 1.3] for an analogous instance).
Now, given E, G two topologicalA-algebras, E is calledA-spectrally barrelled

if the equicontinuous and weakly bounded subsets ofMA(E,G) coincide (cf. [13:
Definition 2.1] for A = C). One has this situation by considering, for instance,
Fréchet locally convex A-algebras. In this respect one obtains the continuity of
(4.1) and moreover we have an extension of [13: Lemma 4.3] as follows.

Lemma 4.1. Let E, F , G be unital topological A-algebras with G having
continuous multiplication. Moreover, let τ be a compatible A-tensor product
topology on E ⊗A F satisfying the conditions
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i) The canonical map of E × F into E ⊗τ
A
F is (jointly) continuous;

ii) For any pair (f, g) ∈MA(E,G)×MA(F,G), f ⊗A g ∈ LA(E ⊗τ
A

F,G)s;

(cf. [6: (3.1), (3.2)]). Furthermore consider the following assertions.

1) E, F are A-spectrally barrelled;

2) E ⊗τ
A

F is A-spectrally barrelled.

Then 1)⇒2). In particular, 1)⇔2) whenever G is commutative.

Proof: By [6: Proposition 3.1] there exists a homeomorphism into

(4.4) u : MA(E ⊗τ
A F,G) ↪→MA(E,G)×MA(F,G) ,

such that Imu = Q (cf. also (3.1) for a = {1, 2}). Thus if S is a bounded
subset ofMA(E⊗τ

A
F,G), by (4.4) u(S) is a bounded subset of Q ⊆ Ls(E,G)×

Ls(F,G) (cf. [10]) such that pr1(u(S)), pr2(u(S)) (pri (i = 1, 2) are the canonical
projections of the last cartesian product) are bounded subsets of MA(E,G),
MA(F,G) respectively (cf. (4.2)) and hence equicontinuous. Thus, the set

S ⊆ u−1
((

pr1(u(S))× pr2(u(S))
)
∩Q

)
=

= pr1(u(S))⊗A pr2(u(S)) ⊆MA(E ⊗τ
A F,G)

is equicontinuous (cf. [13] for the present case). The direction 2)⇒1) is analogous
to [13: Lemma 4.3].

Remark 4.1. The definition of a generalized Gel’fand A-map and the
results following it are also valid by replacing the generalized A-spectra with the
generalized (A,B)-spectra; i.e. the sets of continuous non-zero (A,B)-morphisms
of a topologicalA-algebra into a topological B-algebra. The last sets are endowed
with the simple convergence topology defined as in the generalized A-spectra.

Lemma 4.2. Let (Eα, fβα) be a direct system of unital topological (Aα, σβα)-
algebras (α < β in J) (cf. [8]) and G a topological A (= lim

→
Aα)-algebra.

Moreover, for each α ∈ J , assume the continuity of the generalized Gel’fand
(Aα,A)-maps Gα of Eα (cf. (4.1), Remark 4.1). Then the generalized Gel’fand
A-map G of E = lim

→
Eα is also continuous.

Proof: For each α ∈ K, if Xα is the canonical map of lim
←
M(Aα,A)(Eα, G)

into M(Aα,A)(Eα, G) (cf. [14: (3.1)]) the map

θα : Cc
(
M(Aα,A)(Eα, G), G

)
→ Cc

(
lim
←
M(Aα,A)(E,G), G

)
: s 7→ θα(s) := s◦Xα ,
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is continuous such that

(4.5) θα ◦ Gα = G ◦ fα , α ∈ K ,

with fα being the canonical map of Eα into E. Hence, the assertion follows from
(4.5) in connection with the definition of the direct limit topology on E = lim

→
Eα

(cf. also [10: Chapter IV, §2]).

5. The main objective of this Section is to give the generalized spectrum of
⊗̂
i∈K

AÊi (w.r.t. a topological algebra G) as a cartesian product of the correspond-

ing spectra of the factor algebras, getting thus an analogous result to that of
[6: Theorem 3.1].

First we set some applications concerning to the local equicontinuity of
MA(

⊗
i∈K

AEi, G).

Lemma 5.1. Let (Ei)i∈K be a family of (unital) locally convex A-algebras
and G a unital commutative locally convex semi-Montel A-algebra with continu-
ous multiplication. Moreover, let Ei, i ∈ K, have locally equicontinuous general-
ized A-spectra, such that for all except of finite many of them the corresponding
spectra are equicontinuous. Then MA(

⊗
i∈K

AEi, G) is locally equicontinuous.

Proof: By [6: Lemma 3.1], extending it in a finite case, MA(
⊗
i∈α

π
A
Ei, G),

α ∈ F(K), is locally equicontinuous such that (4.3), Lemma 4.2 imply the conti-
nuity of the generalized Gel’fand A-map of

⊗
i∈K

AEi. On the other hand, from the

relations (3.5), (4.3) MA(Ei, G), i ∈ K, are locally compact or compact if they
are locally equicontinuous or equicontinuous respectively. HenceMA(

⊗
i∈K

AEi, G)

is locally compact (Tychonov’s Theorem), such that the continuity of the gener-
alized Gel’fand A-map and the condition (4.3) yield the assertion.

Corollary 5.1. Let (Ei)i∈K be a family of locally convex A-spectrally
barrelled algebras and G an algebra as in Lemma 5.1. Then, MA(

⊗
i∈K

AEi, G)

is locally equicontinuous if, and only if, the algebras Ei, i ∈ K, have locally
equicontinuous generalized A-spectra, such that for all except of finite many of
them the corresponding spectra are equicontinuous.

Proof: By [6: Appendix]
⊗
i∈α

π
A
Ei, α ∈ F(K) is an A-spectrally barrelled al-

gebra such that
⊗
i∈K

AEi = lim
→
α

(
⊗
i∈α

π
A
Ei) is also A-spectrally barrelled (the proof is
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analogous to [13: Lemma 4.2]). Now, ifMA(
⊗
i∈K

AEi, G) is locally equicontinuous

then it is also locally compact (cf. (4.3)) such that the “if” part of the assertion
follows from the Tychonov’s Theorem (see also the comments before Lemma 1.1
as well as (4.3)). The rest is a consequence of the Lemma 5.1. (The A-spectrally
barrelledness of Ei, i ∈ K, is not necessary for this part of proof).

Now, we are in the position to set the next main result.

Theorem 5.1. Let the hypotheses of Lemma 5.1 be satisfied where moreover
the algebras Ei, i ∈ K, have continuous multiplications and G is complete. Then,
one has

(5.1) MA

( ⊗̂
i∈K

AÊi, G
)
=

∏

i∈K

MA(Êi, G)

within a homeomorphism.

Proof: by Lemma 5.1, MA(
⊗
i∈K

AEi, G) is locally equicontinuous such that

(5.2) MA

( ⊗̂
i∈K

AEi, G
)
=MA

( ⊗
i∈K

AEi, G
)

within a homeomorphism (cf. (1.4) and also [6: (3.11)]). Thus the relation (5.2),
Theorem 3.1 and [6: (3.11)] prove the assertion.

In another paper we extend the previous results examining the infinite tensor
product sheaf (resp. bundle) of a family of topological A-algebra sheaves (resp.
bundles) in relation with the holomorphic functions as well. Moreover in [9] we
study the infinite topological A-tensor product algebra as above in relation with
the theory of continuous central A-morphisms.
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