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ON THE NILPOTENT RANK OF
PARTIAL TRANSFORMATION SEMIGROUPS

G.U. Garba

Synopsis. In [7] Sullivan proved that the semigroup SPn of all strictly partial trans-

formations on the set Xn = {1, ..., n} is nilpotent-generated if n is even, and that if n is

odd the nilpotents in SPn generate SPn\Wn−1 where Wn−1 consists of all elements in

[n− 1, n− 1] whose completions are odd permutations. We now show that whether n is

even or odd both the rank and the nilpotent rank of the subsemigroup of SPn generated

by the nilpotents are equal to n + 2.

1 – Introduction

Let Pn be the semigroup of all partial transformations on the set Xn =
{1, ..., n}. An element α in Pn is said to have projection characteristic (k, r) or
to belong to [k, r] if | domα| = k and |imα| = r. Every element α ∈ [n− 1, n− 1]
has domain Xn\{i} and image Xn\{j} for some i, j in Xn. Hence there is a
unique element α∗ in [n, n] associated with α, defined by

i α∗ = j , x α∗ = xα otherwise ,

and called the completion of α. In [3] Gomes and Howie proved that if n is even
the subsemigroup SIn of Pn consisting of all strictly partial one-to-one trans-
formations is nilpotent generated. For n odd they showed that the nilpotents
in SIn generate SIn\Wn−1 where Wn−1 consists of all α ∈ [n − 1, n − 1] whose
completions are odd permutations.

Simultaneously and independently, Sullivan [7] investigated the corresponding
question for SPn, the subsemigroup of Pn consisting of all elements that are
strictly partial, where the answer turns out to be similar: If N is the set of
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nilpotents in SPn then

〈N〉 =

{

SPn if n is even,

SPn\Wn−1 if n is odd.

In [4] Gomes and Howie raised the question of the rank of the semigroup SIn.
They showed that SIn has rank n+ 1, and if n is even its nilpotent rank is also
n + 1. For n odd they showed that both the rank and the nilpotent rank of
SIn\Wn−1 are equal to n + 1. In this paper we show that SPn has rank n + 2,
and if n is even its nilpotent rank is also n+2. The rank and the nilpotent rank
of SPn\Wn−1 are also shown to be both equal to n+ 2, when n is odd.

2 – Preliminaries

The subsemigroup SPn has n J -classes, namely Jn−1, Jn−2, ..., J0 (where J0

consists of the empty map). For each r in {1, 2, ..., n− 1},

Jr =
n−1
⋃

k=1

[k, r] .

Lemma 2.1. For each J -class Jr in SPn, where r≤n−3, we have Jr⊆(Jr+1)
2.

Proof: Suppose first that α=

(

A1 A2 ... Ar

b1 b2 ... br

)

∈ [k, r] where r≤k≤n−2.

Then

α =

(

A1 A2 ... Ar x
a1 a2 ... ar x

)(

a1 a2 ... ar y
b1 b2 ... br z

)

,

a product of two elements in Jr+1, where x, y ∈ Xn\ domα, z ∈ Xn\ imα with
x 6= y and αi ∈ Ai for all i.

Suppose now that α ∈ [n−1, r]. We may suppose that A1 contains more than
one element. If a1, a

′
1 ∈ A1, then

α =

(

A1\{a
′
1} a′1 A2 ... Ar

a1 a′1 a2 ... ar

)(

{a1, a
′
1} a2 ... ar x

b1 b2 ... br y

)

,

a product of two elements in Jr+1, where x ∈ Xn\ domα, y ∈ Xn\ imα and
ai ∈ Ai for all i.

Lemma 2.2. For all r ≤ n− 2, [r, r] ⊆ ([r + 1, r + 1])2.
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Proof: Suppose that α =

(

a1 a2 ... ar

b1 b2 ... br

)

∈ [r, r]. Then

α =

(

a1 ... ar x
a1 ... ar x

)(

a1 ... ar y
b1 ... br z

)

,

where x, y ∈ Xn\ domα, z ∈ Xn\ imα with x 6= y.

The following result follows from [6]

Lemma 2.3. Every element α ∈ SPn of height r is expressible as a product
of nilpotents of the same height (where the height of α is defined to be |imα|).

Before considering the next result, we would like to clarify the notion of rank
in an inverse semigroup and in a semigroup that is not necessarily inverse. By
the rank of an inverse semigroup S we shall mean the cardinality of any subset A
of minimal order in S such that 〈A∪V (A)〉 = S, where V (A) is the set of inverses
of elements in A. On the other hand, the rank of the semigroup S is simply the
cardinality of any subset B of minimal order in S such that 〈B〉 = S. If the
subset A (or B) consists of nilpotents, the rank is called the nilpotent rank. We
shall sometimes want to distinguish between the rank of an inverse semigroup S
as an inverse semigroup and its rank as a semigroup.

Proposition 2.4. Let B = B(G, {1, ..., n}) be a Brandt semigroup, where
G is a finite group of rank r (r ≥ 1). Then the rank of B (as a semigroup) is
r + n− 1.

Proof: By Theorem 3.3 in [4] the rank of B as an inverse semigroup is
r + n − 1. But the rank of B as a semigroup is potentially greater than its
rank as an inverse semigroup. For if A is a generating set for B as a semigroup
and |A| = s, then certainly A together with its inverses generates B, and so
s ≥ r + n− 1.

It now remains to show that we can select a generating set for B consisting
of r + n− 1 elements. Let

A =
{

(1, g1, 1), ..., (1, gr−1, 1), (1, gr, 2), (2, e, 3), ..., (n− 1, e, n), (n, e, 1)
}

,

where e is the identity of G and {g1, ..., gr} is a generating set for G. We first
show that (1, gr, 1) and (1, e, 2) belong to 〈A〉.

(1, gr, 1) = (1, gr, 2) (2, e, 3) · · · (n− 1, e, n) (n, e, 1) .

Observe that

(1, g2
r , 2) = (1, gr, 2) (2, e, 3) · · · (n− 1, e, n) (n, e, 1) (1, gr, 2)

and
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(1, g3
r , 2) = (1, g2

r , 2) (2, e, 3) · · · (n− 1, e, n) (n, e, 1) (1, gr, 2) .

Continuing in this way, we see that (1, gs
r , 2) ∈ 〈A〉 for s = 1, 2, ... . If t is the

least integer for which gt
r = e then

(1, e, 2) = (1, gt
r, 2) ∈ 〈A〉 .

Let (i, g, j) be an arbitrary element in B. Then

(i, g, j) = (i, e, i+ 1) · · · (n− 1, e, n) (n, e, 1) (1, g, 1) (1, e, 2) · · · (j − 1, e, j)

and it is clear that (1, g, 1) can be expressed as a product of the elements
(1, g1, 1), ..., (1, gr, 1). Hence

〈A〉 = B .

Since |A| = r + n− 1 the proof is complete.

As remarked in [4], the principal factor PFn−1 = SPn/(Jn−2 ∪ ... ∪ J0) is a
Brandt semigroup, where PFn−1 may be thought of in the usual way as Jn−1∪{0},
and the product in PFn−1 of two elements of Jn−1 is the product in SPn if
this lies in Jn−1 and is 0 otherwise. The Brandt semigroup PFn−1 has the
structure B(G, I), where G = Sn−1, the symmetric group on n− 1 symbols, and
I = {1, ..., n}. (See [6], section II.3.)

Let A be an irredundant set of generators of SIn. Since SIn is generated by
the elements in Jn−1, we may choose to regard A as a subset of PFn−1. The
conclusion (as in [4]) is that A generates SIn if and only if it generates PFn−1.

The following Proposition now follows:

Proposition 2.5. Let SIn be the inverse semigroup of all strictly partial
one-one maps on Xn, where n ≥ 3. Then the rank of SIn (as a semigroup) is
n+ 1.

Proposition 2.6. Let n ≥ 4 be even. Then the nilpotent rank of SIn (as a
semigroup) is n+ 1.

Proof: Define Hi,j to consists of all elements α for which domα = Xn\{i}
and imα = Xn\{j}. For i = 4, ..., n− 1 define a mapping ξi ∈ Hi,n by

ξi=



























(

1 2 ... i−1 i+1 ... n−i+1 n−i+2 n−i+3 n−i+4 ... n
i i+1 ... 2i−2 2i−1 ... n−1 2 1 3 ... i−1

)

if i≤n/2,

(

1 2 ... (n/2)−1 (n/2) (n/2)+2 (n/2)+3 ... n
(n/2)+1 (n/2)+2 ... n−1 2 1 3 ... (n/2)

)

if i=(n/2)+1,

(

1 2 ... n−i n−i+1 n−i+2 n−i+3 ... i−1 i+1 ... n
i i+1 ... n−1 2 1 3 ... 2i−n−1 2i−n ... i−1

)

if i≥(n/2)+2,
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and

ξ1 =

(

2 3 ... n
1 2 ... n−1

)

,

ξ2 =

(

1 3 4 ... n−1 n
1 3 4 ... n−1 2

)

,

ξ3 =

(

1 2 4 ... n−2 n−1 n
3 4 5 ... n−1 2 1

)

,

ξn =

(

1 2 3 ... n−1
2 1 3 ... n−1

)

.

Then it is easy to verify that the mapping

φ : B(Sn−1, {1, ..., n})→ Qn−1 ,

defined by
(i, η, j)φ = ξi η ξ

−1
j ,

is an isomorphism, where Sn−1 is the symmetric group on Xn−1, and Qn−1 is the
principal factor SPn/(Jn−2 ∪ ... ∪ J0).

From Proposition 2.4, the set

A =
{

(1, g1, 1), (1, g2, 2), (2, e, 3), ..., (n− 1, e, n), (n, e, 1)
}

,

where g1 = (1 2 3 ... n− 1), g2 = (1 2) and e is the identity permutation in Sn−1,
generates B(Sn−1, {1, ..., n}). Thus Aφ generates Qn−1 and hence SIn. From [3]
we borrow the notation ‖a1 a2 · · · an‖ for the nilpotent α with domain Xn\{an}
and image Xn\{a1} for which ai α = ai+1 (i = 1, ..., n − 1). Then it is easy to
verify that

Aφ =
{

β, α1, α2, ..., αn

}

,

where

β =

(

2 3 ... n−1 n
3 4 ... n 2

)

, αn =

(

1 2 3 ... n−1
3 2 4 ... n

)

,

α1 = ‖2 n n−1 ... 3 1‖ , αn−1 = ‖n n−2 ... 1 n−1‖

and

αi = ‖i+1 i−1 i−2 ... 1 n n−1 ... i+2 i‖ for i = 2, ..., n− 2 ,

with β = ξ1g1ξ
−1
1 , α1 = ξ1g2ξ

−1
2 , αi = ξiξ

−1
i+1 for i = 2, ..., n− 1 and αn = ξnξ

−1
1 .

Now, bearing in mind that n is even, let

δ1 = ‖1 4 6 ... n−2 n 3 5 ... n−1 2‖ , δ2 = ‖2 n−1 n−2 n−3 ... 3 1 n‖ ;
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then
α1 δ1 = β and δ2 δ1 = αn .

Hence the n+ 1 nilpotents

α1, ..., αn−1, δ1, δ2

generate SIn. The result follows from Proposition 2.5.

Proposition 2.7. Let N ′ be the set of all nilpotents in SIn, where n ≥ 5 is
odd. Then the rank of 〈N ′〉 (as a semigroup) is equal to its nilpotent rank and
is n+ 1.

Proof: As in Proposition 2.4, we first notice that the rank of 〈N ′〉 must be
greater or equal to n+ 1. For i = 4, ..., n− 1 define a mapping λi ∈ Hi,n (where
Hi,n consists of all elements α for which domα = Xn\{i} and imα = Xn\{n})
by

λi=











































(

1 2 ... i−1 i+1 ... n−i+1 n−i+2 n−i+3 n−i+4 n−i+5 ... n
i i+1 ... 2i−2 2i−1 ... n−1 2 3 1 4 ... i−1

)

if 4≤ i<k,

(

1 2 ... k−1 k+1 k+2 k+3 k+4 ... n
k k+1 ... n−1 2 3 1 4 ... k−1

)

if i=k,

(

1 2 ... k−2 k−1 k k+2 k+3 ... n
k+1 k+2 ... n−1 2 3 1 4 ... k

)

if i=k+1,

(

1 2 ... n−i n−i+1 n−i+2 n−i+3 n−i+4 ... i−1 i+1 ... n
i i+1 ... n−1 2 3 1 4 ... 2i−n−1 2i−n ... i−1

)

if i≥k+2,

where k = (n+ 1)/2, and

λ1 =

(

2 3 ... n
1 2 ... n−1

)

,

λ2 =

(

1 3 4 ... n−1 n
3 1 4 ... n−1 2

)

,

λ3 =

(

1 2 4 ... n−2 n−1 n
1 4 5 ... n−1 2 3

)

,

λn =

(

1 2 3 4 ... n−1
2 3 1 4 ... n−1

)

.

Then the mapping

ψ : B(An−1, {1, ..., n})→ Qn−1\Wn−1 ,

defined by
(i, µ, j)ψ = λi µλ

−1
j ,
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is an isomorphism, where An−1 is the alternating group on Xn−1. For if we let

λ∗i = λi ∪ (i, n) ,

then the total number of inversions in λ∗i is

i(n− i) + 2 for i ≥ 4 ,

and is n − 1, 2n − 4, 3n − 11 for i = 1, 2, 3 respectively (see for example [1],
pp. 60–61). These numbers are clearly all even. Thus λ∗i is an even permutation
for all i. Hence λi ∈ Qn−1\Wn−1 and so the mapping ψ is well defined. It is easy
to verify that ψ is a bijective homomorphism.

From Coxeter and Moser ([2], section 6.3) we find that An−1 is of rank 2
(provided n ≥ 4), being generated by

(1 2) (3 · · · n−1) and (1 2 3) .

From Proposition 2.4 the set

A =
{

(1, g1, 1), (1, g2, 2), (2, e, 3), ..., (n− 1, e, n), (n, e, 1)
}

,

where g1 = (1 2) (3 · · · n−1), g2 = (1 2 3) and e is the identity permutation in
An−1, generates B(An−1, {1, ..., n}). Thus Aψ generates Qn−1\Wn−1 and hence
〈N ′〉.

It is easy to verify that

Aψ =
{

β, α1, ..., αn

}

,

where

β =

(

2 3 4 ... n−1 n
3 2 5 ... n 4

)

,

α1 = ‖2 n n−1 ... 3 1‖ , αn = ‖1 3 2 4 5 ... n‖ ,

and

αi = ‖i+1 i−1 ... 1 n n−1 ... i+2 i‖ for i = 2, ..., n−1 ,

with β = λ1g1λ
−1
1 , α1 = λ1g2λ

−1
2 , αi = λiλ

−1
i+1 for i = 2, ..., n−1 and αn = λnλ

−1
1 .

Now, let δ1 = ‖n 1 3 4 5 ... n−1 2‖; then

β = α1 δ1 αn .

Hence the n+ 1 nilpotents
α1, α2, ..., αn, δ1

generates 〈N ′〉.
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We now close this section with a result that is of independent interest. Here
{e} denotes the trivial group.

Proposition 2.8. The rank of B({e}, {1, ..., n}) is n.

Proof: The set of n elements

A =
{

(1, e, 2), (2, e, 3), ..., (n− 1, e, n), (n, e, 1)
}

generates B({e}, {1, ..., n}). If (i, e, j) is an arbitrary element in B({e}, {1, ..., n}),
then

(i, e, j) = (i, e, i+ 1) · · · (n− 1, e, n) (n, e, 1) (1, e, 2) · · · (j − 1, e, j) .

Since any generating set must cover the R-classes (as well as the L-classes) by
Lemma 3 in [5], and since the number of R-classes in B({e}, {1, ..., n}) is n, no
set of fewer than n elements can generate B({e}, {1, ..., n}). Hence the result.

3 – Strictly partial maps

Theorem 3.1. The rank of SPn is n+ 2.

Proof: We begin by showing that every generating set G of SPn must contain
at least n+ 2 elements. The top J -class is [n− 1, n− 1], and since this consists
entirely of one-one maps it does not generate SPn. From Lemmas 2.1 and 2.2 we
have

SPn =
〈

[n− 1, n− 1] ∪ [n− 1, n− 2]
〉

.

It is clear that in generating the elements of [n − 1, n − 1] only elements of
[n − 1, n − 1] may be used, and by Propositon 2.5 and the remarks made just
before at least n+ 1 elements are needed to generate [n− 1, n− 1]. Thus

∣

∣

∣G ∩ [n− 1, n− 1]
∣

∣

∣ ≥ n+ 1 .

In generating the elements of [n− 1, n− 2] at least one of the elements must be
from [n− 1, n− 2]. That is

|G| ≥ (n+ 1) + 1 = n+ 2 .

To generate [n− 1, n− 2] we now show that only one element from [n− 1, n− 2]
is needed. Let α ∈ [n− 1, n− 2] be given by

α =

(

{a1, a2} a3 ... an−1

b1 b3 ... bn−1

)

.
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Then
α = γ1 γ2 γ3 ,

where

γ1 =

(

a1 a2 ... an−1

1 2 ... n−1

)

, γ2 =

(

{1, 2} 3 ... n−1
3 4 ... n

)

,

γ3 =

(

3 4 ... n 1
b1 b3 ... bn−1 b2

)

and b2 ∈ Xn\ imα. It is clear that γ1, γ3 ∈ [n− 1, n− 1] and γ2 is a fixed element
in [n− 1, n− 2]. This completes the proof of the Theorem.

Theorem 3.2. Let n ≥ 4 be even. Then the nilpotent rank of SPn is n+ 2.

Proof: From Proposition 2.6 and the proof of Theorem 3.1, the n+2 nilpo-
tents

α1, ..., αn−1, δ1, δ2, γ2

generate SPn, where α1, ..., αn−1, δ1, δ2 are as defined in Proposition 2.6 and γ2

as in Theorem 3.1.

Let

α =

(

1 2 3 ... n
c1 c2 c3 ... cn

)

be a permutation on Xn, and define another permutation β on Xn by

1β = 2α , 2β = 1α and xβ = xα otherwise.

Thus

β =

(

1 2 3 ... n
c2 c1 c3 ... cn

)

= (1 2) α .

So α is even if and only if β is odd and vise versa.

Theorem 3.3. Let n ≥ 5 be odd. Then the rank and the nilpotent rank of
SPn\Wn−1 are both equal to n+ 2.

Proof: [n− 1, n− 1]\Wn−1 consists of one-one maps, so it does not generate
SPn\Wn−1, as remarked in the proof of Theorem 3.1. From Lemma 2.1 above
and Lemma 3.15 in [3]

SPn\Wn−1 =
〈(

[n− 1, n− 1]\Wn−1

)

∪ [n− 1, n− 2]
〉

.

From Proposition 2.7, at least n + 1 elements are needed to generate
[n− 1, n− 1]\Wn−1. Moreover the n+ 1 elements may as well be all nilpotents.
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As remarked in the proof of Theorem 3.1, to generate [n − 1, n − 2], at least
one of the elements must be from [n− 1, n− 2]. Thus if G is a set of generators
of SPn\Wn−1. Then

|G| ≥ n+ 2 .

It now remains to prove that every element α ∈ [n− 1, n− 2] is expressible as a
product of nilpotents in [n − 1, n − 1] and a fixed nilpotent from [n − 1, n − 2].
So let α ∈ [n− 1, n− 2] be

(

{a1, a2} a3 ... an−1

b1 b3 ... bn−1

)

.

Then α can be expressed as γ1 β δ, or alternatively as γ2 β δ, where

γ1 =

(

a1 a2 a3 ... an−1

1 2 3 ... n− 1

)

, γ2 =

(

a1 a2 a3 ... an−1

2 1 3 ... n− 1

)

,

β =

(

{1, 2} 3 4 ... n− 1
3 4 5 ... n

)

, δ =

(

3 4 5 ... n
b1 b3 b4 ... bn−1

)

.

Here β is a fixed nilpotent in [n−1, n−2], δ is an element in [n−2, n−2] and by
Lemma 3.15 in [3] is expressible as a product of two nilpotents in [n− 1, n− 1].
By the argument preceding the statement of the Theorem either the completion
of γ1 or that of γ2 is even, and hence by Lemma 3.10 in [3] either γ1 or γ2 is
expressible in terms of nilpotents in [n− 1, n− 1].
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