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ON THE NILPOTENT RANK OF
PARTIAL TRANSFORMATION SEMIGROUPS

G.U. GARBA

Synopsis. In [7] Sullivan proved that the semigroup SP, of all strictly partial trans-
formations on the set X, = {1,...,n} is nilpotent-generated if n is even, and that if n is
odd the nilpotents in SP,, generate SP,\W,_; where W,,_; consists of all elements in
[n — 1,n — 1] whose completions are odd permutations. We now show that whether n is
even or odd both the rank and the nilpotent rank of the subsemigroup of S P, generated
by the nilpotents are equal to n + 2.

1 — Introduction

Let P, be the semigroup of all partial transformations on the set X, =
{1,...,n}. An element « in P, is said to have projection characteristic (k,r) or
to belong to [k, r] if |doma| = k and |ima| = r. Every element o € [n—1,n — 1]
has domain X,,\{i} and image X,\{j} for some i, j in X,,. Hence there is a
unique element o* in [n,n] associated with «, defined by

1o =75, xa*=za otherwise,

and called the completion of a. In [3] Gomes and Howie proved that if n is even
the subsemigroup S, of P, consisting of all strictly partial one-to-one trans-
formations is nilpotent generated. For n odd they showed that the nilpotents
in SI,, generate SI,\W,,_1 where W, _; consists of all & € [n — 1,n — 1] whose
completions are odd permutations.

Simultaneously and independently, Sullivan [7] investigated the corresponding
question for SP,, the subsemigroup of P, consisting of all elements that are
strictly partial, where the answer turns out to be similar: If N is the set of
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nilpotents in SP,, then

SP, if n is even,
(N) = o
SP,\W,_1 ifnisodd.

In [4] Gomes and Howie raised the question of the rank of the semigroup S1I,,.
They showed that SI,, has rank n + 1, and if n is even its nilpotent rank is also
n + 1. For n odd they showed that both the rank and the nilpotent rank of
SI,\W,_1 are equal to n + 1. In this paper we show that SP, has rank n + 2,
and if n is even its nilpotent rank is also n + 2. The rank and the nilpotent rank
of SP,\W,_1 are also shown to be both equal to n 4+ 2, when n is odd.

2 — Preliminaries

The subsemigroup SP,, has n J-classes, namely J,_1, Jo—2, ..., Jo (where Jy
consists of the empty map). For each r in {1,2,...,n — 1},

n—1

Jr=Jlk.r] .

k=1

Lemma 2.1. For each J-class J, in SP,, where r <n—3, we have J, C (J,41)?.

A Ay .. A
b1 b2 ... by

o= A1 AQ Ar x ap az ... ar Y
“\Nay ay ... a = by by ... b z)’
a product of two elements in J, 41, where z,y € X,,\doma, z € X,,\ im« with
x #y and o € A; for all 4.

Suppose now that o € [n—1,7]. We may suppose that A; contains more than
one element. If aj, a] € Ay, then

a_(/h\{a'l} ay Ay .. AT)({al,a’l} as ... ar x)’

/
al ay G2 ... G b1 by ... b y

Proof: Suppose first that a= (
Then

> €[k, r] where r<k<n-—2.

a product of two elements in J,;1, where z € X, \doma, y € X,\ima and
a; € A; for all 7. m

Lemma 2.2. Forallr <n—2, [r,r] C ([r+ 1,7 +1])%
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Proof: Suppose that a = ( 1 92 = 97
by by ... b,

g (@ e @\ (@ . oar oy
“\ay ... a = by .. b z)’

where z,y € X,\doma, z € X,,\ im«a with  # y. »

) € [r,r]. Then

The following result follows from [6]

Lemma 2.3. Every element o € SP,, of height r is expressible as a product
of nilpotents of the same height (where the height of « is defined to be |ima|). m

Before considering the next result, we would like to clarify the notion of rank
in an inverse semigroup and in a semigroup that is not necessarily inverse. By
the rank of an inverse semigroup S we shall mean the cardinality of any subset A
of minimal order in S such that (AUV (A)) = S, where V (A) is the set of inverses
of elements in A. On the other hand, the rank of the semigroup S is simply the
cardinality of any subset B of minimal order in S such that (B) = S. If the
subset A (or B) consists of nilpotents, the rank is called the nilpotent rank. We
shall sometimes want to distinguish between the rank of an inverse semigroup S
as an inverse semigroup and its rank as a semigroup.

Proposition 2.4. Let B = B(G,{1,...,n}) be a Brandt semigroup, where
G is a finite group of rank r (r > 1). Then the rank of B (as a semigroup) is
r+n—1.

Proof: By Theorem 3.3 in [4] the rank of B as an inverse semigroup is
r +mn — 1. But the rank of B as a semigroup is potentially greater than its
rank as an inverse semigroup. For if A is a generating set for B as a semigroup
and |A| = s, then certainly A together with its inverses generates B, and so
s>r+n—1.

It now remains to show that we can select a generating set for B consisting
of r +n — 1 elements. Let

A={(1,91,1),. (1,6-1,1), (1,0r,2), (2,€,3), ... (n = 1,e,m), (n e, 1)},

where e is the identity of G and {gi, ..., g,} is a generating set for G. We first
show that (1,¢,,1) and (1,e,2) belong to (A).

(L,g-,1)=(1,9,2)(2,€,3)- - (n—1,e,n) (n,e,1) .
Observe that

(1791%1 2) = (1797’7 2) (27 673) T (7’L - 17 €,7’L) (7’L, €, 1) (1797‘7 2)
and
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(179372) = (179372) (27673) (n_ 1,6,71) (n,e, 1) (1797‘72) .

Continuing in this way, we see that (1,¢:,2) € (A) for s = 1,2,.... If ¢ is the
least integer for which ¢! = e then

(1,e,2) = (1,9;,2) € (4) .
Let (i,g,7) be an arbitrary element in B. Then

(i,9,7) = (i,e,i+1)---(n—1,e,n) (n,e,1)(1,9,1) (1,e,2)--- (j — 1,e,75)

and it is clear that (1,g,1) can be expressed as a product of the elements
(1,91,1),....,(1,9r,1). Hence
(Ay=B.

Since |A| = r 4+ n — 1 the proof is complete. m

As remarked in [4], the principal factor PF,_1 = SP,/(J,—2 U ...U Jy) is a
Brandt semigroup, where PF,,_; may be thought of in the usual way as J,,_;U{0},
and the product in PF,,_1 of two elements of J,_1 is the product in SP, if
this lies in J,—1 and is 0 otherwise. The Brandt semigroup PF,,_; has the
structure B(G, I), where G = S,,_1, the symmetric group on n — 1 symbols, and
I ={1,...,n}. (See [6], section II.3.)

Let A be an irredundant set of generators of SI,. Since SI, is generated by
the elements in J,_1, we may choose to regard A as a subset of PF,,_1. The
conclusion (as in [4]) is that A generates SI,, if and only if it generates PF,,_;.

The following Proposition now follows:

Proposition 2.5. Let SI, be the inverse semigroup of all strictly partial
one-one maps on X,, where n > 3. Then the rank of SI,, (as a semigroup) is
n+1.n

Proposition 2.6. Let n > 4 be even. Then the nilpotent rank of SI,, (as a
semigroup) is n + 1.

Proof: Define H; ; to consists of all elements o for which doma = X, \{i}
and ima = X,\{j}. For i =4,...,n — 1 define a mapping §; € H; , by

1 2 . 1—1 i+1 ... n—i+l1 n—i+2 n—i+3 n—i+4 .. n it i<n/2
i i+l .. 2—2 2i—1 .. n-—1 2 1 3 o i—1) MRS
o 1 2 o (m2)=1 (n/2) (n/2)+2 (n/2)+3 .. n o
§i= ((n/2)+1 (n/2)+2 .. n-1 2 1 3 o (n)2) ifi=(n/2)+1,
1 2 . n—1 n—i+1 n—i+2 n—i+3 ... i—1 i+1 . n o
(i i+1 .. n—1 2 1 3 . 2i-n—1 2-n .. i—l) ifi2(n/2)+2,
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and 5 3
n

51_(1 2 n—1>’

€ = 1 3 4 n—1 n

27 \1 3 4 n—1 2)°

£y = 1 2 4 n—2 n—1 n
37\3 4 5 n-1 2 1)
6 — 1 2 3 n—1

" \2 1 3 n—1)"

Then it is easy to verify that the mapping

g25: B(Sn_l,{l, ,n}) — Qn—l s

defined by
(1777,]) ¢ = 57477‘5]_1 ;

167

is an isomorphism, where S,,_1 is the symmetric group on X,,_1, and @), is the

principal factor SP,/(Jp—2 U ... U Jy).
From Proposition 2.4, the set

A={(1,01,1),(1,2,2),(2,€,3), ., (n = 1,e,m), (n,e, 1) | ,

where g1 = (123 ... n—1),
generates B(S,—1,{1,...,n}). Thus A¢ generates Q),—1 and hence SI,. From

g2 = (1 2) and e is the identity permutation in S,,_1,

3]

we borrow the notation ||aj as - - a,|| for the nilpotent o with domain X, \{a,}
and image X,\{a1} for which a; &« = a;41 (i = 1,...,n — 1). Then it is easy to

verify that
A¢ = {ﬁ? ap, G, ..., an} 3

where
5_23 n—1 n (1 2 3 n—1
- \3 4 no2) "T\3 2 4 n )
ar=]2nn-1..31], api1=|nn—2..1n-1|
and

o =li+li—1i—-2 .. 1nn—1..i+2i| for i=2..n—2,

with 3 = &g1&", a1 = 619261, i = &&2Y
Now, bearing in mind that n is even, let

61=1[146..n-2n35..n=-12|, d=|2n-1n-2n-3..31n|;

fori=2,...,n—1and o, = £, .

1
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then
alélzﬁ and 5251:Oén .

Hence the n 4 1 nilpotents
A1, ooy Qp—1, 01, 02
generate ST,,. The result follows from Proposition 2.5. n

Proposition 2.7. Let N’ be the set of all nilpotents in SI,, where n > 5 is
odd. Then the rank of (N') (as a semigroup) is equal to its nilpotent rank and
isn+1.

Proof: As in Proposition 2.4, we first notice that the rank of (N’) must be
greater or equal to n+ 1. For i = 4,...,n — 1 define a mapping \; € H;,, (where
H; ,, consists of all elements o for which doma = X,\{i} and ima = X,,\{n})
by

1 2 ... i-1 i+1 ... n—i+1l n—i+2 n—i+3 n—i+4 n—i+5 ... n . .
(i i+1 .. 2i—2 2i—1 .. n—1 2 3 1 4 i—l) ifasi<k,
1 2 .. k=1 k+1 k+2 k43 k44 .. n P
\ E k+1 .. n=1 2 3 1 4 .. k-1 =
"Y1 2 k=2 k=1 k k42 k+3 .. n o
E+1 k+2 .. n—1 2 3 1 4 .. k tERT
1 2 ... n—1t n—i+l n—i+2 n—i+3 n—i+4 ... i—1 i+1 ... n [P
(i i1 .. n—1 2 3 1 4 .. 2-n—1 2i-n .. i—l) i#i>k+2,

where k = (n+1)/2, and

2 3 n
Al_'<1 2 n—l)’
)\_134...n—1n
27\3 1 4 ... n-1 2)°
)\_124 n—2 n—1 n
37\1 4 5 n—1 2 3)
(1234 n—1
"—\2 3 1 4 n—1

Then the mapping

w: B(An_l,{l, ,n}) — Qn—l\Wn—l y

defined by
(7'7M7])1/} = A”L/J')\j_l 3
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is an isomorphism, where A,,_1 is the alternating group on X, _1. For if we let
Af =NU(i,n),
then the total number of inversions in A} is
i(n—i)+2 for i>4,

and is n — 1, 2n — 4, 3n — 11 for i = 1,2,3 respectively (see for example [1],
pp. 60-61). These numbers are clearly all even. Thus A} is an even permutation
for all . Hence \; € @p,—1\W,—1 and so the mapping v is well defined. It is easy
to verify that ¢ is a bijective homomorphism.

From Coxeter and Moser ([2], section 6.3) we find that A,_; is of rank 2
(provided n > 4), being generated by

(12)(3 -+ n—-1) and (123).
From Proposition 2.4 the set

A={(1,01,1),(1,02,2),(2,€,3), ., (n = 1,e,n), (n,e, 1) } ,

where g1 = (12) (3--- n—1), g2 = (1 2 3) and e is the identity permutation in
Ap_1, generates B(A,—1,{1,...,n}). Thus Ay generates Q,—1\W,—_1 and hence
(V).

It is easy to verify that

Ai[) - {ﬁaala aan} 3
where
3= 2 3 4 n—1 n
“\3 2 5 n 4 /)
ar=]2nn-1..31|, o, =[13245..n],
and

a; =li+1i-1..1nn—-1..i+24| for i=2,..,n-1,

with 8= MgiA7 !, a1 = AigaAs ', oy = M fori =2, ,n—1and oy, = A AT
Now, let 1 =|[n 1345 ... n—1 2||; then
0 =ao1d1 .

Hence the n 4 1 nilpotents
ayp, 02, ..., Op, 51

generates (N'). u
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We now close this section with a result that is of independent interest. Here
{e} denotes the trivial group.

Proposition 2.8. The rank of B({e},{1,...,n}) is n.
Proof: The set of n elements

A={(1,6,2),(2,¢,3),...(n = 1,e,n), (n,e,1)}

generates B({e}, {1,...,n}). If (i,e,7) is an arbitrary element in B({¢}, {1, ...,n}),
then

(i,e,7) = (i,e,i+1)---(n—1,e,n) (n,e,1)(1,e,2)---(j — L,e,7) .

Since any generating set must cover the R-classes (as well as the L-classes) by
Lemma 3 in [5], and since the number of R-classes in B({e},{1,...,n}) is n, no
set of fewer than n elements can generate B({e},{1,...,n}). Hence the result. m

3 — Strictly partial maps
Theorem 3.1. The rank of SP,, is n + 2.

Proof: We begin by showing that every generating set G of S P,, must contain
at least n + 2 elements. The top J-class is [n — 1,n — 1], and since this consists
entirely of one-one maps it does not generate SP,. From Lemmas 2.1 and 2.2 we
have

SP, = <[n—1,n—1]U[n—1,n—2]> .

It is clear that in generating the elements of [n — 1,n — 1] only elements of
[n — 1,n — 1] may be used, and by Propositon 2.5 and the remarks made just
before at least n + 1 elements are needed to generate [n — 1,n — 1]. Thus

‘Gﬁ[n—l,n—l]‘Zn—i—l.

In generating the elements of [n — 1,n — 2] at least one of the elements must be
from [n —1,n —2]. That is
Gl>(n+1)+1=n+2.

To generate [n — 1,n — 2] we now show that only one element from [n —1,n — 2]
is needed. Let o € [n — 1,n — 2] be given by

o= {al,ag} as ap—1
b1 bs ... bp_1)’
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Then
=717,
where
a1 as ... ap_1 {1,2} 3 .. n-1
71::<1 2 . n—l)’ K ::< 3 4 .. n )’
(3 4 .. n 1
= (51 by ... bp_i b2>

and by € X,,\ ima. It is clear that 71,73 € [n—1,n — 1] and 2 is a fixed element
in [n — 1,n — 2]. This completes the proof of the Theorem. m

Theorem 3.2. Let n > 4 be even. Then the nilpotent rank of SP,, is n + 2.

Proof: From Proposition 2.6 and the proof of Theorem 3.1, the n + 2 nilpo-
tents

ap, ...y Qn—1, 617 525 Y2
generate SP,, where aq, ..., an_1, 01, 02 are as defined in Proposition 2.6 and -
as in Theorem 3.1. n
Let
( 1 2 3 ... n >
o=
cl C C3 ... Cp

be a permutation on X,, and define another permutation G on X, by

16 =2a, 26=1a and 2z =z« otherwise.

52(1 2 3 .. n>=O2ﬂw

Cp C1 €3 ... Cp

Thus

So « is even if and only if § is odd and vise versa.

Theorem 3.3. Let n > 5 be odd. Then the rank and the nilpotent rank of
SP,\W,,_1 are both equal to n + 2.

Proof: [n—1,n—1]\W,_; consists of one-one maps, so it does not generate
SP,\W,_1, as remarked in the proof of Theorem 3.1. From Lemma 2.1 above
and Lemma 3.15 in [3]

SPAW, 1 = ((In—1,n—1\W, 1) U[n = 1,n —2]) .

From Proposition 2.7, at least n + 1 elements are needed to generate
[n —1,n — 1]\W,_1. Moreover the n 4 1 elements may as well be all nilpotents.
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As remarked in the proof of Theorem 3.1, to generate [n — 1,n — 2], at least
one of the elements must be from [n — 1,n — 2]. Thus if G is a set of generators
of SP,\W,_1. Then

G| >n+2.

It now remains to prove that every element o € [n — 1,n — 2] is expressible as a
product of nilpotents in [n — 1,n — 1] and a fixed nilpotent from [n — 1,n — 2].
So let a € [n —1,n — 2] be

({al,ag} as ... an_1>‘

b1 b ... bn_1
Then « can be expressed as v; 36, or alternatively as vo 36, where
_ ay a2 as ... Ap—1 _ ay a2 as ... Ap—1
=1 2 3 oa-1) 7?7\ 2 1 3 . on-1)
go(L2h 3 4 -1y g (3 45
- 3 4 5 .. n ’ o b1 bg b4 bn—l ’

Here (3 is a fixed nilpotent in [n—1,n— 2], § is an element in [n —2,n — 2] and by
Lemma 3.15 in [3] is expressible as a product of two nilpotents in [n — 1,n — 1].
By the argument preceding the statement of the Theorem either the completion
of 41 or that of 9 is even, and hence by Lemma 3.10 in [3] either v; or s is
expressible in terms of nilpotents in [n — 1,7 — 1]. u
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