ON THE NILPOTENT RANK OF PARTIAL TRANSFORMATION SEMIGROUPS

G.U. Garba

Synopsis. In [7] Sullivan proved that the semigroup $S P_{n}$ of all strictly partial transformations on the set $X_{n}=\{1, \ldots, n\}$ is nilpotent-generated if n is even, and that if n is odd the nilpotents in $S P_{n}$ generate $S P_{n} \backslash W_{n-1}$ where W_{n-1} consists of all elements in $[n-1, n-1]$ whose completions are odd permutations. We now show that whether n is even or odd both the rank and the nilpotent rank of the subsemigroup of $S P_{n}$ generated by the nilpotents are equal to $n+2$.

1 - Introduction

Let P_{n} be the semigroup of all partial transformations on the set $X_{n}=$ $\{1, \ldots, n\}$. An element α in P_{n} is said to have projection characteristic (k, r) or to belong to $[k, r]$ if $|\operatorname{dom} \alpha|=k$ and $|\operatorname{im} \alpha|=r$. Every element $\alpha \in[n-1, n-1]$ has domain $X_{n} \backslash\{i\}$ and image $X_{n} \backslash\{j\}$ for some i, j in X_{n}. Hence there is a unique element α^{*} in $[n, n]$ associated with α, defined by

$$
i \alpha^{*}=j, \quad x \alpha^{*}=x \alpha \text { otherwise }
$$

and called the completion of α. In [3] Gomes and Howie proved that if n is even the subsemigroup $S I_{n}$ of P_{n} consisting of all strictly partial one-to-one transformations is nilpotent generated. For n odd they showed that the nilpotents in $S I_{n}$ generate $S I_{n} \backslash W_{n-1}$ where W_{n-1} consists of all $\alpha \in[n-1, n-1]$ whose completions are odd permutations.

Simultaneously and independently, Sullivan [7] investigated the corresponding question for $S P_{n}$, the subsemigroup of P_{n} consisting of all elements that are strictly partial, where the answer turns out to be similar: If N is the set of

[^0]nilpotents in $S P_{n}$ then
\[

\langle N\rangle= $$
\begin{cases}S P_{n} & \text { if } n \text { is even }, \\ S P_{n} \backslash W_{n-1} & \text { if } n \text { is odd. }\end{cases}
$$
\]

In [4] Gomes and Howie raised the question of the rank of the semigroup $S I_{n}$. They showed that $S I_{n}$ has rank $n+1$, and if n is even its nilpotent rank is also $n+1$. For n odd they showed that both the rank and the nilpotent rank of $S I_{n} \backslash W_{n-1}$ are equal to $n+1$. In this paper we show that $S P_{n}$ has rank $n+2$, and if n is even its nilpotent rank is also $n+2$. The rank and the nilpotent rank of $S P_{n} \backslash W_{n-1}$ are also shown to be both equal to $n+2$, when n is odd.

2 - Preliminaries

The subsemigroup $S P_{n}$ has $n \mathcal{J}$-classes, namely $J_{n-1}, J_{n-2}, \ldots, J_{0}$ (where J_{0} consists of the empty map). For each r in $\{1,2, \ldots, n-1\}$,

$$
J_{r}=\bigcup_{k=1}^{n-1}[k, r] .
$$

Lemma 2.1. For each \mathcal{J}-class J_{r} in $S P_{n}$, where $r \leq n-3$, we have $J_{r} \subseteq\left(J_{r+1}\right)^{2}$.
Proof: Suppose first that $\alpha=\left(\begin{array}{cccc}A_{1} & A_{2} & \ldots & A_{r} \\ b_{1} & b_{2} & \ldots & b_{r}\end{array}\right) \in[k, r]$ where $r \leq k \leq n-2$. Then

$$
\alpha=\left(\begin{array}{ccccc}
A_{1} & A_{2} & \ldots & A_{r} & x \\
a_{1} & a_{2} & \ldots & a_{r} & x
\end{array}\right)\left(\begin{array}{ccccc}
a_{1} & a_{2} & \ldots & a_{r} & y \\
b_{1} & b_{2} & \ldots & b_{r} & z
\end{array}\right),
$$

a product of two elements in J_{r+1}, where $x, y \in X_{n} \backslash \operatorname{dom} \alpha, z \in X_{n} \backslash \operatorname{im} \alpha$ with $x \neq y$ and $\alpha_{i} \in A_{i}$ for all i.

Suppose now that $\alpha \in[n-1, r]$. We may suppose that A_{1} contains more than one element. If $a_{1}, a_{1}^{\prime} \in A_{1}$, then

$$
\alpha=\left(\begin{array}{ccccc}
A_{1} \backslash\left\{a_{1}^{\prime}\right\} & a_{1}^{\prime} & A_{2} & \ldots & A_{r} \\
a_{1} & a_{1}^{\prime} & a_{2} & \ldots & a_{r}
\end{array}\right)\left(\begin{array}{ccccc}
\left\{a_{1}, a_{1}^{\prime}\right\} & a_{2} & \ldots & a_{r} & x \\
b_{1} & b_{2} & \ldots & b_{r} & y
\end{array}\right),
$$

a product of two elements in J_{r+1}, where $x \in X_{n} \backslash \operatorname{dom} \alpha, y \in X_{n} \backslash \operatorname{im} \alpha$ and $a_{i} \in A_{i}$ for all i.

Lemma 2.2. For all $r \leq n-2,[r, r] \subseteq([r+1, r+1])^{2}$.

Proof: Suppose that $\alpha=\left(\begin{array}{cccc}a_{1} & a_{2} & \ldots & a_{r} \\ b_{1} & b_{2} & \ldots & b_{r}\end{array}\right) \in[r, r]$. Then

$$
\alpha=\left(\begin{array}{cccc}
a_{1} & \ldots & a_{r} & x \\
a_{1} & \ldots & a_{r} & x
\end{array}\right)\left(\begin{array}{cccc}
a_{1} & \ldots & a_{r} & y \\
b_{1} & \ldots & b_{r} & z
\end{array}\right)
$$

where $x, y \in X_{n} \backslash \operatorname{dom} \alpha, z \in X_{n} \backslash \operatorname{im} \alpha$ with $x \neq y$.
The following result follows from [6]
Lemma 2.3. Every element $\alpha \in S P_{n}$ of height r is expressible as a product of nilpotents of the same height (where the height of α is defined to be $|\operatorname{im} \alpha|$).

Before considering the next result, we would like to clarify the notion of rank in an inverse semigroup and in a semigroup that is not necessarily inverse. By the rank of an inverse semigroup S we shall mean the cardinality of any subset A of minimal order in S such that $\langle A \cup V(A)\rangle=S$, where $V(A)$ is the set of inverses of elements in A. On the other hand, the rank of the semigroup S is simply the cardinality of any subset B of minimal order in S such that $\langle B\rangle=S$. If the subset A (or B) consists of nilpotents, the rank is called the nilpotent rank. We shall sometimes want to distinguish between the rank of an inverse semigroup S as an inverse semigroup and its rank as a semigroup.

Proposition 2.4. Let $B=B(G,\{1, \ldots, n\})$ be a Brandt semigroup, where G is a finite group of rank $r(r \geq 1)$. Then the rank of B (as a semigroup) is $r+n-1$.

Proof: By Theorem 3.3 in [4] the rank of B as an inverse semigroup is $r+n-1$. But the rank of B as a semigroup is potentially greater than its rank as an inverse semigroup. For if A is a generating set for B as a semigroup and $|A|=s$, then certainly A together with its inverses generates B, and so $s \geq r+n-1$.

It now remains to show that we can select a generating set for B consisting of $r+n-1$ elements. Let

$$
A=\left\{\left(1, g_{1}, 1\right), \ldots,\left(1, g_{r-1}, 1\right),\left(1, g_{r}, 2\right),(2, e, 3), \ldots,(n-1, e, n),(n, e, 1)\right\}
$$

where e is the identity of G and $\left\{g_{1}, \ldots, g_{r}\right\}$ is a generating set for G. We first show that $\left(1, g_{r}, 1\right)$ and $(1, e, 2)$ belong to $\langle A\rangle$.

$$
\left(1, g_{r}, 1\right)=\left(1, g_{r}, 2\right)(2, e, 3) \cdots(n-1, e, n)(n, e, 1)
$$

Observe that

$$
\left(1, g_{r}^{2}, 2\right)=\left(1, g_{r}, 2\right)(2, e, 3) \cdots(n-1, e, n)(n, e, 1)\left(1, g_{r}, 2\right)
$$

and

$$
\left(1, g_{r}^{3}, 2\right)=\left(1, g_{r}^{2}, 2\right)(2, e, 3) \cdots(n-1, e, n)(n, e, 1)\left(1, g_{r}, 2\right)
$$

Continuing in this way, we see that $\left(1, g_{r}^{s}, 2\right) \in\langle A\rangle$ for $s=1,2, \ldots$. If t is the least integer for which $g_{r}^{t}=e$ then

$$
(1, e, 2)=\left(1, g_{r}^{t}, 2\right) \in\langle A\rangle
$$

Let (i, g, j) be an arbitrary element in B. Then

$$
(i, g, j)=(i, e, i+1) \cdots(n-1, e, n)(n, e, 1)(1, g, 1)(1, e, 2) \cdots(j-1, e, j)
$$

and it is clear that $(1, g, 1)$ can be expressed as a product of the elements $\left(1, g_{1}, 1\right), \ldots,\left(1, g_{r}, 1\right)$. Hence

$$
\langle A\rangle=B
$$

Since $|A|=r+n-1$ the proof is complete.
As remarked in [4], the principal factor $P F_{n-1}=S P_{n} /\left(J_{n-2} \cup \ldots \cup J_{0}\right)$ is a Brandt semigroup, where $P F_{n-1}$ may be thought of in the usual way as $J_{n-1} \cup\{0\}$, and the product in $P F_{n-1}$ of two elements of J_{n-1} is the product in $S P_{n}$ if this lies in J_{n-1} and is 0 otherwise. The Brandt semigroup $P F_{n-1}$ has the structure $B(G, I)$, where $G=S_{n-1}$, the symmetric group on $n-1$ symbols, and $I=\{1, \ldots, n\}$. (See [6], section II.3.)

Let A be an irredundant set of generators of $S I_{n}$. Since $S I_{n}$ is generated by the elements in J_{n-1}, we may choose to regard A as a subset of $P F_{n-1}$. The conclusion (as in [4]) is that A generates $S I_{n}$ if and only if it generates $P F_{n-1}$.

The following Proposition now follows:
Proposition 2.5. Let $S I_{n}$ be the inverse semigroup of all strictly partial one-one maps on X_{n}, where $n \geq 3$. Then the rank of $S I_{n}$ (as a semigroup) is $n+1$.

Proposition 2.6. Let $n \geq 4$ be even. Then the nilpotent rank of $S I_{n}$ (as a semigroup) is $n+1$.

Proof: Define $H_{i, j}$ to consists of all elements α for which dom $\alpha=X_{n} \backslash\{i\}$ and $\operatorname{im} \alpha=X_{n} \backslash\{j\}$. For $i=4, \ldots, n-1$ define a mapping $\xi_{i} \in H_{i, n}$ by
$\xi_{i}=\left\{\begin{array}{cccccccccccc}\left(\begin{array}{ccccccccc}1 & 2 & \ldots & i-1 & i+1 & \ldots & n-i+1 & n-i+2 & n-i+3 \\ i & i+1 & \ldots & 2 i-2 & 2 i-1 & \ldots & n-1 & 2 & 1 \\ \hline\end{array} \begin{array}{cccccccccc} & n & \ldots & 3 & \ldots & i-1\end{array}\right) \quad \text { if } i \leq n / 2, \\ (n / 2)+1 & (n / 2)+2 & \ldots & n-1 & 2 & 1 & 3 & \ldots & (n / 2)\end{array}\right) \quad$ if $i=(n / 2)+1$,
and

$$
\begin{aligned}
\xi_{1} & =\left(\begin{array}{ccccc}
2 & 3 & \ldots & n \\
1 & 2 & \ldots & n-1
\end{array}\right), \\
\xi_{2} & =\left(\begin{array}{cccccc}
1 & 3 & 4 & \ldots & n-1 & n \\
1 & 3 & 4 & \ldots & n-1 & 2
\end{array}\right) \\
\xi_{3} & =\left(\begin{array}{ccccccc}
1 & 2 & 4 & \ldots & n-2 & n-1 & n \\
3 & 4 & 5 & \ldots & n-1 & 2 & 1
\end{array}\right), \\
\xi_{n} & =\left(\begin{array}{llllc}
1 & 2 & 3 & \ldots & n-1 \\
2 & 1 & 3 & \ldots & n-1
\end{array}\right) .
\end{aligned}
$$

Then it is easy to verify that the mapping

$$
\phi: B\left(S_{n-1},\{1, \ldots, n\}\right) \rightarrow Q_{n-1}
$$

defined by

$$
(i, \eta, j) \phi=\xi_{i} \eta \xi_{j}^{-1}
$$

is an isomorphism, where S_{n-1} is the symmetric group on X_{n-1}, and Q_{n-1} is the principal factor $S P_{n} /\left(J_{n-2} \cup \ldots \cup J_{0}\right)$.

From Proposition 2.4, the set

$$
A=\left\{\left(1, g_{1}, 1\right),\left(1, g_{2}, 2\right),(2, e, 3), \ldots,(n-1, e, n),(n, e, 1)\right\}
$$

where $g_{1}=(123 \ldots n-1), g_{2}=(12)$ and e is the identity permutation in S_{n-1}, generates $B\left(S_{n-1},\{1, \ldots, n\}\right)$. Thus $A \phi$ generates Q_{n-1} and hence $S I_{n}$. From [3] we borrow the notation $\left\|a_{1} a_{2} \cdots a_{n}\right\|$ for the nilpotent α with domain $X_{n} \backslash\left\{a_{n}\right\}$ and image $X_{n} \backslash\left\{a_{1}\right\}$ for which $a_{i} \alpha=a_{i+1}(i=1, \ldots, n-1)$. Then it is easy to verify that

$$
A \phi=\left\{\beta, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}
$$

where

$$
\begin{gathered}
\beta=\left(\begin{array}{ccccc}
2 & 3 & \ldots & n-1 & n \\
3 & 4 & \ldots & n & 2
\end{array}\right), \quad \alpha_{n}=\left(\begin{array}{ccccc}
1 & 2 & 3 & \ldots & n-1 \\
3 & 2 & 4 & \ldots & n
\end{array}\right), \\
\alpha_{1}=\|2 n n-1 \ldots 31\|, \quad \alpha_{n-1}=\|n n-2 \ldots 1 n-1\|
\end{gathered}
$$

and

$$
\alpha_{i}=\|i+1 i-1 i-2 \ldots 1 n n-1 \ldots i+2 i\| \quad \text { for } \quad i=2, \ldots, n-2
$$

with $\beta=\xi_{1} g_{1} \xi_{1}^{-1}, \alpha_{1}=\xi_{1} g_{2} \xi_{2}^{-1}, \alpha_{i}=\xi_{i} \xi_{i+1}^{-1}$ for $i=2, \ldots, n-1$ and $\alpha_{n}=\xi_{n} \xi_{1}^{-1}$.
Now, bearing in mind that n is even, let

$$
\delta_{1}=\|146 \ldots n-2 n 35 \ldots n-12\|, \quad \delta_{2}=\|2 n-1 n-2 n-3 \ldots 31 n\|
$$

then

$$
\alpha_{1} \delta_{1}=\beta \quad \text { and } \quad \delta_{2} \delta_{1}=\alpha_{n}
$$

Hence the $n+1$ nilpotents

$$
\alpha_{1}, \ldots, \alpha_{n-1}, \delta_{1}, \delta_{2}
$$

generate $S I_{n}$. The result follows from Proposition 2.5.
Proposition 2.7. Let N^{\prime} be the set of all nilpotents in $S I_{n}$, where $n \geq 5$ is odd. Then the rank of $\left\langle N^{\prime}\right\rangle$ (as a semigroup) is equal to its nilpotent rank and is $n+1$.

Proof: As in Proposition 2.4, we first notice that the rank of $\left\langle N^{\prime}\right\rangle$ must be greater or equal to $n+1$. For $i=4, \ldots, n-1$ define a mapping $\lambda_{i} \in H_{i, n}$ (where $H_{i, n}$ consists of all elements α for which $\operatorname{dom} \alpha=X_{n} \backslash\{i\}$ and $\left.\operatorname{im} \alpha=X_{n} \backslash\{n\}\right)$ by

where $k=(n+1) / 2$, and

$$
\left.\begin{array}{l}
\lambda_{1}=\left(\begin{array}{ccccc}
2 & 3 & \ldots & n \\
1 & 2 & \ldots & n-1
\end{array}\right) \\
\lambda_{2}=\left(\begin{array}{cccccc}
1 & 3 & 4 & \ldots & n-1 & n \\
3 & 1 & 4 & \ldots & n-1 & 2
\end{array}\right) \\
\lambda_{3}
\end{array}=\left(\begin{array}{ccccccc}
1 & 2 & 4 & \ldots & n-2 & n-1 & n \\
1 & 4 & 5 & \ldots & n-1 & 2 & 3
\end{array}\right), ~ \begin{array}{llllcc}
1 & 2 & 3 & 4 & \ldots & n-1 \\
2 & 3 & 1 & 4 & \ldots & n-1
\end{array}\right) .
$$

Then the mapping

$$
\psi: B\left(A_{n-1},\{1, \ldots, n\}\right) \rightarrow Q_{n-1} \backslash W_{n-1}
$$

defined by

$$
(i, \mu, j) \psi=\lambda_{i} \mu \lambda_{j}^{-1}
$$

is an isomorphism, where A_{n-1} is the alternating group on X_{n-1}. For if we let

$$
\lambda_{i}^{*}=\lambda_{i} \cup(i, n),
$$

then the total number of inversions in λ_{i}^{*} is

$$
i(n-i)+2 \quad \text { for } i \geq 4
$$

and is $n-1,2 n-4,3 n-11$ for $i=1,2,3$ respectively (see for example [1], pp. 60-61). These numbers are clearly all even. Thus λ_{i}^{*} is an even permutation for all i. Hence $\lambda_{i} \in Q_{n-1} \backslash W_{n-1}$ and so the mapping ψ is well defined. It is easy to verify that ψ is a bijective homomorphism.

From Coxeter and Moser ([2], section 6.3) we find that A_{n-1} is of rank 2 (provided $n \geq 4$), being generated by

$$
(12)(3 \cdots n-1) \quad \text { and } \quad(123) \text {. }
$$

From Proposition 2.4 the set

$$
A=\left\{\left(1, g_{1}, 1\right),\left(1, g_{2}, 2\right),(2, e, 3), \ldots,(n-1, e, n),(n, e, 1)\right\},
$$

where $g_{1}=\left(\begin{array}{ll}1 & 2\end{array}\right)(3 \cdots n-1), g_{2}=\left(\begin{array}{ll}1 & 2\end{array}\right)$ and e is the identity permutation in A_{n-1}, generates $B\left(A_{n-1},\{1, \ldots, n\}\right)$. Thus $A \psi$ generates $Q_{n-1} \backslash W_{n-1}$ and hence $\left\langle N^{\prime}\right\rangle$.

It is easy to verify that

$$
A \psi=\left\{\beta, \alpha_{1}, \ldots, \alpha_{n}\right\}
$$

where

$$
\begin{aligned}
& \beta=\left(\begin{array}{cccccc}
2 & 3 & 4 & \ldots & n-1 & n \\
3 & 2 & 5 & \ldots & n & 4
\end{array}\right), \\
& \alpha_{1}=\|2 n n-1 \ldots 31\|, \quad \alpha_{n}=\|13245 \ldots n\| \text {, }
\end{aligned}
$$

and

$$
\alpha_{i}=\|i+1 i-1 \ldots 1 n n-1 \ldots i+2 i\| \quad \text { for } \quad i=2, \ldots, n-1
$$

with $\beta=\lambda_{1} g_{1} \lambda_{1}^{-1}, \alpha_{1}=\lambda_{1} g_{2} \lambda_{2}^{-1}, \alpha_{i}=\lambda_{i} \lambda_{i+1}^{-1}$ for $i=2, \ldots, n-1$ and $\alpha_{n}=\lambda_{n} \lambda_{1}^{-1}$.
Now, let $\delta_{1}=\|n 1345 \ldots n-12\|$; then

$$
\beta=\alpha_{1} \delta_{1} \alpha_{n} .
$$

Hence the $n+1$ nilpotents

$$
\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}, \delta_{1}
$$

generates $\left\langle N^{\prime}\right\rangle$.

We now close this section with a result that is of independent interest. Here $\{e\}$ denotes the trivial group.

Proposition 2.8. The rank of $B(\{e\},\{1, \ldots, n\})$ is n.
Proof: The set of n elements

$$
A=\{(1, e, 2),(2, e, 3), \ldots,(n-1, e, n),(n, e, 1)\}
$$

generates $B(\{e\},\{1, \ldots, n\})$. If (i, e, j) is an arbitrary element in $B(\{e\},\{1, \ldots, n\})$, then

$$
(i, e, j)=(i, e, i+1) \cdots(n-1, e, n)(n, e, 1)(1, e, 2) \cdots(j-1, e, j) .
$$

Since any generating set must cover the \mathcal{R}-classes (as well as the \mathcal{L}-classes) by Lemma 3 in [5], and since the number of \mathcal{R}-classes in $B(\{e\},\{1, \ldots, n\})$ is n, no set of fewer than n elements can generate $B(\{e\},\{1, \ldots, n\})$. Hence the result.

3 - Strictly partial maps

Theorem 3.1. The rank of $S P_{n}$ is $n+2$.
Proof: We begin by showing that every generating set G of $S P_{n}$ must contain at least $n+2$ elements. The top \mathcal{J}-class is $[n-1, n-1]$, and since this consists entirely of one-one maps it does not generate $S P_{n}$. From Lemmas 2.1 and 2.2 we have

$$
S P_{n}=\langle[n-1, n-1] \cup[n-1, n-2]\rangle .
$$

It is clear that in generating the elements of $[n-1, n-1]$ only elements of [$n-1, n-1$] may be used, and by Propositon 2.5 and the remarks made just before at least $n+1$ elements are needed to generate $[n-1, n-1$]. Thus

$$
|G \cap[n-1, n-1]| \geq n+1 .
$$

In generating the elements of $[n-1, n-2]$ at least one of the elements must be from $[n-1, n-2]$. That is

$$
|G| \geq(n+1)+1=n+2 .
$$

To generate $[n-1, n-2]$ we now show that only one element from $[n-1, n-2]$ is needed. Let $\alpha \in[n-1, n-2]$ be given by

$$
\alpha=\left(\begin{array}{cccc}
\left\{a_{1}, a_{2}\right\} & a_{3} & \ldots & a_{n-1} \\
b_{1} & b_{3} & \ldots & b_{n-1}
\end{array}\right) .
$$

Then

$$
\alpha=\gamma_{1} \gamma_{2} \gamma_{3}
$$

where

$$
\begin{aligned}
& \gamma_{1}=\left(\begin{array}{cccc}
a_{1} & a_{2} & \ldots & a_{n-1} \\
1 & 2 & \ldots & n-1
\end{array}\right), \quad \gamma_{2}=\left(\begin{array}{cccc}
\{1,2\} & 3 & \ldots & n-1 \\
3 & 4 & \ldots & n
\end{array}\right), \\
& \gamma_{3}=\left(\begin{array}{ccccc}
3 & 4 & \ldots & n & 1 \\
b_{1} & b_{3} & \ldots & b_{n-1} & b_{2}
\end{array}\right)
\end{aligned}
$$

and $b_{2} \in X_{n} \backslash \operatorname{im} \alpha$. It is clear that $\gamma_{1}, \gamma_{3} \in[n-1, n-1]$ and γ_{2} is a fixed element in $[n-1, n-2]$. This completes the proof of the Theorem.

Theorem 3.2. Let $n \geq 4$ be even. Then the nilpotent rank of $S P_{n}$ is $n+2$.
Proof: From Proposition 2.6 and the proof of Theorem 3.1, the $n+2$ nilpotents

$$
\alpha_{1}, \ldots, \alpha_{n-1}, \delta_{1}, \delta_{2}, \gamma_{2}
$$

generate $S P_{n}$, where $\alpha_{1}, \ldots, \alpha_{n-1}, \delta_{1}, \delta_{2}$ are as defined in Proposition 2.6 and γ_{2} as in Theorem 3.1.

Let

$$
\alpha=\left(\begin{array}{ccccc}
1 & 2 & 3 & \ldots & n \\
c_{1} & c_{2} & c_{3} & \ldots & c_{n}
\end{array}\right)
$$

be a permutation on X_{n}, and define another permutation β on X_{n} by

$$
1 \beta=2 \alpha, \quad 2 \beta=1 \alpha \quad \text { and } \quad x \beta=x \alpha \quad \text { otherwise }
$$

Thus

$$
\beta=\left(\begin{array}{ccccc}
1 & 2 & 3 & \ldots & n \\
c_{2} & c_{1} & c_{3} & \ldots & c_{n}
\end{array}\right)=\left(\begin{array}{ll}
1 & 2
\end{array}\right) \alpha
$$

So α is even if and only if β is odd and vise versa.
Theorem 3.3. Let $n \geq 5$ be odd. Then the rank and the nilpotent rank of $S P_{n} \backslash W_{n-1}$ are both equal to $n+2$.

Proof: $[n-1, n-1] \backslash W_{n-1}$ consists of one-one maps, so it does not generate $S P_{n} \backslash W_{n-1}$, as remarked in the proof of Theorem 3.1. From Lemma 2.1 above and Lemma 3.15 in [3]

$$
S P_{n} \backslash W_{n-1}=\left\langle\left([n-1, n-1] \backslash W_{n-1}\right) \cup[n-1, n-2]\right\rangle
$$

From Proposition 2.7, at least $n+1$ elements are needed to generate $[n-1, n-1] \backslash W_{n-1}$. Moreover the $n+1$ elements may as well be all nilpotents.

As remarked in the proof of Theorem 3.1, to generate $[n-1, n-2$], at least one of the elements must be from $[n-1, n-2]$. Thus if G is a set of generators of $S P_{n} \backslash W_{n-1}$. Then

$$
|G| \geq n+2 .
$$

It now remains to prove that every element $\alpha \in[n-1, n-2]$ is expressible as a product of nilpotents in $[n-1, n-1]$ and a fixed nilpotent from $[n-1, n-2]$. So let $\alpha \in[n-1, n-2]$ be

$$
\left(\begin{array}{cccc}
\left\{a_{1}, a_{2}\right\} & a_{3} & \ldots & a_{n-1} \\
b_{1} & b_{3} & \ldots & b_{n-1}
\end{array}\right) .
$$

Then α can be expressed as $\gamma_{1} \beta \delta$, or alternatively as $\gamma_{2} \beta \delta$, where

$$
\begin{aligned}
\gamma_{1} & =\left(\begin{array}{ccccc}
a_{1} & a_{2} & a_{3} & \ldots & a_{n-1} \\
1 & 2 & 3 & \ldots & n-1
\end{array}\right), \quad \gamma_{2}=\left(\begin{array}{ccccc}
a_{1} & a_{2} & a_{3} & \ldots & a_{n-1} \\
2 & 1 & 3 & \ldots & n-1
\end{array}\right), \\
\beta & =\left(\begin{array}{ccccc}
\{1,2\} & 3 & 4 & \ldots & n-1 \\
3 & 4 & 5 & \ldots & n
\end{array}\right), \quad \delta=\left(\begin{array}{ccccc}
3 & 4 & 5 & \ldots & n \\
b_{1} & b_{3} & b_{4} & \ldots & b_{n-1}
\end{array}\right) .
\end{aligned}
$$

Here β is a fixed nilpotent in $[n-1, n-2], \delta$ is an element in $[n-2, n-2]$ and by Lemma 3.15 in [3] is expressible as a product of two nilpotents in $[n-1, n-1]$. By the argument preceding the statement of the Theorem either the completion of γ_{1} or that of γ_{2} is even, and hence by Lemma 3.10 in [3] either γ_{1} or γ_{2} is expressible in terms of nilpotents in $[n-1, n-1]$.

ACKNOWLEDGEMENT - My sincere thanks are due to my research supervisor, Professor J.M. Howie, for his helpful suggestions and encouragement.

REFERENCES

[1] Baumslag, B. and Chandler, B. - Group theory, Schaum's outline, McGraw-Hill, New York, 1968.
[2] Coxeter, H.S.M. and Moser, W.O.J. - Generators and relations for discrete groups, 3rd ed., Springer, 1972.
[3] Gomes, G.M.S. and Howie, J.M. - Nilpotents in finite symmetric inverse semigroups, Proc. Edinburgh Math. Soc., 30 (1987), 383-395.
[4] Gomes, G.M.S. and Howie, J.M. - On the ranks of certain finite semigroups of transformations, Math. Proc. Cambridge Phil. Soc., 101 (1987), 395-403.
[5] Howie, J.M. and McFadden, R.B. - Idempotent rank in finite full transformation semigroups, Proc. Royal Soc. Edinburgh, 114A (1990), 161-167.
[6] Petrich, M. - Inverse semigroups, Wiley, 1984.
[7] Sullivan, R.P. - Semigroups generated by nilpotent transformations, J. Algebra, 110 (1987), 324-345.

[^0]: Received: July 8, 1991; Revised: October 20, 1991.

