A STUDY OF K_{W}-SPACES AND K_{W}^{*}-SPACES

Carlos R. Borges

Abstract

Further study of K_{W}-spaces leads to the introduction of K_{W}^{*}-spaces. We obtain a characterization of K_{W}^{*}-spaces in terms of continuous real-valued functions which is dual to a characterization of K_{0}-spaces. We also get two characterizations of K_{W}-spaces, one of which exhibits their remarkable similarities with K_{1}-spaces; a consequence of the latter characterization is that K_{W}-spaces are collectionwise normal.

Throughout, we will use the terminology of [1].
We introduced the concept of K_{W}-spaces in [1; Definition 10], as follows: A space (X, τ) is a K_{W}-space provided that, for each closed $F \subset X$, there exists a function $k: \tau \mid F \rightarrow \tau$ (k is called a K_{W}-function) which satisfies the following:
(1) $F \cap k(U)=U$, for each $U \in \tau \mid F, k(F)=X$ and $k(\emptyset)=\emptyset$;
(2) $k(U) \subset k(V)$ whenever $U \subset V$;
(3) $k(U) \cup k(V)=X$ whenever $U \cup V=F$;
(4) $\overline{k(U)} \cap F=\bar{U}$.

Condition (3) naturally leads to one question if it can be replaced by the stronger condition below, without affecting the concept of a K_{W}-space:
$\left(\mathbf{3}^{*}\right) k(U) \cup k(V)=k(U \cup V)$.
We do not yet know the answer to this question. However, replacing (3) by $\left(3^{*}\right)$ in the definition of K_{W}-spaces leads to a (possibly new) class of spaces which we will call K_{W}^{*}-spaces, with remarkable properties which are dual to those of K_{0}-spaces (see Theorem 2 of [1] and compare it with Theorem 2 ahead). It is noteworthy that a K_{0}-function is a K_{W}-function if and only if it is a K_{W}^{*}-function (this follows from Theorem 12 of [1], and Theorems 2 c) and 3 b) v) ahead).

[^0]Remark. Note that, for each closed subspace F of any space (X, τ) there exists $k: \tau \mid F \rightarrow \tau$ which satisfies (1), (2) and (3) above: Simply, let $k(U)=$ $U \cup(X-F)$, for $U \neq \emptyset$, and $k(\emptyset)=\emptyset$.

Proposition 1. Every K_{W}-space is completely normal.
Proof: Let A, B be subsets of a K_{W}-space (X, τ) such that $\bar{A} \cap B=$ $\emptyset=A \cap \bar{B}$. Let $F=\bar{A} \cup \bar{B}$ and let $k: \tau \mid F \rightarrow \tau$ be a K_{W}-function. Then $\bar{B}-\bar{A}=F-\bar{A}=U \in \tau \mid F, B \subset U$ and $\bar{U} \cap A=\emptyset$ (note that $a \in A$ implies $a \notin \bar{B}$ which implies that $a \in X-\bar{B} \in \tau$, since $(X-\bar{B}) \cap(\bar{B}-\bar{A})=\emptyset, a \notin \bar{U})$. Since $\overline{k(U)} \cap F=\bar{U}$, by (4), we get that $\overline{k(U)} \cap A=\emptyset$; therefore, $k(U)$ and $X-\overline{k(U)}$ are disjoint τ-open subsets of X such that $B \subset k(U)$ and $A \subset X-\overline{k(U)}$. This completes the proof.

Theorem 2. For any space X, the following are equivalent:

a) X is a K_{W}^{*}-space;
b) X is completely normal and, for each nonempty closed subspace F of X, there exist extenders $\phi: C_{\mathrm{usc}}^{*}(F) \rightarrow C_{\mathrm{usc}}^{*}(X)$ and $\psi: C_{\mathrm{lsc}}^{*}(F) \rightarrow C_{\mathrm{lsc}}^{*}(X)$ such that
i) $\phi(f) \leq \phi(g)$, whenever $f \leq g$,
ii) $\phi(f+g) \geq \phi(f)+\phi(g)$,
iii) $\psi(f) \leq \psi(g)$, whenever $f \leq g$,
iv) $\psi(f+g) \leq \psi(f)+\psi(g)$,
v) $\phi(f) \leq \psi(f)$, whenever $f \in C^{*}(F)$,
vi) $\phi\left(a_{F}\right)=a_{X}=\psi\left(a_{F}\right)$, for $a \in \mathbb{R}$,
vii) $\psi(\sup (f, g))=\sup (\psi(f), \psi(g))$,
viii) $\phi(\inf (f, g))=\inf (\phi(f), \phi(g))$,
ix) $\phi(f)=-\psi(-f)$, for each $f \in C^{*}(F)$,
x) for any $\left\{f_{\alpha} \mid \alpha \in \Lambda\right\} \subset C^{*}(F), \overline{\bigcup_{\alpha} \phi\left(f_{\alpha}\right)^{-1}(]-\infty, 0[)} \cap F=\overline{\bigcup_{\alpha} f_{\alpha}^{-1}(]-\infty, 0[)}$;
c) X is completely normal and, for any nonempty closed $F \subset X$ there exists an extender $\phi: C^{*}(F) \rightarrow C_{\mathrm{usc}}^{*}(X)$ which satisfies i), vi), viii) and x$)$ of b) for functions in $C^{*}(F)$.

Proof: a) implies b). By Proposition 1, X is completely normal. Let $k: \tau \mid F \rightarrow \tau$ be a K_{W}^{*}-function. For each $x \in X$, let

$$
\begin{aligned}
& \phi(f)(x)=\inf \left\{t \in \mathbb{R} \mid x \in k\left(f^{-1}(]-\infty, t[)\right)\right\}, \\
& \psi(g)(x)=\sup \left\{t \in \mathbb{R} \mid x \in k\left(g^{-1}(] t, \infty[)\right)\right\},
\end{aligned}
$$

where $f \in C_{\mathrm{usc}}^{*}(F)$ and $g \in C_{\mathrm{lsc}}^{*}(F)$. Since k is monotone, we immediately get that ϕ and ψ satisfy i) and iii), respectively. Since we also get that

$$
\begin{aligned}
& \phi(f)^{-1}(]-\infty, t[)=\bigcup\left\{k\left(f^{-1}(]-\infty, s[)\right) \mid s<t\right\} \\
& \psi(g)^{-1}(] t, \infty[)=\bigcup\left\{k\left(f^{-1}(] s, \infty[)\right) \mid s>t\right\}
\end{aligned}
$$

we immediately get that ϕ is a usc-extender and ψ is an lsc-extender. (It is clear that, for $x \in F, \phi(f)(x)=f(x)$ and $\psi(g)(x)=g(x)$.)

Next, we show that ϕ satisfies ii): Pick $x \in X$ and say $\phi(f)(x)=t_{1}, \phi(g)(x)=t_{2}$, with $t_{1} \leq t_{2}$. Let $t=t_{1}+t_{2}$ and note that, for any $\varepsilon>0$,

$$
\left.(f+g)^{-1}(]-\infty, t-\varepsilon[) \subset f^{-1}(]-\infty, t_{1}-\frac{\varepsilon}{2}[) \cup g^{-1}(]-\infty, t_{2}-\frac{\varepsilon}{2}\right)
$$

(Pick any $z \in F$ such that $f(z)+g(z)<t-\varepsilon$. Note that if $f(z)<t_{1}-\frac{\varepsilon}{2}$ then $z \in f^{-1}(]-\infty, t_{1}-\frac{\varepsilon}{2}[)$; if $f(z) \geq t_{1}-\frac{\varepsilon}{2}$ then $g(z)<t_{2}-\frac{\varepsilon}{2}$ which implies that $z \in g^{-1}(]-\infty, t_{2}-\frac{\varepsilon}{2}[)$.) Since $\phi(f)(x)=t_{1}$ and $\phi(g)(x)=t_{2}$, we get that $x \notin k\left(f^{-1}(]-\infty, t_{1}-\frac{\varepsilon}{2}[)\right)$ and $x \notin k\left(g^{-1}(]-\infty, t_{2}-\frac{\varepsilon}{2}[)\right)$; hence $x \notin k\left(f^{-1}(]-\infty\right.$, $\left.t_{1}-\frac{\varepsilon}{2}[)\right) \cup k\left(g^{-1}(]-\infty, t_{2}-\frac{\varepsilon}{2}[)\right) \supset k\left((f+g)^{-1}(]-\infty, t-\varepsilon[)\right)$, by (2) and $\left(3^{*}\right)$, which implies that $\phi(f+g)(x) \geq t=\phi(f)(x)+\phi(g)(x)$, as required.

Next, we show that ψ satisfies iv): Pick $x \in X$ and say $\psi(f)(x)=t_{1}$, $\psi(g)(x)=t_{2}$, with $t_{1} \leq t_{2}$. Let $t=t_{1}+t_{2}$ and note that, for any $\varepsilon>0$,

$$
(f+g)^{-1}(] t+\varepsilon, \infty[) \subset f^{-1}(] t_{1}+\frac{\varepsilon}{2}, \infty[) \cup g^{-1}(] t_{2}+\frac{\varepsilon}{2}, \infty[)
$$

(Pick any $z \in F$ such that $f(z)+g(z)>t+\varepsilon$. Note that if $f(z)>t_{1}+\frac{\varepsilon}{2}$ then $z \in f^{-1}(] t_{1}+\frac{\varepsilon}{2}, \infty[)$; if $f(z) \leq t_{1}+\frac{\varepsilon}{2}$ then $g(z)>t_{2}+\frac{\varepsilon}{2}$ which implies that $z \in g^{-1}(] t_{2}+\frac{\varepsilon}{2}, \infty[)$.) Since $\psi(f)(x)=t_{1}$ and $\psi(g)(x)=t_{2}$, we get that $x \notin k\left(f^{-1}(] t_{1}+\frac{\varepsilon}{2}, \infty[)\right)$ and $x \notin k\left(g^{-1}(] t_{2}+\frac{\varepsilon}{2}, \infty[)\right)$; hence $x \notin k\left(f^{-1}(] t_{1}+\frac{\varepsilon}{2}\right.$, $\infty[)) \cup k\left(g^{-1}(] t_{2}+\frac{\varepsilon}{2}, \infty[)\right) \supset k\left((f+g)^{-1}(] t+\varepsilon, \infty[)\right)$, by (2) and $\left(3^{*}\right)$, which implies that $\psi(f+g)(x) \leq t=\psi(f)(x)+\psi(g)(x)$, as required.

In order to show that v$)$ is satisfied, let $f \in C^{*}(F)$ and say $\phi(f)(x)=t_{0}$. Then $x \notin k\left(f^{-1}(]-\infty, t[)\right)$ for $t<t_{0}$. Therefore, by conditions (3) for a K_{W}-function, $x \in k\left(f^{-1}(] s, \infty[)\right)$ for $s<t<t_{0}$ (because $F=f^{-1}(] s, \infty[) \cup f^{-1}(]-\infty, t[)$; therefore, $\psi(f)(x) \geq t_{0}=\phi(f)(x)$.

It is easily seen from the definitions of ϕ and ψ that they satisfy vi).
Next, we show that ψ satisfies vii): Note that, for $f, g \in C_{\mathrm{lsc}}^{*}(F)$ and $t \in \mathbb{R}$,

$$
\sup (f, g)^{-1}(] t, \infty[)=f^{-1}(] t, \infty[) \cup g^{-1}(] t, \infty[)
$$

Pick $x \in X$ and let $\psi(f)(x)=t_{1}, \psi(g)(x)=t_{2}$; say $t_{1} \leq t_{2}$. Then $x \notin$ $k\left(f^{-1}(] t, \infty[)\right)$ for $t>t_{1}$, and $x \notin k\left(g^{-1}(] t, \infty[)\right)$ for $t>t_{2}$; therefore, by $\left(3^{*}\right)$,

$$
x \notin k\left(f^{-1}(] t, \infty[)\right) \cup k\left(g^{-1}(] t, \infty[)\right) \quad \text { for } \quad t>t_{2} .
$$

Therefore, $x \notin k\left(\sup (f, g)^{-1}(] t, \infty[)\right)$ for $t>t_{2}$, which implies that $\psi(\sup (f, g))(x)$ $\leq t_{2}=\sup (\psi(f)(x), \psi(g)(x))$. Since $\psi(\sup (f, g)) \geq \sup (\psi(f), \psi(g))$, because of iii), we get that ψ satisfies vii).

Similarly, one can prove that ϕ satisfies viii); also, ix) follows immediately from the definitions of ϕ and ψ.

Finally, we show that x) is satisfied: Note that

$$
\begin{aligned}
\bigcup_{\alpha} \phi\left(f_{\alpha}\right)^{-1}(]-\infty, 0[)=\bigcup_{\alpha}\left(\bigcup\left\{k\left(f_{\alpha}^{-1}(]-\infty, r[)\right) \mid r<0\right\}\right) & \subset \bigcup_{\alpha} k\left(f_{\alpha}^{-1}(]-\infty, 0[)\right) \\
& \subset k\left(\bigcup_{\alpha} f_{\alpha}^{-1}(]-\infty, 0[)\right)
\end{aligned}
$$

Hence,

$$
\overline{\bigcup_{\alpha} \phi\left(f_{\alpha}\right)^{-1}(]-\infty, 0[)} \cap F \subset \overline{k\left(\bigcup_{\alpha} f_{\alpha}^{-1}(]-\infty, 0[)\right)} \cap F=\overline{\bigcup_{\alpha} f_{\alpha}^{-1}(]-\infty, 0[)}
$$

by (4). Since, for $A \subset X, \bar{A} \cap F \supset \overline{A \cap F}$, letting $A=\bigcup_{\alpha} \phi\left(f_{\alpha}\right)^{-1}(]-\infty, 0[)$, we then get that

$$
\overline{\bigcup_{\alpha} \phi\left(f_{\alpha}\right)^{-1}(]-\infty, 0[)} \cap F=\overline{\bigcup_{\alpha} f_{\alpha}^{-1}(]-\infty, 0[)}
$$

This completes the proof that a) implies b).
Since it is obvious that b) implies c), let us prove that c) implies a). Define $k: \tau \mid F \rightarrow \tau$ by

$$
\left.\left.k(U)=\bigcup\left\{\phi(f)^{-1}(]-\infty, 0[) \mid f \in C^{*}(F,]-\infty, 1\right]\right), f(F-U) \subset\{1\}\right\}
$$

Since ϕ is a usc-extender and F is a Tychonoff space, one easily gets that $k(U) \in \tau$ and $k(U) \cap F=U$, for each $U \in \tau \mid F$; also, $k(\emptyset)=\emptyset$ and $k(F)=X$, because of vi).

Next, note that k is monotone: Let $U, V \in \tau \mid F$ such that $U \subset V$. Note that $f(F-U) \subset\{1\}$ implies that $f(F-V) \subset\{1\}$, by i), which shows that $k(U) \subset k(V)$.

Next, we prove that, for each $U, V \in \tau \mid F, k(U \cup V)=k(U) \cup k(V)$; i.e., k satisfies $\left(3^{*}\right)$: Since k is monotone, we need only prove that $k(U \cup V) \subset k(U) \cup$ $k(V)$. Let $x \in k(U \cup V)$. Then there exists a function $\left.\left.f \in C^{*}(F]-,\infty, 1\right]\right)$ such that $f(F-U \cup V) \subset\{1\}$ and $\phi(f)(x)<0$. By Lemma 1 in the Appendix, there exist functions $\left.\left.f_{1}, f_{2}, f_{3} \in C^{*}(F]-,\infty, 1\right]\right)$ such that $f_{1}(F-U) \cup f_{2}(F-V) \cup$ $f_{3}(F-U \cap V) \subset\{1\}$ and $\inf \left(f_{1}, f_{2}, f_{3}\right) \leq f$. Then

$$
0>\phi(f)(x) \geq \phi\left(\inf \left(f_{1}, f_{2}, f_{3}\right)\right)(x)=\inf \left(\phi\left(f_{1}\right)(x), \phi\left(f_{2}\right)(x), \phi\left(f_{3}\right)(x)\right)
$$

Note that if $\phi\left(f_{1}\right)(x)<0$ then $x \in k(U)$; if $\phi\left(f_{2}\right)(x)<0$ then $x \in k(V)$; if $\phi\left(f_{3}\right)(x)<0$ then $x \in k(U \cap V) \subset k(U) \cup k(V)$. Hence, $x \in k(U) \cup k(V)$.

Finally, we prove that $\overline{k(U)} \cap F=\bar{U}$: Let us say that $k(U)=\bigcup\left\{\phi\left(f_{\alpha}\right)^{-1}\right.$ (]$-\infty, 0[) \mid \alpha \in \Lambda\}$. Then, since ϕ satisfies property x) of b), we get that

$$
\overline{\mu(U)} \cap F=\overline{\bigcup_{\alpha} \phi\left(f_{\alpha}\right)^{-1}(]-\infty, 0[)} \cap F=\overline{\bigcup_{\alpha} f_{\alpha}^{-1}(]-\infty, 0[)}=\bar{U} .
$$

Hence, $\overline{k(U)} \cap F=\bar{U}$, which completes the proof that c) implies a).
Theorem 3. For any space X, the following are equivalent:
a) X is a K_{W}-space;
b) X is a normal space and, for each nonempty closed subspace F of X, there exist extenders $\phi: C_{\mathrm{usc}}^{*}(F) \rightarrow C_{\mathrm{usc}}^{*}(X)$ and $\psi: C_{\mathrm{lsc}}^{*}(F) \rightarrow C_{\mathrm{lsc}}^{*}(X)$ such that
i) $\phi(f) \leq \phi(g)$ whenever $f \leq g$,
ii) $\psi(f) \leq \psi(g)$ whenever $f \leq g$,
iii) $\phi\left(a_{F}\right)=a_{X}=\psi\left(a_{F}\right)$, for each $a \in \mathbb{R}$,
iv) $\phi(f) \leq \psi(f)$ whenever $f \in C^{*}(F)$,
v) For any subset $\left\{f_{\alpha} \mid \alpha \in \Lambda\right\}$ of $C^{*}(F)$ and $a \in \mathbb{R}$,

$$
\begin{aligned}
& \overline{\bigcup_{\alpha} \phi\left(f_{\alpha}\right)^{-1}(]-\infty, a[)} \cap F=\overline{\bigcup_{\alpha} f_{\alpha}^{-1}(]-\infty, a[)}, \\
& \overline{\bigcup_{\alpha} \psi\left(f_{\alpha}\right)^{-1}(] a, \infty[)} \cap F=\overline{\bigcup_{\alpha} f_{\alpha}^{-1}(] a, \infty[)}
\end{aligned}
$$

c) X is normal and, for any nonempty closed $F \subset X$, there exist extenders $\phi: C^{*}(F) \rightarrow C_{\mathrm{usc}}^{*}(X)$ and $\psi: C^{*}(F) \rightarrow C_{\mathrm{lsc}}^{*}(X)$ which satisfy iii), iv) and $v)$ of b) for functions in $C^{*}(F)$.

Proof: a) implies b). This is essentially Proposition 11 of [1]. (The proof of condition v) in Proposition 11 of [1] can obviously be adapted to the more general condition v) of this result.)

Clearly, b) implies c).
c) implies a). (The proof of Theorem 4.1 in [2] surely helped us in devising this argument.) Let F be a nonempty closed subspace of (X, τ). For each $U \in \tau \mid F$,
let

$$
\begin{aligned}
& \mu(U)=\bigcup\left\{\phi(f)^{-1}(]-\infty, 1[) \mid f \in C(F,[-2,2]), f(F-U) \subset\{2\}\right\}, \\
& \nu(U)=\bigcup\left\{\psi(f)^{-1}(]-1, \infty[) \mid f \in C(F,[-2,2]), f(F-U) \subset\{-2\}\right\}, \\
& k(U)=\mu(U) \cup \nu(U)
\end{aligned}
$$

If $U \in \tau \mid F$ and $z \in U$, then there exists $f \in C(F,[-2,2])$ such that $f(z)=-2$ and $f(F-U) \subset\{2\}$ (because X is Tychonoff). Since ϕ is an extender, we get that $U \cap \mu(U)=U$; similarly, $U \cap \nu(U)=U$. Hence, $F \cap k(U)=U$, for each $U \in \tau \mid F$. Clearly, $k(F)=X$ and $k(\emptyset)=\emptyset$, because of iii).

It is easily seen that $k(U) \subset k(V)$ whenever $U \subset V$ (indeed, $\mu(U) \subset \mu(V)$ and $\nu(U) \subset \nu(V))$.

Next, we prove that if $U \cup V=F$ then $k(U) \cup k(V)=X$ (Wlog, let us assume that $U \neq F \neq V)$. Let $x \in X$ and suppose that $x \notin \mu(U)$. Then, for each $f \in C(F,[-2,2])$ such that $f(F-U)=2$, we get that $\phi(f)(x) \geq 1$. Pick $h \in C(F,[-2,2])$ such that $h(F-V)=-2$ and $h(F-U)=2$ (this can be done because F is normal). It follows that $\psi(h)(x) \geq \phi(h)(x) \geq 1$, which implies that $x \in \nu(V)$. Similarly, if $x \notin \mu(V)$ then $x \in \nu(U)$. Consequently, we get that $x \in k(U) \cup k(V)$, as required.

Finally, we prove that, for each $U \in \tau \mid F, \overline{k(U)} \cap F=\bar{U}$, by proving that $\overline{\mu(U)} \cap F=\bar{U}=\overline{\nu(U)} \cap F$ (we will prove the first equality and note that the second equality can be similarly proved): Let us assume that $\mu(U)=\bigcup\left\{\phi\left(f_{\alpha}\right)^{-1}\right.$ (]$-\infty, 1[) \mid \alpha \in \Lambda\}$. Since ϕ satisfies condition v) of b), we get that

$$
\overline{\mu(U)} \cap F=\overline{\bigcup_{\alpha} \phi\left(f_{\alpha}\right)^{-1}(]-\infty, 1[)} \cap F=\overline{\bigcup_{\alpha} f_{\alpha}^{-1}(]-\infty, 1[)}=\bar{U} .
$$

This completes the proof.
Theorem 4. For a space (X, τ), the following are equivalent:
i) X is a K_{W}-space;
ii) For each closed subspace F of X there exists a function $k: \tau \mid F \rightarrow \tau$ such that
(1') $F \cap k(U)=U$, for each $U \in \tau \mid F, k(F)=X, k(\emptyset)=\emptyset$,
(2') $k(U) \subset k(V)$ whenever $U \subset V$,
($\left.\mathbf{3}^{\prime}\right) U, V \in \tau \mid F, \bar{U} \cap \bar{V}=\emptyset$ implies $\overline{k(U)} \cap \overline{k(V)}=\emptyset$,
(4') $\overline{k(U)} \cap F=\bar{U}$.

Proof: i) implies ii). Let $\sigma: \tau \mid F \rightarrow \tau$ be a K_{W}-function and define $k: \tau \mid F \rightarrow \tau$ by $k(U)=U \cup(X-[F \cup \sigma(F-\bar{U})])$. (Note that

$$
\begin{aligned}
k(U) & =U \cup((X-F) \cap(X-\overline{\sigma(F-\bar{U})})) \\
& =(U \cup(X-F)) \cap(U \cup[X-\overline{\sigma(F-\bar{U})}])
\end{aligned}
$$

and $X-\overline{\sigma(F-\bar{U})} \supset U$ because, by (4),

$$
(X-\overline{\sigma(F-\bar{U})}) \cap F=F-(\overline{\sigma(F-\bar{U})} \cap F)=F-\overline{F-\bar{U}} \supset U
$$

Hence, we do get that $k(U) \in \tau$.)
From the definition of k we immediately get that k satisfies (1^{\prime}).
$\frac{k \text { satisfies }\left(2^{\prime}\right): U \subset V \text { implies } \bar{U} \subset \bar{V} \text { implies } F-\bar{V} \subset F-\bar{U} \text { implies }}{\sigma(F-\bar{V})} \subset \overline{\sigma(F)} \subset$ $\overline{\sigma(F-\bar{V})} \subset \overline{\sigma(F-\bar{U})}$ implies $k(U) \subset k(V)$.
k satisfies $\left(3^{\prime}\right): \bar{U} \cap \bar{V}=\emptyset$ implies $(F-\bar{U}) \cup(F-\bar{V})=F$ implies $\sigma(F-\bar{U}) \cup$ $\sigma(F-\bar{V})=X$ implies

$$
\begin{aligned}
&\overline{X-[F} \cup \overline{\sigma(F-\bar{U})}] \cap \overline{X-[F \cup \overline{\sigma(F-\bar{V})}]}= \\
& \quad= X-[F \cup \overline{\sigma(F-\bar{U})}]^{0} \cap X-[F \cup \overline{\sigma(F-\bar{V})}]^{0} \\
&= X-\left([F \cup \overline{\sigma(F-\bar{U})}]^{0} \cup[F \cup \overline{\sigma(F-\bar{V})}]^{0}\right) \subset \\
& \subset X-\left(\overline{\sigma(F-\bar{U})^{0}} \cup \overline{\sigma(F-\bar{V})^{0}}\right) \subset X-(\sigma(F-\bar{U}) \cup \sigma(F-\bar{V}))=\emptyset .
\end{aligned}
$$

Also, $\bar{U} \cap \bar{V}=\emptyset$ implies $\bar{U} \subset F-\bar{V}$ implies $\bar{U} \subset \sigma(F-\bar{V})$ implies $\bar{U} \subset \overline{\sigma(F-\bar{V})^{0}}$ implies $\bar{U} \cap\left(X-[F \cup \overline{\sigma(F-\bar{V})}]^{0}\right)=\emptyset$; similarly, $\bar{V} \cap\left(X-[F \cup \overline{\sigma(F-\bar{U})}]^{0}\right)=\emptyset$. Consequently, $\overline{k(U)} \cap \overline{k(V)}=\emptyset$.
k satisfies $\left(4^{\prime}\right): \overline{k(U)} \cap F=\bar{U} \cup(\overline{(X-[F \cup \overline{\sigma(F-\bar{U})}])} \cap F) \supset \bar{U}$; since

$$
\begin{aligned}
& \overline{X-[F \cup \overline{\sigma(F-\bar{U})}]} \cap F \subset \overline{X-\overline{\sigma(F-\bar{U})}} \cap F=\left(X-\overline{[\sigma(F-\bar{U})]^{0}}\right) \cap F= \\
& \quad=F-\left(F \cap \overline{[\sigma(F-\bar{U})]^{0}}\right) \subset F-(F \cap \sigma(F-\bar{U}))=F-(F-\bar{U})=\bar{U}
\end{aligned}
$$

we then get that $\overline{k(U)} \cap F=\bar{U}$.
ii) implies i). One need only check that the preceding arguments are essentially reversible; that is, starting with k, which satisfies $\left(1^{\prime}\right)-\left(4^{\prime}\right)$, define σ by $\sigma(U)=U \cup(X-[F \cup \overline{k(F-\bar{U})}])$; then σ is a K_{W}-function: It is easily seen that $F \cap \sigma(U)=U$, for each $U \in \tau \mid F, \sigma(F)=X, \sigma(\emptyset)=\emptyset$, and $\sigma(U) \subset \sigma(V)$
whenever $U \subset V$. Also, $U, V \in \tau \mid F$ and $U \cup V=F$ implies $\bar{U}^{0} \cup \bar{V}^{0}=F$ (here, interiors refer to $\tau \mid F)$ implies $\left(F-\bar{U}^{0}\right) \cap\left(F-\bar{V}^{0}\right)=\emptyset$ if and only if $\overline{(F-\bar{U})} \cap \overline{(F-\bar{V})}=\emptyset$ implies $\overline{k(F-\bar{U})} \cap \overline{k(F-\bar{V})}=\emptyset$ implies

$$
\begin{aligned}
& U \cup(X-[F \cup \overline{k(F-\bar{U})}]) \cup V \cup(X-[F \cup \overline{k(F-\bar{V})}])= \\
&=(U \cup V) \cup(X-[F \cup \overline{k(F-\bar{U})}] \cap[F \cup \overline{k(F-\bar{V})}]) \\
&=F \cup(X-[F \cup(\overline{k(F-\bar{U})} \cap \overline{k(F-\bar{V})})])=F \cup(X-F)=X .
\end{aligned}
$$

Therefore, $\sigma(U) \cup \sigma(V)=X$ whenever $U \cup V=F$. Finally, $\sigma(\bar{U}) \cap F=$ $\bar{U} \cup \overline{(X-[F \cup \overline{k(F-\bar{U})}]} \cap F) \supset \bar{U}$; since $\overline{X-[F \cup \overline{k(F-\bar{U})}]} \cap F \subset \bar{U}$, we then get that $\sigma(\bar{U}) \cap F=\bar{U}$. We have thus shown that σ is a K_{W}-function, which completes the proof.

Corollary 5. K_{W}-spaces are collectionwise normal.
Proof: Let (X, τ) be a K_{W}-space and $\mathcal{A}=\left\{A_{\alpha} \mid \alpha \in \Lambda\right\}$ be a discrete collection of closed subsets of X. Letting $F=\cup \mathcal{A}$, we get that each $A_{\alpha} \in \tau \mid F$. Letting $k: \tau \mid F \rightarrow \tau$ be a function which satisfies conditions (1^{\prime}) and (3^{\prime}) of Theorem 4, we then get that $\left\{\overline{k\left(A_{\alpha}\right)} \mid \alpha \in \Lambda\right\}$ is a pairwise-disjoint collection of closed subsets of X with each $A_{\alpha} \subset k\left(A_{\alpha}\right)$. This shows that X is collectionwise normal.

Appendix

The following result is crucial to our work. It probably is folklore.
Lemma 1. Let F be a completely normal space, U and V open subsets of F and $f: F \rightarrow]-\infty, 1]$ be a continuous function such that $f(F-U \cup V) \subset\{1\}$. Then there exist continuous functions $\left.\left.f_{1}, f_{2}, f_{3}: F \rightarrow\right]-\infty, 1\right]$ such that
i) $f_{1}(F-U) \cup f_{2}(F-V) \cup f_{3}(F-U \cap V) \subset\{1\}$;
ii) $\inf \left(f_{1}, f_{2}, f_{3}\right) \leq f$.

Proof: Let us first consider the case $U \cup V \neq F$. Since F is completely normal and $\overline{U-V} \cap(V-U)=\emptyset=(U-V) \cap \overline{V-U}$, pick disjoint open U^{\prime}, V^{\prime} such that $U-V \subset U^{\prime}$ and $V-U \subset V^{\prime}$. Let $f_{1}=f$ on $U-V^{\prime}$ and $f_{1}=1$ on $F-U$ and extend f_{1} to $\left.\left.f_{1}: F \rightarrow\right]-\infty, 1\right]$. Let $f_{2}=f$ on $V-U^{\prime}$ and $f_{2}=1$ on $F-V$ and extend f_{2} to $\left.\left.f_{2}: F \rightarrow\right]-\infty, 1\right]$. Let $f_{3}=f$ on $U \cap V-\left(U^{\prime} \cup V^{\prime}\right)$ and $f_{3}=1$ on $F-U \cap V$ and extend f_{3} to $\left.\left.f_{3}: F \rightarrow\right]-\infty, 1\right]$. Since $U \cup V=$ $\left(U-V^{\prime}\right) \cup\left(V-U^{\prime}\right) \cup\left[(U \cap V)-\left(U^{\prime} \cup V^{\prime}\right)\right]$, we immediately get that $\inf \left(f_{1}, f_{2}, f_{3}\right) \leq f$.

It is now clear that the result is also valid if $U \cap V=\emptyset$. Finally, let us show that it also remains valid if $U \cup V=F$: (Wlog, assume $U \neq F \neq V$). Simply pick open U^{\prime}, V^{\prime} such that $\bar{U}^{\prime} \subset U, \bar{V}^{\prime} \subset V$ and $\bar{U}^{\prime} \cup \bar{V}^{\prime}=F$. Let $f_{1}=f$ on U^{\prime} and $f_{1}=1$ on $F-U$ and extend f_{1} to $\left.f_{1}: F \rightarrow\right]-\infty, 1\left[\right.$. Let $f_{2}=f$ on V^{\prime} and $f_{2}=1$ on $F-V$ and extend f_{2} to $\left.f_{2}: F \rightarrow\right]-\infty, 1\left[\right.$. Let $f_{3}=1_{F}$. One immediately gets that $\inf \left(f_{1}, f_{2}, f_{3}\right) \leq f$.

Remark. Clearly, the preceding result remains valid for $f: F \rightarrow[-1, \infty[$, $f(F-U \cup V) \subset\{-1\}$ and $\sup \left(f_{1}, f_{2}, f_{3}\right) \geq f$.

REFERENCES

[1] Borges, C.R. - Extension properties of K_{i}-spaces, $Q \Xi A$ in General Topology, 7 (1989), 81-97.
[2] Douwen, E.K. van - Simultaneous extensions of continuous functions, Ph. D. Thesis, Academische Pers-Amsterdam, 1975.

Carlos R. Borges,
Dep. of Mathematics, University of California, Davis, California 95616-8633 - U.S.A.

[^0]: Received: October 4, 1991.
 1980 Mathematics Subject Classification: Primary 54C20; Secondary 54C30.
 Keywords and Phrases: K_{W}-spaces, K_{W}^{*}-spaces, usc- and lsc-extenders, continuous extensions.

