PORTUGALIAE MATHEMATICA Vol. 51 Fasc. 1 – 1994

A STUDY OF K_W -SPACES AND K_W^* -SPACES

CARLOS R. BORGES

Abstract: Further study of K_W -spaces leads to the introduction of K_W^* -spaces. We obtain a characterization of K_W^* -spaces in terms of continuous real-valued functions which is dual to a characterization of K_0 -spaces. We also get two characterizations of K_W -spaces, one of which exhibits their remarkable similarities with K_1 -spaces; a consequence of the latter characterization is that K_W -spaces are collectionwise normal.

Throughout, we will use the terminology of [1].

We introduced the concept of K_W -spaces in [1; Definition 10], as follows: A space (X, τ) is a K_W -space provided that, for each closed $F \subset X$, there exists a function $k: \tau | F \to \tau$ (k is called a K_W -function) which satisfies the following:

- (1) $F \cap k(U) = U$, for each $U \in \tau | F, k(F) = X$ and $k(\emptyset) = \emptyset$;
- (2) $k(U) \subset k(V)$ whenever $U \subset V$;
- (3) $k(U) \cup k(V) = X$ whenever $U \cup V = F$;
- (4) $\overline{k(U)} \cap F = \overline{U}$.

Condition (3) naturally leads to one question if it can be replaced by the stronger condition below, without affecting the concept of a K_W -space:

$$(3^*) \ k(U) \cup k(V) = k(U \cup V).$$

We do not yet know the answer to this question. However, replacing (3) by (3^*) in the definition of K_W -spaces leads to a (possibly new) class of spaces which we will call K_W^* -spaces, with remarkable properties which are dual to those of K_0 -spaces (see Theorem 2 of [1] and compare it with Theorem 2 ahead). It is noteworthy that a K_0 -function is a K_W -function if and only if it is a K_W^* -function (this follows from Theorem 12 of [1], and Theorems 2 c) and 3 b) v) ahead).

Received: October 4, 1991.

¹⁹⁸⁰ Mathematics Subject Classification: Primary 54C20; Secondary 54C30.

Keywords and Phrases: K_W -spaces, K_W^* -spaces, usc- and lsc-extenders, continuous extensions.

Remark. Note that, for each closed subspace F of any space (X, τ) there exists $k : \tau | F \to \tau$ which satisfies (1), (2) and (3) above: Simply, let $k(U) = U \cup (X - F)$, for $U \neq \emptyset$, and $k(\emptyset) = \emptyset$.

Proposition 1. Every K_W -space is completely normal.

Proof: Let A, B be subsets of a K_W -space (X, τ) such that $\overline{A} \cap B = \emptyset = A \cap \overline{B}$. Let $F = \overline{A} \cup \overline{B}$ and let $k : \tau | F \to \tau$ be a K_W -function. Then $\overline{B} - \overline{A} = F - \overline{A} = U \in \tau | F, B \subset U$ and $\overline{U} \cap A = \emptyset$ (note that $a \in A$ implies $a \notin \overline{B}$ which implies that $a \in X - \overline{B} \in \tau$, since $(X - \overline{B}) \cap (\overline{B} - \overline{A}) = \emptyset, a \notin \overline{U}$). Since $\overline{k(U)} \cap F = \overline{U}$, by (4), we get that $\overline{k(U)} \cap A = \emptyset$; therefore, k(U) and $X - \overline{k(U)}$ are disjoint τ -open subsets of X such that $B \subset k(U)$ and $A \subset X - \overline{k(U)}$. This completes the proof.

Theorem 2. For any space X, the following are equivalent:

- **a**) X is a K_W^* -space;
- **b**) X is completely normal and, for each nonempty closed subspace F of X, there exist extenders $\phi: C^*_{usc}(F) \to C^*_{usc}(X)$ and $\psi: C^*_{lsc}(F) \to C^*_{lsc}(X)$ such that
 - i) $\phi(f) \leq \phi(g)$, whenever $f \leq g$,
 - ii) $\phi(f+g) \ge \phi(f) + \phi(g)$,
 - iii) $\psi(f) \leq \psi(g)$, whenever $f \leq g$,
 - iv) $\psi(f+g) \le \psi(f) + \psi(g)$,
 - **v**) $\phi(f) \leq \psi(f)$, whenever $f \in C^*(F)$,
 - **vi**) $\phi(a_F) = a_X = \psi(a_F)$, for $a \in \mathbb{R}$,
 - **vii**) $\psi(\sup(f,g)) = \sup(\psi(f),\psi(g)),$
 - **viii**) $\phi(\inf(f,g)) = \inf(\phi(f), \phi(g)),$
 - ix) $\phi(f) = -\psi(-f)$, for each $f \in C^*(F)$,

x) for any
$$\{f_{\alpha} \mid \alpha \in \Lambda\} \subset C^*(F), \overline{\bigcup_{\alpha} \phi(f_{\alpha})^{-1}(]-\infty,0[)} \cap F = \bigcup_{\alpha} f_{\alpha}^{-1}(]-\infty,0[), F = \bigcup_{\alpha} f_{\alpha}^{-1}(]$$

c) X is completely normal and, for any nonempty closed $F \subset X$ there exists an extender $\phi: C^*(F) \to C^*_{usc}(X)$ which satisfies i), vi), viii) and x) of b) for functions in $C^*(F)$.

Proof: a) implies b). By Proposition 1, X is completely normal. Let $k: \tau | F \to \tau$ be a K_W^* -function. For each $x \in X$, let

$$\phi(f)(x) = \inf\left\{t \in \mathbf{\mathbb{R}} \mid x \in k(f^{-1}(]-\infty,t[))\right\},\$$

$$\psi(g)(x) = \sup\left\{t \in \mathbf{\mathbb{R}} \mid x \in k(g^{-1}(]t,\infty[))\right\},\$$

where $f \in C^*_{usc}(F)$ and $g \in C^*_{lsc}(F)$. Since k is monotone, we immediately get that ϕ and ψ satisfy i) and iii), respectively. Since we also get that

$$\phi(f)^{-1}(] - \infty, t[) = \bigcup \left\{ k(f^{-1}(] - \infty, s[)) \mid s < t \right\}$$

$$\psi(g)^{-1}(]t, \infty[) = \bigcup \left\{ k(f^{-1}(]s, \infty[)) \mid s > t \right\} ,$$

we immediately get that ϕ is a usc-extender and ψ is an lsc-extender. (It is clear that, for $x \in F$, $\phi(f)(x) = f(x)$ and $\psi(g)(x) = g(x)$.)

Next, we show that ϕ satisfies ii): Pick $x \in X$ and say $\phi(f)(x) = t_1$, $\phi(g)(x) = t_2$, with $t_1 \leq t_2$. Let $t = t_1 + t_2$ and note that, for any $\varepsilon > 0$,

$$(f+g)^{-1}(]-\infty, t-\varepsilon[) \subset f^{-1}(]-\infty, t_1-\frac{\varepsilon}{2}[) \cup g^{-1}(]-\infty, t_2-\frac{\varepsilon}{2})$$
.

(Pick any $z \in F$ such that $f(z) + g(z) < t - \varepsilon$. Note that if $f(z) < t_1 - \frac{\varepsilon}{2}$ then $z \in f^{-1}(]-\infty, t_1 - \frac{\varepsilon}{2}[)$; if $f(z) \ge t_1 - \frac{\varepsilon}{2}$ then $g(z) < t_2 - \frac{\varepsilon}{2}$ which implies that $z \in g^{-1}(]-\infty, t_2 - \frac{\varepsilon}{2}[)$.) Since $\phi(f)(x) = t_1$ and $\phi(g)(x) = t_2$, we get that $x \notin k(f^{-1}(]-\infty, t_1 - \frac{\varepsilon}{2}[))$ and $x \notin k(g^{-1}(]-\infty, t_2 - \frac{\varepsilon}{2}[))$; hence $x \notin k(f^{-1}(]-\infty, t_1 - \frac{\varepsilon}{2}[)) \cup k(g^{-1}(]-\infty, t_2 - \frac{\varepsilon}{2}[)) \supset k((f+g)^{-1}(]-\infty, t-\varepsilon[))$, by (2) and (3*), which implies that $\phi(f+g)(x) \ge t = \phi(f)(x) + \phi(g)(x)$, as required.

Next, we show that ψ satisfies iv): Pick $x \in X$ and say $\psi(f)(x) = t_1$, $\psi(g)(x) = t_2$, with $t_1 \leq t_2$. Let $t = t_1 + t_2$ and note that, for any $\varepsilon > 0$,

$$(f+g)^{-1}(]t+\varepsilon,\infty[) \subset f^{-1}(]t_1+\frac{\varepsilon}{2},\infty[) \cup g^{-1}(]t_2+\frac{\varepsilon}{2},\infty[)$$
.

(Pick any $z \in F$ such that $f(z) + g(z) > t + \varepsilon$. Note that if $f(z) > t_1 + \frac{\varepsilon}{2}$ then $z \in f^{-1}(]t_1 + \frac{\varepsilon}{2}, \infty[)$; if $f(z) \leq t_1 + \frac{\varepsilon}{2}$ then $g(z) > t_2 + \frac{\varepsilon}{2}$ which implies that $z \in g^{-1}(]t_2 + \frac{\varepsilon}{2}, \infty[)$.) Since $\psi(f)(x) = t_1$ and $\psi(g)(x) = t_2$, we get that $x \notin k(f^{-1}(]t_1 + \frac{\varepsilon}{2}, \infty[))$ and $x \notin k(g^{-1}(]t_2 + \frac{\varepsilon}{2}, \infty[))$; hence $x \notin k(f^{-1}(]t_1 + \frac{\varepsilon}{2}, \infty[)) \cup k(g^{-1}(]t_2 + \frac{\varepsilon}{2}, \infty[)) \supset k((f + g)^{-1}(]t + \varepsilon, \infty[))$, by (2) and (3*), which implies that $\psi(f + g)(x) \leq t = \psi(f)(x) + \psi(g)(x)$, as required.

In order to show that v) is satisfied, let $f \in C^*(F)$ and say $\phi(f)(x) = t_0$. Then $x \notin k(f^{-1}(]-\infty,t[))$ for $t < t_0$. Therefore, by conditions (3) for a K_W -function, $x \in k(f^{-1}(]s,\infty[))$ for $s < t < t_0$ (because $F = f^{-1}(]s,\infty[) \cup f^{-1}(]-\infty,t[))$; therefore, $\psi(f)(x) \ge t_0 = \phi(f)(x)$.

It is easily seen from the definitions of ϕ and ψ that they satisfy vi).

Next, we show that ψ satisfies vii): Note that, for $f, g \in C^*_{lsc}(F)$ and $t \in \mathbb{R}$,

$$\sup(f,g)^{-1}(]t,\infty[) = f^{-1}(]t,\infty[) \cup g^{-1}(]t,\infty[) .$$

Pick $x \in X$ and let $\psi(f)(x) = t_1$, $\psi(g)(x) = t_2$; say $t_1 \leq t_2$. Then $x \notin k(f^{-1}(]t,\infty[))$ for $t > t_1$, and $x \notin k(g^{-1}(]t,\infty[))$ for $t > t_2$; therefore, by (3^{*}),

$$x \notin k(f^{-1}(]t, \infty[)) \cup k(g^{-1}(]t, \infty[))$$
 for $t > t_2$.

Therefore, $x \notin k(\sup(f,g)^{-1}(]t,\infty[))$ for $t > t_2$, which implies that $\psi(\sup(f,g))(x) \le t_2 = \sup(\psi(f)(x), \psi(g)(x))$. Since $\psi(\sup(f,g)) \ge \sup(\psi(f), \psi(g))$, because of iii), we get that ψ satisfies vii).

Similarly, one can prove that ϕ satisfies viii); also, ix) follows immediately from the definitions of ϕ and ψ .

Finally, we show that x) is satisfied: Note that

$$\bigcup_{\alpha} \phi(f_{\alpha})^{-1}(]-\infty, 0[) = \bigcup_{\alpha} \left(\bigcup_{\alpha} \left\{ k(f_{\alpha}^{-1}(]-\infty, r[)) \mid r < 0 \right\} \right) \subset \bigcup_{\alpha} k(f_{\alpha}^{-1}(]-\infty, 0[))$$
$$\subset k(\bigcup_{\alpha} f_{\alpha}^{-1}(]-\infty, 0[)).$$

Hence,

$$\overline{\bigcup_{\alpha} \phi(f_{\alpha})^{-1}(]-\infty,0[)} \cap F \subset \overline{k(\bigcup_{\alpha} f_{\alpha}^{-1}(]-\infty,0[))} \cap F = \overline{\bigcup_{\alpha} f_{\alpha}^{-1}(]-\infty,0[)}$$

by (4). Since, for $A \subset X$, $\overline{A} \cap F \supset \overline{A \cap F}$, letting $A = \bigcup_{\alpha} \phi(f_{\alpha})^{-1}(] - \infty, 0[)$, we then get that

$$\overline{\bigcup_{\alpha} \phi(f_{\alpha})^{-1}(]-\infty,0[)} \cap F = \overline{\bigcup_{\alpha} f_{\alpha}^{-1}(]-\infty,0[)} .$$

This completes the proof that a) implies b).

Since it is obvious that b) implies c), let us prove that c) implies a). Define $k: \tau | F \to \tau$ by

$$k(U) = \bigcup \left\{ \phi(f)^{-1}(] - \infty, 0[) \mid f \in C^*(F,] - \infty, 1]), \ f(F - U) \subset \{1\} \right\}$$

Since ϕ is a usc-extender and F is a Tychonoff space, one easily gets that $k(U) \in \tau$ and $k(U) \cap F = U$, for each $U \in \tau | F$; also, $k(\emptyset) = \emptyset$ and k(F) = X, because of vi).

Next, note that k is monotone: Let $U, V \in \tau | F$ such that $U \subset V$. Note that $f(F - U) \subset \{1\}$ implies that $f(F - V) \subset \{1\}$, by i), which shows that $k(U) \subset k(V)$.

Next, we prove that, for each $U, V \in \tau | F$, $k(U \cup V) = k(U) \cup k(V)$; i.e., k satisfies (3^{*}): Since k is monotone, we need only prove that $k(U \cup V) \subset k(U) \cup k(V)$. Let $x \in k(U \cup V)$. Then there exists a function $f \in C^*(F,] - \infty, 1]$) such that $f(F - U \cup V) \subset \{1\}$ and $\phi(f)(x) < 0$. By Lemma 1 in the Appendix, there exist functions $f_1, f_2, f_3 \in C^*(F,] - \infty, 1]$) such that $f_1(F - U) \cup f_2(F - V) \cup f_3(F - U \cap V) \subset \{1\}$ and $\inf(f_1, f_2, f_3) \leq f$. Then

$$0 > \phi(f)(x) \ge \phi(\inf(f_1, f_2, f_3))(x) = \inf(\phi(f_1)(x), \phi(f_2)(x), \phi(f_3)(x))$$

A STUDY OF K_W -SPACES AND K_W^* -SPACES

Note that if $\phi(f_1)(x) < 0$ then $x \in k(U)$; if $\phi(f_2)(x) < 0$ then $x \in k(V)$; if $\phi(f_3)(x) < 0$ then $x \in k(U \cap V) \subset k(U) \cup k(V)$. Hence, $x \in k(U) \cup k(V)$.

Finally, we prove that $\overline{k(U)} \cap F = \overline{U}$: Let us say that $k(U) = \bigcup \{\phi(f_{\alpha})^{-1} (|-\infty,0|) \mid \alpha \in \Lambda\}$. Then, since ϕ satisfies property x) of b), we get that

$$\overline{\mu(U)} \cap F = \overline{\bigcup_{\alpha} \phi(f_{\alpha})^{-1}(] - \infty, 0[)} \cap F = \overline{\bigcup_{\alpha} f_{\alpha}^{-1}(] - \infty, 0[)} = \overline{U}$$

Hence, $\overline{k(U)} \cap F = \overline{U}$, which completes the proof that c) implies a).

Theorem 3. For any space X, the following are equivalent:

- **a**) X is a K_W -space;
- **b**) X is a normal space and, for each nonempty closed subspace F of X, there exist extenders $\phi: C^*_{usc}(F) \to C^*_{usc}(X)$ and $\psi: C^*_{lsc}(F) \to C^*_{lsc}(X)$ such that
 - i) $\phi(f) \leq \phi(g)$ whenever $f \leq g$,
 - ii) $\psi(f) \leq \psi(g)$ whenever $f \leq g$,
 - iii) $\phi(a_F) = a_X = \psi(a_F)$, for each $a \in \mathbb{R}$,
 - iv) $\phi(f) \leq \psi(f)$ whenever $f \in C^*(F)$,
 - **v**) For any subset $\{f_{\alpha} \mid \alpha \in \Lambda\}$ of $C^*(F)$ and $a \in \mathbb{R}$,

$$\overline{\bigcup_{\alpha} \phi(f_{\alpha})^{-1}(]-\infty, a[)} \cap F = \overline{\bigcup_{\alpha} f_{\alpha}^{-1}(]-\infty, a[)} ,$$
$$\overline{\bigcup_{\alpha} \psi(f_{\alpha})^{-1}(]a, \infty[)} \cap F = \overline{\bigcup_{\alpha} f_{\alpha}^{-1}(]a, \infty[)} .$$

c) X is normal and, for any nonempty closed $F \subset X$, there exist extenders $\phi: C^*(F) \to C^*_{usc}(X)$ and $\psi: C^*(F) \to C^*_{lsc}(X)$ which satisfy iii), iv) and v) of b) for functions in $C^*(F)$.

Proof: a) implies b). This is essentially Proposition 11 of [1]. (The proof of condition v) in Proposition 11 of [1] can obviously be adapted to the more general condition v) of this result.)

Clearly, b) implies c).

c) implies a). (The proof of Theorem 4.1 in [2] surely helped us in devising this argument.) Let F be a nonempty closed subspace of (X, τ) . For each $U \in \tau | F$,

let

$$\begin{split} \mu(U) &= \bigcup \Big\{ \phi(f)^{-1}(] - \infty, 1[) \mid f \in C(F, [-2, 2]), \ f(F - U) \subset \{2\} \Big\} \ ,\\ \nu(U) &= \bigcup \Big\{ \psi(f)^{-1}(] - 1, \infty[) \mid f \in C(F, [-2, 2]), \ f(F - U) \subset \{-2\} \Big\} \ ,\\ k(U) &= \mu(U) \cup \nu(U) \ . \end{split}$$

If $U \in \tau | F$ and $z \in U$, then there exists $f \in C(F, [-2, 2])$ such that f(z) = -2and $f(F - U) \subset \{2\}$ (because X is Tychonoff). Since ϕ is an extender, we get that $U \cap \mu(U) = U$; similarly, $U \cap \nu(U) = U$. Hence, $F \cap k(U) = U$, for each $U \in \tau | F$. Clearly, k(F) = X and $k(\emptyset) = \emptyset$, because of iii).

It is easily seen that $k(U) \subset k(V)$ whenever $U \subset V$ (indeed, $\mu(U) \subset \mu(V)$ and $\nu(U) \subset \nu(V)$).

Next, we prove that if $U \cup V = F$ then $k(U) \cup k(V) = X$ (Wlog, let us assume that $U \neq F \neq V$). Let $x \in X$ and suppose that $x \notin \mu(U)$. Then, for each $f \in C(F, [-2, 2])$ such that f(F - U) = 2, we get that $\phi(f)(x) \ge 1$. Pick $h \in C(F, [-2, 2])$ such that h(F - V) = -2 and h(F - U) = 2 (this can be done because F is normal). It follows that $\psi(h)(x) \ge \phi(h)(x) \ge 1$, which implies that $x \in \nu(V)$. Similarly, if $x \notin \mu(V)$ then $x \in \nu(U)$. Consequently, we get that $x \in k(U) \cup k(V)$, as required.

Finally, we prove that, for each $U \in \tau | F, \overline{k(U)} \cap F = \overline{U}$, by proving that $\overline{\mu(U)} \cap F = \overline{U} = \overline{\nu(U)} \cap F$ (we will prove the first equality and note that the second equality can be similarly proved): Let us assume that $\mu(U) = \bigcup \{\phi(f_{\alpha})^{-1} (|-\infty,1[) | \alpha \in \Lambda\}$. Since ϕ satisfies condition v) of b), we get that

$$\overline{\mu(U)} \cap F = \overline{\bigcup_{\alpha} \phi(f_{\alpha})^{-1}(] - \infty, 1[)} \cap F = \overline{\bigcup_{\alpha} f_{\alpha}^{-1}(] - \infty, 1[)} = \overline{U} .$$

This completes the proof. \blacksquare

Theorem 4. For a space (X, τ) , the following are equivalent:

- i) X is a K_W -space;
- ii) For each closed subspace F of X there exists a function $k \colon \tau | F \to \tau$ such that
 - (1') $F \cap k(U) = U$, for each $U \in \tau | F, k(F) = X, k(\emptyset) = \emptyset$,
 - (2') $k(U) \subset k(V)$ whenever $U \subset V$,
 - (3') $U, V \in \tau | F, \overline{U} \cap \overline{V} = \emptyset$ implies $\overline{k(U)} \cap \overline{k(V)} = \emptyset$,
 - $(\mathbf{4}') \ \overline{k(U)} \cap F = \overline{U}.$

Proof: i) implies ii). Let $\sigma: \tau | F \to \tau$ be a K_W -function and define $k: \tau | F \to \tau$ by $k(U) = U \cup (X - [F \cup \overline{\sigma(F - U)}])$. (Note that

$$k(U) = U \cup \left((X - F) \cap (X - \overline{\sigma(F - \overline{U})}) \right)$$
$$= \left(U \cup (X - F) \right) \cap \left(U \cup [X - \overline{\sigma(F - \overline{U})}] \right)$$

and $X - \overline{\sigma(F - \overline{U})} \supset U$ because, by (4),

$$\left(X - \overline{\sigma(F - \overline{U})}\right) \cap F = F - \left(\overline{\sigma(F - \overline{U})} \cap F\right) = F - \overline{F - \overline{U}} \supset U$$
.

Hence, we do get that $k(U) \in \tau$.)

From the definition of k we immediately get that k satisfies (1').

 $\frac{k \text{ satisfies } (2'): \ U \subset V \text{ implies } \overline{U} \subset \overline{V} \text{ implies } F - \overline{V} \subset F - \overline{U} \text{ implies } }{\overline{\sigma(F - \overline{V})} \subset \overline{\sigma(F - \overline{U})} \text{ implies } k(U) \subset k(V).}$

k satisfies (3'): $\overline{U} \cap \overline{V} = \emptyset$ implies $(F - \overline{U}) \cup (F - \overline{V}) = F$ implies $\sigma(F - \overline{U}) \cup \sigma(F - \overline{V}) = X$ implies

$$\begin{split} \overline{X - [F \cup \overline{\sigma(F - \overline{U})}]} &\cap \overline{X - [F \cup \overline{\sigma(F - \overline{V})}]} = \\ &= X - [F \cup \overline{\sigma(F - \overline{U})}]^0 \cap X - [F \cup \overline{\sigma(F - \overline{V})}]^0 \\ &= X - \left([F \cup \overline{\sigma(F - \overline{U})}]^0 \cup [F \cup \overline{\sigma(F - \overline{V})}]^0 \right) \subset \\ &\subset X - \left(\overline{\sigma(F - \overline{U})^0} \cup \overline{\sigma(F - \overline{V})^0} \right) \subset X - \left(\sigma(F - \overline{U}) \cup \sigma(F - \overline{V}) \right) = \emptyset \;. \end{split}$$

Also, $\overline{U} \cap \overline{V} = \emptyset$ implies $\overline{U} \subset F - \overline{V}$ implies $\overline{U} \subset \sigma(F - \overline{V})$ implies $\overline{U} \subset \overline{\sigma(F - \overline{V})^0}$ implies $\overline{U} \cap (X - [F \cup \overline{\sigma(F - \overline{V})}]^0) = \emptyset$; similarly, $\overline{V} \cap (X - [F \cup \overline{\sigma(F - \overline{U})}]^0) = \emptyset$. Consequently, $\overline{k(U)} \cap \overline{k(V)} = \emptyset$.

k satisfies (4'):
$$\overline{k(U)} \cap F = \overline{U} \cup (\overline{(X - [F \cup \overline{\sigma(F - \overline{U})}])} \cap F) \supset \overline{U};$$
 since

$$X - [F \cup \sigma(F - \overline{U})] \cap F \subset X - \sigma(F - \overline{U}) \cap F = \left(X - [\sigma(F - \overline{U})]^{0}\right) \cap F =$$
$$= F - \left(F \cap \overline{[\sigma(F - \overline{U})]^{0}}\right) \subset F - \left(F \cap \sigma(F - \overline{U})\right) = F - (F - \overline{U}) = \overline{U}$$

we then get that $\overline{k(U)} \cap F = \overline{U}$.

ii) implies i). One need only check that the preceding arguments are essentially reversible; that is, starting with k, which satisfies (1')-(4'), define σ by $\sigma(U) = U \cup (X - [F \cup \overline{k(F - U)}])$; then σ is a K_W -function: It is easily seen that $F \cap \sigma(U) = U$, for each $U \in \tau | F, \sigma(F) = X, \sigma(\emptyset) = \emptyset$, and $\sigma(U) \subset \sigma(V)$

whenever $U \subset V$. Also, $U, V \in \tau | F$ and $U \cup V = F$ implies $\overline{U}^0 \cup \overline{V}^0 = F$ (here, interiors refer to $\tau | F$) implies $(F - \overline{U}^0) \cap (F - \overline{V}^0) = \emptyset$ if and only if $(F - \overline{U}) \cap \overline{(F - \overline{V})} = \emptyset$ implies $\overline{k(F - \overline{U})} \cap \overline{k(F - \overline{V})} = \emptyset$ implies $U \cup \left(X - [F \cup \overline{k(F - \overline{U})}]\right) \cup V \cup \left(X - [F \cup \overline{k(F - \overline{V})}]\right) =$ $= (U \cup V) \cup \left(X - [F \cup \overline{k(F - \overline{U})}] \cap [F \cup \overline{k(F - \overline{V})}]\right)$ $= F \cup \left(X - [F \cup (\overline{k(F - \overline{U})} \cap \overline{k(F - \overline{V})})]\right) = F \cup (X - F) = X$.

Therefore, $\sigma(U) \cup \sigma(V) = X$ whenever $U \cup V = F$. Finally, $\sigma(\overline{U}) \cap F = \overline{U} \cup (\overline{X - [F \cup \overline{k}(F - \overline{U})]} \cap F) \supset \overline{U}$; since $\overline{X - [F \cup \overline{k}(F - \overline{U})]} \cap F \subset \overline{U}$, we then get that $\sigma(\overline{U}) \cap F = \overline{U}$. We have thus shown that σ is a K_W -function, which completes the proof.

Corollary 5. K_W -spaces are collectionwise normal.

Proof: Let (X, τ) be a K_W -space and $\mathcal{A} = \{A_\alpha \mid \alpha \in \Lambda\}$ be a discrete collection of closed subsets of X. Letting $F = \bigcup \mathcal{A}$, we get that each $A_\alpha \in \tau \mid F$. Letting $k : \tau \mid F \to \tau$ be a function which satisfies conditions (1') and (3') of Theorem 4, we then get that $\{\overline{k(A_\alpha)} \mid \alpha \in \Lambda\}$ is a pairwise-disjoint collection of closed subsets of X with each $A_\alpha \subset k(A_\alpha)$. This shows that X is collectionwise normal.

Appendix

The following result is crucial to our work. It probably is folklore.

Lemma 1. Let F be a completely normal space, U and V open subsets of F and $f: F \to]-\infty, 1]$ be a continuous function such that $f(F - U \cup V) \subset \{1\}$. Then there exist continuous functions $f_1, f_2, f_3: F \to]-\infty, 1]$ such that

- i) $f_1(F U) \cup f_2(F V) \cup f_3(F U \cap V) \subset \{1\};$
- **ii**) $\inf(f_1, f_2, f_3) \le f$.

Proof: Let us first consider the case $U \cup V \neq F$. Since F is completely normal and $\overline{U-V} \cap (V-U) = \emptyset = (U-V) \cap \overline{V-U}$, pick disjoint open U', V'such that $U-V \subset U'$ and $V-U \subset V'$. Let $f_1 = f$ on U-V' and $f_1 = 1$ on F-U and extend f_1 to $f_1: F \to]-\infty, 1]$. Let $f_2 = f$ on V-U' and $f_2 = 1$ on F-V and extend f_2 to $f_2: F \to]-\infty, 1]$. Let $f_3 = f$ on $U \cap V - (U' \cup V')$ and $f_3 = 1$ on $F-U \cap V$ and extend f_3 to $f_3: F \to]-\infty, 1]$. Since $U \cup V =$ $(U-V') \cup (V-U') \cup [(U \cap V) - (U' \cup V')]$, we immediately get that $\inf(f_1, f_2, f_3) \leq f$.

It is now clear that the result is also valid if $U \cap V = \emptyset$. Finally, let us show that it also remains valid if $U \cup V = F$: (Wlog, assume $U \neq F \neq V$). Simply pick open U', V' such that $\overline{U'} \subset U$, $\overline{V'} \subset V$ and $\overline{U'} \cup \overline{V'} = F$. Let $f_1 = f$ on U' and $f_1 = 1$ on F - U and extend f_1 to $f_1 \colon F \to]-\infty, 1[$. Let $f_2 = f$ on V'and $f_2 = 1$ on F - V and extend f_2 to $f_2 \colon F \to]-\infty, 1[$. Let $f_3 = 1_F$. One immediately gets that $\inf(f_1, f_2, f_3) \leq f$.

Remark. Clearly, the preceding result remains valid for $f: F \to [-1, \infty[, f(F - U \cup V) \subset \{-1\}$ and $\sup(f_1, f_2, f_3) \ge f$.

REFERENCES

- [1] BORGES, C.R. Extension properties of K_i -spaces, $Q \ & A$ in General Topology, 7 (1989), 81–97.
- [2] DOUWEN, E.K. VAN Simultaneous extensions of continuous functions, Ph. D. Thesis, Academische Pers-Amsterdam, 1975.

Carlos R. Borges, Dep. of Mathematics, University of California, Davis, California 95616-8633 – U.S.A.