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ON A CLASS OF FREE GALOIS EXTENSIONS

X.D. Deng and G. Szeto

Abstract: Let RGf be a projective group algebra over a commutative ring R, where

G is a finite group and f is a factor set. If RGf is a central Galois R-algebra with inner

Galois group G′ induced by the basis of RGf , then there exists a one-to-one correspon-

dence between the set of subgroups H ′ of G′ such that RHf is Galois with a free basis

induced by H ′ and the set of Azumaya subalgebras B over R such that RG = B(G(B))f ,

where G(B) = {α ∈ G | α(b) = b} for any b in B and B(G(B))f is a projective group

ring over B.

1 – Introduction

Let RGf (=
∑

RUα, α in G) be a projective group algebra with a free basis
{Uα | α in G} over a commutative ring R where G is a finite group and f is a factor
set: G×G→ U(R) which is the set of units of R. In [1] and [2], F.R. DeMeyer
proved that RGf is a central Galois R-algebra if and only if it is an Azumaya
R-algebra, where the Galois group G′ is inner induced by {Uα}. If the coefficient
ring R is noncommutative, then we call RGf a projective group ring over R. Let
RGf be a central Galois R-algebra with inner Galois group G

′. The purpose of
the present paper is to show a fundamental theorem for RGf . It will be shown
that there exists a one-to-one correspondence between the set of subgroups H ′

of G′ such that RGf is a free Galois extension with basis {Uα | α in H} over
(RGf )

H′

and the set of Azumaya subalgebras B such that RGf = B(G(B))f
where G(B) = {α in G′ | α(b) = b for each b in B} and B(G(B))f is a projective
group ring over B where f on a subgroup is the restriction of f on G. In this
case, B = (RGf )

G(B)′ and (RGf )
H′

is also an Azumaya subalgebra.

Received : September 6, 1991; Revised : May 22, 1992.

AMS Classification numbers: 16S35, 16W20.

Keywords and Phrases: Projective group rings and algebras, Azumaya algebras, Central

Galois algebras, Galois extensions.



104 X.D. DENG and G. SZETO

2 – Definitions and notations

Throughout, we assume that all rings have an identity 1. A ring A is called
a ring extension over a subring B if A and B have the same identity. For the
definitions of separable extensions and algebras and Azumaya algebras, we refer
to [1], [3] and [8]. Let A be a ring extension over B, G a finite automorphism
group of A of order n for some integer n. Then A is called a Galois extension
over B with Galois group G if B =AG (= {a in A | α(a) = a for each α in G})
and there exist {ai, bi in A | i = 1, ...,m for some integer m} such that
∑

i aiα(bi) = δ1α (the Kronecker δ) for α in G. Such a set {ai, bi} is called a
Galois coordinate system for A. Let R be a ring with center C, U(C) the set of
units of C, and G a finite group. Then f : G → U(C) is called a factor set if
f(αβ,v) f(α,β)=f(α,βv) f(β, v) for all α, β, v in G, and RGf (=

∑

RUα, α in G)
is called a projective group ring over R if {Uα} are free over R, rUα = Uαr for
each r in R and α in G, and UαUβ = Uαβ f(α, β) for all α, β in G. RGf is called
a projective group algebra when R is commutative (see [1] and [2]).

3 – Main results

In the following, we assume that A (= RGf ) is a central Galois algebra over
a commutative ring R with inner Galois group G′, where G is a finite group of
order n for some integer n, f is a factor set and G′ is the inner automorphism
group of A induced by {Uα}; that is, α

′(a) = Uα aU
−1
α for each a in A and α in

G. We recall that RGf is Galois over R with inner Galois group G
′ if and only

if RGf is an Azumaya R-algebra ([1], Theorems 1 and 2).

Theorem 1. Let A (= RGf ) be a central Galois R-algebra with inner Galois
group G′ and H ′ a subgroup of G′. Then, A is a free Galois extension with a free
basis {Uα | α in H} over AH′

with Galois group H ′ if and only if RHf (=
∑

RUα,
α in H) is an Azumaya R-algebra.

Proof: Let RHf be an Azumaya R-algebra. Then it is a central Galois
R-algebra ([1], Theorem 3). Let {ai, bi in RHf | i = 1, ...,m for some integer m}
be a Galois coordinate system. Then, for each b in AH′

and α in H, α′(b) = b,
so Uα bU

−1
α = b. Hence Uαb = bUα for each α in H. Thus bx = xb for each x in

RHf . Now we claim that {Uα | α in H} are free over A
H′

. Let
∑

tαUα = 0 for α
in H and tα in A

H′

. Then for any α in H,

0 =
∑

i

ai
(

∑

tαUα
)

β′−1(bi) =
∑

α

tα
(

∑

i

ai α
′ β′−1(bi)

)

Uα = tβ Uβ .
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Since Uβ is a unit, tβ = 0 for each β in H. Thus (A
H′

)Hf is a projective group
ring over AH′

in A. Moreover, (AH′

)Hf ⊃ RHf , so (A
H′

)Hf is Galois over A
H′

with inner Galois group H ′ (for RHf is Galois over R with inner Galois group
H ′). But A is also Galois over AH′

with inner Galois group H ′, so A = (AH′

)Hf .
This proves the sufficiency. For the necessity, let A be a free Galois extension
over AH′

with a basis {Uα | α in H}. Then A = (A
H′

)Hf . Denote A
H′

by B
and let C be the center of B. Then A = BHf , a projective group ring over
B. Clearly, A = BHf = B ⊗ CHf . Since A has center R, it is easy to see that
R = C. Moreover, since A is Azumaya C-algebra, both B and CHf are Azumaya
C-algebras ([3], Chapter 4, Theorem 4.4). Thus RHf is an Azumaya R-algebra.

By the proof of the necessity of the above theorem, we have

Corollary 2. By keeping the notations and hypotheses of Theorem 1, if A
is a free Galois extension with a basis {Uα | α in H} over AH′

with Galois group
H ′, then AH′

is an Azumaya R-algebra such that A = (AH′

)Hf .

Next, we want to show the converse. Let B be an Azumaya subalgebra of A,
G(B) = {α in G | α′(b) = b for each b in B}. Then B(G(B)) (=

∑

BUα, α in
G(B)) is a subalgebra of A such that bUα = Uαb for each α in G(B) and b in B.

Theorem 3. Let B be an Azumaya subalgebra of A. Then, B(G(B)) is an
Azumaya R-algebra if and only if R(G(B))f is Galois over R with inner Galois
group (G(B))′.

Proof: Let R(G(B))f be Galois over R with inner Galois group (G(B))
′.

Then it is an Azumaya R-algebra. Since bUα = Uαb for each b in B and α in G(B),
{Uα | α in G(B)} are free over B as proved in Theorem 1. Hence B(G(B)) =
B(G(B))f , a projective group ring over B. Since B(G(B))f = B ⊗ R(G(B))f ,
B(G(B))f is an Azumaya R-algebra (for B and R(G(B))f are so) ([3], Chapter 2,
Proposition 3.3). Conversely, let B(G(B)) be an Azumaya R-algebra. Since
bUα = Uαb for each b in B and α in G(B), the center of R(G(B))f is contained
in R. Hence the center of R(G(B))f is R. On the other hand, A (= RGf ) is a
separable R-algebra if and only if the order of G is a unit ([1], Lemma 1). Hence
the order of G(B) is a unit. Thus R(G(B))f is a separable R-algebra. But then
R(G(B))f is Galois over R with inner Galois group (G(B))

′.

We note that the Azumaya subalgebra B(G(B))f in the above theorem may
not be A. We are going to show that there exists a bigger Azumaya subalgebra
D ⊃ B such that A = D(G(B))f and G(D) = G(B).
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Theorem 4. Let A and B be given as in Theorem 3 such that B(G(B)) is
an Azumaya subalgebra of A. Then there exists a unique Azumaya subalgebra
D containing B such that A = D(G(B))f and G(D) = G(B).

Proof: By Theorem 3, B(G(B)) = B(G(B))f , a projective group ring over
B. Since B and B(G(B))f are Azumaya subalgebras of A, there exists an Azu-
maya subalgebra D′ of A such that A ∼= B(G(B))f ⊗D′ ∼= B ⊗ R(G(B))f ⊗D′

as Azumaya R-algebras ([3], Chapter 2, Theorem 4.3). Let D = B ⊗D′. Then
A ∼= D ⊗ R(G(B))f where D and R(G(B))f are commutant Azumaya subal-
gebras in A. Hence, by A(G(B))′ Theorem 3, A ∼= D ⊗ R(G(D))f ; and so
R(G(D))f = R(G(B))f ([3], Chapter 2, Theorem 4.3). Thus G(D) = G(B).
Also, by Theorem 1, A ∼= A(G(D))′ ⊗ R(G(D))f , so D = A(G(D))′ = A(G(B))′

by the commutant theorem again. Thus A = D(G(B))f . Moreover, let D
′′ be

another subalgebra of A such that A = D′′(G(B))f ; then clearly D
′′ = D.

By Theorems 2 and 4, we have a one-to-one correspondence theorem for cen-
tral Galois algebras with an inner Galois group.

Theorem 5. Let A (= RGf ) be a central Galois R-algebra with inner
Galois group G′. Then there exists a one-to-one correspondence between the set
S of subgroups H ′ of G′ such that A is a free Galois extension of AH′

with a
basis {Uα | α in H} and the set T of Azumaya subalgebras B of A such that
A = B(G(B))f .

Proof: For a subgroup H ′ of G′ in S, A is a free Galois extension of AH′

with
a basis {Uα | α in H}, so Theorem 1 implies that A

H′

is an Azumaya subalgebra
of A such that A = AH′

Hf . Then A
H′

is in T . Then the map φ : H ′ → AH′

is
defined. On the other hand, let B be an Azumaya subalgebra of A in T . Then
A = B(G(B))f . Hence, by Theorem 1, B = AG(B)′ . Thus (G(B))′ is a subgroup
of G′ such that A is a free Galois extension over B (= AG(B)′) with a basis {Uα |
α in G(B)}. This implies that (G(B))′ is in S; and so the map ψ : B → (G(B))′ is
defined. Moreover, since A = AH′

Hf = AH′

(G(AH′

))f , H = G(AH′

). Thus H ′ =
(G(AH′

))′ = ψφ(H ′); and so ψφ = 1. Also, A = B(G(B))f = A(G(B))′(G(B))f ,
so B = A(G(B))′ = φψ(B). Thus φψ = 1. Therefore the correspondence is
one-to-one.

We note that there exist subgroups H ′ of G′ not belonging to the correspon-
dence as given in Theorem 5. For example, the ordinary real quaternion algebra
RGf where G = {±1,±i,±j,±k} is the quaternion group of order 8 and R is
the real field. Then RGf is an Azumaya R-algebra but R〈i〉f , R〈j〉f and R〈k〉f
are not Azumaya algebras over R. Thus the subgroups 〈i〉′, 〈j〉′ and 〈k〉′ do
not belong to the correspondence. We conclude the paper with a theorem sug-
gested by the referee. The theorem identifies which subgroups of G′ belong to
the correspondence as given in Theorem 5.
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Theorem 6. Let G be a finite Abelian group of exponent m, and as-
sume R contains no more than m distinct mth roots of 1. If RGf and RHf are
R-Azumaya algebras for a subgroup H of G, then there exists a subgroup K of G
such that G = H×K where RKf is an Azumaya R-algebra and the commutator
subalgebra of RHf in RGf .

Proof: From the proof of Theorem 4 in [1] (p. 292), the map ψ : G ×G →
U(R) by ψ(α, β) = f(α, β)(f(β, α))−1 is a nonsingular skew pairing because RGf

is an Azumaya R-algebra. Also, since R contains no more than m distinct mth

roots of 1 by hypothesis, the map α→ ψ(α, ) for α in G is an isomorphism from
G to Hom(G,U(R)). Similarly, since RHf is an Azumaya R-algebra, the map
α → ψ(α, ) for α in H is an isomorphism from H to Hom(H,U(R)). More-
over, the map α→ ψ(α, ) for any α in G defines a homomorphism from G onto
Hom(H,U(R)) with kernel K. We then have that G/K ∼= Hom(H,U(R)) where
K = {α in G | ψ(α, β) = 1 for any β in H}. Next, we claim that K ∩H = {e},
the identity of G, and G = HK. In fact, let α be an element in H ∩K. Then
ψ(α, β) = 1 for any β in H. Hence f(α, β) = f(β, α) for any β in H; and
so Uα is in the center of RHf . Thus α = e (for RHf has center R). Noting
that Hom(H,U(R)) ∼= H, we conclude that G = KH. But then G = H × K.
Therefore, RGf

∼= RHf ⊗ RKf as Azumaya R-algebras where RKf is an
Azumaya R-algebra and the commutator subalgebra of RHf in RGf as noted
in [1] (p. 203).
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