ON A CERTAIN CONSTRUCTION OF MS-ALGEBRAS

Miroslav Haviar

1 - Introduction

The first construction of MS-algebras from Kleene algebras and distributive lattices was presented by T.S. Blyth and J.C. Varlet in [3]. This was a construction by means of so-called "triples" which were successfully used in constructions of Stone algebras (see [6], [7]), distributive p-algebras (see [9]), pseudocomplemented semilattices (see [10]), etc. In [4], T.S. Blyth and J.C. Varlet improved their construction from [3] by means of "quadruples" and they showed that each MS-algebra from the subvariety $\mathbb{K}_{2}\left(\mathbb{K}_{2}\right.$-algebra) can be constructed in this way. This was independently done by T. Katriňák and K. Mikula (in an unpublished paper), who compared then both approaches in [11].

In this paper we establish in a particular case an essential simplification of the above mentioned constructions, which is based on the observation that a $\mathbb{K}_{2^{-}}$ algebra L in which L^{\vee} is a principal filter is completely determined by the quadruple ($\left.L^{00}, L^{\vee}, \varphi(L), \gamma(L)\right)$, where φ is - in contrast to the constructions mentioned above - a certain mapping from L^{00} into L^{\vee} (Section 3). Many complications involved in the previous constructions can be removed in this way. We also show that there exists a one-to-one correspondence between the mentioned class of MSalgebras and the class of so-called decomposable \mathbb{K}_{2}-quadruples (Section 4). In Section 5 we establish similar results for MS-algebras from the subvariety $\mathbf{S} \vee \mathbb{K}$. Two examples illustrate the results.

2 - Preliminaries

An $M S$-algebra is an algebra $\left(L ; \vee, \wedge,{ }^{0}, 0,1\right)$ of type $(2,2,1,0,0)$ where ($L ; \vee, \wedge, 0,1$) is a bounded distributive lattice and ${ }^{0}$ is a unary operation such that for all $x, y \in L$

[^0](1) $x \leq x^{00}$;
(2) $(x \wedge y)^{0}=x^{0} \vee y^{0}$;
(3) $1^{0}=0$.

The class of all MS-algebras is equational. Algebras from the subvariety \mathbb{K}_{2} (we call them briefly \mathbf{K}_{2}-algebras) are described by the additional two identities:
(4) $x \wedge x^{0}=x^{00} \wedge x^{0}$;
(5) $\left(x \wedge x^{0}\right) \vee y \vee y^{0}=y \vee y^{0}$.

A \mathbf{K}_{2}-algebra satisfying the identity
(6) $x=x^{00}$
is called a Kleene algebra.
Let L be a \mathbb{K}_{2}-algebra. Then
i) $L^{00}=\left\{x \in L ; x=x^{00}\right\}$ is a Kleene algebra;
ii) $L^{\vee}=\left\{x \vee x^{0} ; x \in L\right\}$ is a filter of L;
iii) $L^{\wedge}=\left\{x \wedge x^{0} ; x \in L\right\}$ is an ideal of L.

Further, for any MS-algebra L,
iv) The relation Φ defined by

$$
x \equiv y(\Phi) \quad \text { iff } \quad x^{0}=y^{0}
$$

is a congruence of L such that every Φ-class $[x] \Phi$ containing x contains also the element x^{00} which is the largest element of $[x] \Phi$ and $[x] \Phi \cap L^{00}=\left\{x^{00}\right\}$.
For these and other properties of MS-algebras we refer the reader to [1], [2] and [5].

3 - The quadruple construction

The quadruple constructions mentioned above provide a complete representation of any \mathbb{K}_{2}-algebra L by its quadruple $\left(L^{00}, L^{\vee}, \varphi(L), \gamma(L)\right)$ where $\varphi(L)$ is a certain mapping from L^{00} into $F\left(L^{\vee}\right)$, the lattice of all filters of L^{\vee} and $\gamma(L)$ is the restriction of the congruence Φ to the filter L^{\vee}. These constructions can be essentially simplified for those algebras whose filter L^{\vee} has a smallest element (e.g. finite MS-algebras) - we shall call them locally bounded.

First we shall present a simple method of how to construct some \mathbb{K}_{2}-algebras.
Definition 1. An (abstract) triple is (K, D, φ), where
i) K is a Kleene algebra;
ii) D is a bounded distributive lattice;
iii) φ is $(0,1)$-lattice homomorphism from K into D.

Theorem 1. Let (K, D, φ) be a triple. Then

$$
L=\{(x, y) ; x \in K, y \in D, y \leq \varphi(x)\}
$$

is an MS-algebra, if we define

$$
\begin{aligned}
\left(x_{1}, y_{1}\right) \vee\left(x_{2}, y_{2}\right) & =\left(x_{1} \vee x_{2}, y_{1} \vee y_{2}\right) \\
\left(x_{1}, y_{1}\right) \wedge\left(x_{2}, y_{2}\right) & =\left(x_{1} \wedge x_{2}, y_{1} \wedge y_{2}\right) \\
(x, y)^{0} & =\left(x^{0}, \varphi\left(x^{0}\right)\right) \\
1_{L} & =(1,1) \\
0_{L} & =(0,0) .
\end{aligned}
$$

Moreover, $L^{00} \cong K$.
Proof: It is easy to prove that L is a sublattice of $K \times D$. Obviously $(0,0),(1,1) \in L$. Thus L is a bounded distributive lattice. Clearly,

$$
(x, y) \wedge(x, y)^{00}=\left(x \wedge x^{00}, y \wedge \varphi\left(x^{00}\right)\right)=(x, y)
$$

hence (1) is satisfied in L. The identities (2) and (3) can be verified in the similar way. Now

$$
\begin{aligned}
L^{00} & =\left\{(x, y)^{00} ;(x, y) \in L\right\}=\left\{\left(x^{00}, \varphi\left(x^{00}\right)\right) ; x \in K\right\} \\
& =\{(x, \varphi(x)) ; x \in K\} \quad(\operatorname{by}(6)) \\
& \cong K \text { under the isomorphism }(x, \varphi(x)) \mapsto x .
\end{aligned}
$$

By a \mathbb{K}_{2}-triple we shall mean a triple (K, D, φ) in which $\varphi\left(K^{\wedge}\right)=\left\{0_{D}\right\}$.
Corollary 1. Let (K, D, φ) be a \mathbb{K}_{2}-triple. Then the $M S$-algebra L from Theorem 1 is a \mathbb{K}_{2}-algebra.

Proof: We shall prove that the identities (4), (5) hold in L. We have

$$
\begin{align*}
(x, y) \wedge(x, y)^{0} & =\left(x \wedge x^{0}, y \wedge \varphi\left(x^{0}\right)\right)=\left(x^{00} \wedge x^{0}, 0\right) \tag{4}\\
& =\left(x^{00} \wedge x^{0}, \varphi\left(x^{00} \wedge x^{0}\right)\right)=(x, y)^{00} \wedge(x, y)^{0}
\end{align*}
$$

using the fact that

$$
y \wedge \varphi\left(x^{0}\right) \leq \varphi\left(x \wedge x^{0}\right)=0_{D} .
$$

The identity (5) can be verified in the similar way using the facts that $y=y \wedge \varphi(x)$ and (5) holds in K.

Definition 2. An (abstract) \mathbb{K}_{2}-quadruple is (K, D, φ, γ), where (K, D, φ) is a \mathbb{K}_{2}-triple and γ is a monomial congruence on D, i.e. every γ-class $[y] \gamma$ has a largest element - we shall denote it by $\max [y] \gamma$.

Corollary 2. Let (K, D, φ, γ) be a \mathbb{K}_{2}-quadruple. Then

$$
L=\{(x, y) ; x \in K, y \in D, y \leq \varphi(x) \leq \max [y] \gamma\}
$$

is a \mathbb{K}_{2}-algebra, if the operations are defined in the same way as in Theorem 1. Moreover, $L^{00} \cong K$.

Proof: It suffices to verify that for any $(x, y),(z, w) \in L$

$$
\varphi(x \vee z) \leq \max [y \vee w] \gamma \quad \text { and } \quad \varphi(x \wedge z) \leq \max [y \wedge w] \gamma
$$

hold in L, but this follows from the facts that

$$
\varphi(x) \leq \max [y] \gamma \quad \text { and } \quad \varphi(z) \leq \max [w] \gamma .
$$

We shall say that the MS-algebra L from Corollary 2 is associated with the \mathbb{K}_{2}-quadruple (K, D, φ, γ) and the construction of L described in Corollary 2 will be called a \mathbb{K}_{2}-construction.

Let L be a locally bounded \mathbb{K}_{2}-algebra and let b be the smallest element of L^{\vee}. Define a mapping $\varphi(L): L^{00} \rightarrow L^{\vee}$ by $\varphi(L)(x)=x \vee b$. Let $\gamma(L)$ be the restriction of the congruence Φ to L^{\vee}. Obviously, $\varphi(L)$ is a (0,1)-homomorphism and $\gamma(L)$ is a monomial congruence on L^{\vee}.

We say that $\left(L^{00}, L^{\vee}, \varphi(L), \gamma(L)\right)$ is a quadruple associated with L.
Since $L^{\vee}=[b)=\left[c \vee c^{0}\right.$) for some $c \in L$ and (5) holds in L, we have $\varphi\left(a \wedge a^{0}\right)=\left(a \wedge a^{0}\right) \vee c \vee c^{0}=c \vee c^{0}=b$ for every $a \in L$. Hence the quadruple $\left(L^{00}, L^{\vee}, \varphi(L), \gamma(L)\right)$ associated with L is a \mathbf{K}_{2}-quadruple.

The next theorem states that every locally bounded \mathbb{K}_{2}-algebra can be obtained by the \mathbb{K}_{2}-construction.

Theorem 2. Let L be a locally bounded \mathbb{K}_{2}-algebra. Let ($\left.L^{00}, L^{\vee}, \varphi(L), \gamma(L)\right)$ be the quadruple associated with L. Then the MS-algebra L_{1} associated with $\left(L^{00}, L^{\vee}, \varphi(L), \gamma(L)\right)$ is isomorphic to L.

Proof: Let $L=[b)$. We shall prove that the mapping $f: L \rightarrow L_{1}$ defined by

$$
f(a)=\left(a^{00}, a \vee b\right)
$$

is the desired isomorphism. Obviously $f(a) \in L_{1}$, since

$$
a \vee b \leq a^{00} \vee b=\varphi\left(a^{00}\right) \leq a^{00} \vee b^{00}=\max [a \vee b] \gamma(L)
$$

Evidently, f is a lattice homomorphism and $f(1)=(1,1), f(0)=(0, b)$. Further, we get

$$
(f(a))^{0}=\left(a^{00}, a \vee b\right)^{0}=\left(a^{0}, \varphi\left(a^{0}\right)\right)=\left(a^{0}, a^{0} \vee b\right)=f\left(a^{0}\right),
$$

hence f is a homomorphism of MS-algebras. Now assume $f\left(a_{1}\right)=f\left(a_{2}\right)$. Then $a_{1}^{00}=a_{2}^{00}$ and $a_{1} \vee b=a_{2} \vee b$. Thus $a_{1}^{00} \wedge\left(a_{1} \vee b\right)=a_{2}^{00} \wedge\left(a_{2} \vee b\right)$, hence $a_{1} \vee\left(a_{1}^{00} \wedge b\right)=a_{2} \vee\left(a_{2}^{00} \wedge b\right)$. Further, for $i \in\{1,2\}$, we have

$$
\begin{aligned}
\left(a_{i}^{00} \wedge b\right) \wedge\left(a_{i}^{0} \wedge b\right) & =a_{i}^{00} \wedge a_{i}^{0} \wedge b \\
& =a_{i} \wedge a_{i}^{0} \wedge b(\text { by }(4)) \\
& =\left(a_{i} \wedge b\right) \wedge\left(a_{i}^{0} \wedge b\right) . \\
\left(a_{i}^{00} \wedge b\right) \vee\left(a_{i}^{0} \wedge b\right) & =\left(a_{i}^{00} \vee a_{i}^{0}\right) \wedge b=b \\
& =\left(a_{i} \vee a_{i}^{0}\right) \wedge b \\
& =\left(a_{i} \wedge b\right) \vee\left(a_{i}^{0} \wedge b\right) .
\end{aligned}
$$

Since L is distributive, we obtain $a_{i}^{00} \wedge b=a_{i} \wedge b$, thus $a_{i}^{00} \wedge b \leq a_{i}$. Hence, $a_{1}=a_{2}$ and f is injective. It remains to prove that f is an onto map. Let $(x, y) \in L_{1}$. Put $a=x \wedge y$. Then we have

$$
\begin{aligned}
f(a) & =\left((x \wedge y)^{00},(x \wedge y) \vee b\right)=\left(x^{00} \wedge y^{00},(x \vee b) \wedge(y \vee b)\right) \\
& =\left(x \wedge y^{00},(x \vee b) \wedge y\right)=(x, \varphi(x) \wedge y)=(x, y)
\end{aligned}
$$

using the facts that $x=x^{00}$ as $x \in L^{00}, b \leq y$ as $y \in L^{\vee}$ and $x \leq x \vee b=\varphi(x) \leq$ $\max [y] \gamma(L)=y^{00}, y \leq \varphi(x)$ follow from rules of the \mathbb{K}_{2}-construction of L_{1}. The proof of Theorem 2 is complete.

3 - MS-algebras from \mathbb{K}_{2} and decomposable \mathbb{K}_{2}-quadruples

In the previous section we presented a simple triple construction of some \mathbb{K}_{2}-algebras, then its modification by quadruples (\mathbb{K}_{2}-construction) and we proved that every locally bounded \mathbb{K}_{2}-algebra is obtained in this way. In this
section we shall investigate a relation between the \mathbb{K}_{2}-quadruples which give rise to the same (up to isomorphism) MS-algebra by \mathbb{K}_{2}-construction.

Definition 3. An isomorphism of the \mathbb{K}_{2}-quadruples (K, D, φ, γ) and ($K_{1}, D_{1}, \varphi_{1}, \gamma_{1}$) is a pair (f, g), where f is an isomorphism of K and K_{1}, g is an isomorphism of D and D_{1} such that $x \equiv y(\gamma)$ iff $g(x) \equiv g(y)\left(\gamma_{1}\right)$ and the diagram

is commutative.
Lemma 1. If two \mathbb{K}_{2}-algebras are isomorphic then their associated quadruples are isomorphic, too.

The proof is straightforward.
Theorem 3. Assume that the \mathbb{K}_{2}-quadruples (K, D, φ, γ) and ($\left.K_{1}, D_{1}, \varphi_{1}, \gamma_{1}\right)$ are isomorphic under an isomorphism (f, g) and let L and L_{1} be their associated \mathbb{K}_{2}-algebras, respectively. Then

$$
L \cong L_{1},
$$

where the isomorphism is defined by the rule

$$
h((x, y))=(f(x), g(y)) .
$$

Proof: Obviously, h is a lattice homomorphism. Further, we have

$$
\begin{aligned}
h\left((x, y)^{0}\right) & =h\left(x^{0}, \varphi\left(x^{0}\right)\right)=\left(f\left(x^{0}\right), g\left(\varphi\left(x^{0}\right)\right)\right) \\
& =\left(f\left(x^{0}\right), \varphi_{1}\left(f\left(x^{0}\right)\right)\right)=\left(f(x)^{0}, \varphi_{1}\left((f(x))^{0}\right)\right)=(f(x), g(y))^{0}=h((x, y))^{0} .
\end{aligned}
$$

Obviously, h is bijective, thus h is an isomorphism.
We get immediately from Lemma 1 and Theorems 2, 3:
Corollary 3. Two locally bounded \mathbb{K}_{2}-algebras are isomorphic if and only if their associated quadruples are isomorphic.

Let us now observe that the converse statement to Theorem 3 is not true, i.e. a \mathbb{K}_{2}-algebra can be obtained from non-isomorphic \mathbb{K}_{2}-quadruples as well. Hence,
it is not true, that every \mathbb{K}_{2}-quadruple is isomorphic to a quadruple associated with some \mathbb{K}_{2}-algebra. We illustrate this observation on the next example.

Example 1. Let K be a subdirectly irreducible Kleene algebra, let D be a two-element distributive lattice and let $\varphi: K \rightarrow D$ be the mapping defined by the rule

$$
\varphi(0)=\varphi(a)=0_{D}, \quad \varphi(1)=1_{D}
$$

(see Figure 1a).

Fig. 1a

Fig. 1b

Let $\gamma=D \times D$. Then (K, D, φ, γ) is a \mathbb{K}_{2}-quadruple and by the $\mathbb{K}_{2^{-}}$ construction we obtain a (subdirectly irreducible) MS-algebra L, where

$$
L=\{(0,0),(a, 0),(1,0),(1,1)\}
$$

and

$$
(a, 0)^{0}=(a, 0), \quad(1,0)^{0}=(0,0)
$$

(see Figure 1b - we renamed the elements of L). Obviously,

$$
(K, D, \varphi, \gamma) \not \approx\left(L^{00}, L^{\vee}, \varphi(L), \gamma(L)\right),
$$

since $L^{\vee}=\{(a, 0),(1,0),(1,1)\}$ is a three element chain. Hence the subdirectly irreducible \mathbb{K}_{2}-algebra L is obtained from two non-isomorphic \mathbb{K}_{2}-quadruples by the \mathbb{K}_{2}-construction, and the \mathbb{K}_{2}-quadruple (K, D, φ, γ) is not isomorphic to any associated quadruple.

Thus the class of all \mathbb{K}_{2}-quadruples is "too large" for establishing a one-toone correspondence between locally bounded \mathbb{K}_{2}-algebras and \mathbb{K}_{2}-quadruples by means of the \mathbb{K}_{2}-construction. The next theorem gives a characterization of the class of \mathbb{K}_{2}-quadruples for which such a correspondence exists.

Theorem 4. \quad A \mathbb{K}_{2}-quadruple (K, D, φ, γ) is isomorphic to a quadruple associated with some \mathbb{K}_{2}-algebra if and only if it satisfies the following two conditions:
i) For every $y \in D$ there exists a unique element $x_{y} \in K^{\vee}$ such that $y \leq \varphi\left(x_{y}\right) \leq \max [y] \gamma ;$
ii) $y_{1} \equiv y_{2}(\gamma)$ iff $x_{y_{1}}^{0}=x_{y_{2}}^{0}$ for any $y_{1}, y_{2} \in D$.

Definition 4. A \mathbb{K}_{2}-quadruple (K, D, φ, γ) satisfying the conditions i), ii) from Theorem 4 will be called a decomposable \mathbb{K}_{2}-quadruple.

Lemma 2. Let L be a locally bounded \mathbb{K}_{2}-algebra. Then its associated quadruple $\left(L^{00}, L^{\vee}, \varphi(L), \gamma(L)\right)$ is a decomposable \mathbb{K}_{2}-quadruple.

Proof: We have already observed that $\left(L^{00}, L^{\vee}, \varphi(L), \gamma(L)\right)$ is a \mathbf{K}_{2}-quadruple. To prove that it satisfies the condition i), suppose $y \in L^{\vee}$, i.e., $y=a \vee a^{0}$ for some $a \in L$. Put $x_{y}=x=a^{00} \vee a^{0}=y^{00}$. Obviously, $x \in\left(L^{00}\right)^{\vee}$ and $y \leq \varphi(L)(x)=$ $a^{0} \vee a^{00}=\max [y] \gamma(L)$, i.e. $(x, y) \in L_{1}$ where L_{1} is a \mathbf{K}_{2}-algebra associated with $\left(L^{00}, L^{\vee}, \varphi(L), \gamma(L)\right)$. To prove the uniqueness, suppose that $\left(x^{\prime}, y\right) \in L_{1}$ for an element $x^{\prime} \in\left(L^{00}\right)^{\vee}$. Then $y \leq x^{\prime} \vee b \leq y^{00}$, hence $x^{00} \vee b^{00}=y^{00}$. Since $x^{\prime} \in\left(L^{00}\right)^{\vee}$, we have $b \leq x^{\prime}$ and $x^{\prime}=x^{\prime} \vee b^{00}=x^{\prime 00} \vee b^{00}=y^{00}=x$. Now we shall prove ii). Let $y_{1}, y_{2} \in L^{\vee}, y_{1}=c \vee c^{0}, y_{2}=d \vee d^{0}$ for some $c, d \in L$. Then $y_{1} \equiv y_{2}(\gamma(L))$ iff $c^{0} \wedge c^{00}=d^{0} \wedge d^{00}$ and this is equivalent to $x_{y_{1}}^{0}=x_{y_{2}}^{0}$.

Theorem 5. Let (K, D, φ, γ) be a decomposable \mathbf{K}_{2}-quadruple. Then there exists a \mathbb{K}_{2}-algebra L such that

$$
\left(L^{00}, L^{\vee}, \varphi(L), \gamma(L)\right) \cong(K, D, \varphi, \gamma)
$$

Proof: Let L be a \mathbb{K}_{2}-algebra associated with (K, D, φ, γ). By Theorem 1, the mapping $f: L^{00} \rightarrow K$ defined by the rule $f(x, \varphi(x))=x$ is an isomorphism of Kleenean algebras. Now,

$$
L^{\vee}=\left\{(x, y) \vee\left(x, y^{0}\right) ;(x, y) \in L\right\}=\left\{\left(x \vee x^{0}, y \vee \varphi\left(x^{0}\right)\right) ;(x, y) \in L\right\}
$$

We shall prove that the mapping $g: L^{\vee} \rightarrow D$ defined by the rule

$$
g\left(x \vee x^{0}, y \vee \varphi\left(x^{0}\right)\right)=y \vee \varphi\left(x^{0}\right)
$$

is a lattice isomorphism. Obviously, g is a lattice homomorphism. Let $y \in D$. By i) of Definition 4 there exists a unique element $x \in K^{\vee}$ such that $(x, y) \in L$. We have $x=z \vee z^{0}$ for some $z \in K$, hence $x^{0}=z^{0} \wedge z^{00}$ and $x=x \vee x^{0}$. Further $\varphi\left(x^{0}\right)=\varphi\left(z^{00} \wedge z^{0}\right)=0_{D}$ as $\varphi\left(K^{\wedge}\right)=\left\{0_{D}\right\}$. Hence $y=y \vee \varphi\left(x^{0}\right)$. Therefore for every $y \in D$ there exists an element $x \in K$ such that $y=y \vee \varphi\left(x^{0}\right)$ and $\left(x \vee x^{0}, y\right) \in L^{\vee}$. This proves the surjectivity of g. The injectivity of g immediately follows from the condition i) of Definition 4.

Now, let $u=\left(x_{1}, y_{1}\right), v=\left(x_{2}, y_{2}\right) \in L^{\vee}$. We know that u, v can be expressed in the form

$$
u=\left(w_{1} \vee w_{1}^{0}, y_{1}\right), \quad v=\left(w_{2} \vee w_{2}^{0}, y_{2}\right),
$$

where $w_{1}, w_{2} \in K$ and $\varphi\left(w_{1}^{0}\right)=\varphi\left(w_{2}^{0}\right)=0_{D}$. Thus $u \equiv v(\gamma(L))$ iff $u^{0}=v^{0}$, that is equivalent to $w_{1}^{0} \wedge w_{1}^{00}=w_{2}^{0} \wedge w_{2}^{00}$. By ii) this holds iff $y_{1} \equiv y_{2}(\gamma)$, that is equivalent to $g(u) \equiv g(v)(\gamma)$.

It remains to prove that the following diagram

is commutative. Using the fact that $g: L^{\vee} \rightarrow D$ is an isomorphism we can assume that the smallest element of L^{\vee} is of the form $v=\left(z, 0_{D}\right)$ for some $z \in K^{\vee}$. Now, let $u \in L^{00}$. Then $u=(x, \varphi(x))$ for some $x \in K$ and we have

$$
g(\varphi(L)(u))=g\left((x, \varphi(x)) \vee\left(z, 0_{D}\right)\right)=\varphi(x)=\varphi(f(x, \varphi(x)))=\varphi(f(u)) .
$$

This completes the proof of Theorem 5.
Now we shall prove Theorem 4:
Proof of Theorem 4: Let L be a \mathbb{K}_{2}-algebra such that ($L^{00}, L^{\vee}, \varphi(L), \gamma(L)$) $\cong(K, D, \varphi, \gamma)$ and (f, g) be the corresponding isomorphism. First we shall prove that (K, D, φ, γ) satisfies the condition i). Let $y \in D$. Using Lemma 2 for an element $y^{\prime}=g^{-1}(y) \in L^{\vee}$ there exists a unique element $x_{y^{\prime}}=x^{\prime} \in\left(L^{00}\right)^{\vee}$ such that $y^{\prime} \leq \varphi(L)\left(x^{\prime}\right) \leq \max \left[y^{\prime}\right] \gamma(L)$. Put $x_{y}=x=f\left(x^{\prime}\right)$. Clearly, $x \in K^{\vee}$ and

$$
\begin{aligned}
y & =g\left(y^{\prime}\right) \leq g\left(\varphi(L)\left(x^{\prime}\right)\right)=\varphi\left(f\left(x^{\prime}\right)\right)=\varphi(x), \\
\varphi(x) & =\varphi\left(f\left(x^{\prime}\right)\right)=g\left(\varphi(L)\left(x^{\prime}\right)\right) \leq g\left(\max \left[y^{\prime}\right] \gamma(L)\right) \\
& =\max \left[g\left(y^{\prime}\right)\right] \gamma=\max [y] \gamma .
\end{aligned}
$$

Thus for every $y \in D$ there exists an element $x_{y} \in K^{\vee}$ such that $y \leq \varphi\left(x_{y}\right) \leq$ $\max [y] \gamma$. From the uniqueness of the element x_{y} follows the uniqueness of the element x_{y}. The condition ii) can be verified in the similar way.

The converse statement follows from Theorem 5 .
Note that the \mathbb{K}_{2}-quadruple (K, D, φ, γ) from Example 1 is not decomposable. Now, we summarize the previous results:

Corollary 4. There exists a one-to-one (up to isomorphism) correspondence between locally bounded \mathbf{K}_{2}-algebras and decomposable \mathbf{K}_{2}-quadruples by means of the \mathbf{K}_{2}-construction. More precisely:
i) Let (K, D, φ, γ) be a decomposable \mathbb{K}_{2}-quadruple. Then its associated MS-algebra L is a locally bounded \mathbb{K}_{2}-algebra and

$$
\left(L^{00}, L^{\vee}, \varphi(L), \gamma(L)\right) \cong(K, D, \varphi, \gamma)
$$

ii) Let L be a locally bounded \mathbf{K}_{2}-algebra. Then its associated quadruple $\left(L^{00}, L^{\vee}, \varphi(L), \gamma(L)\right)$ is a decomposable \mathbb{K}_{2}-quadruple and if L_{1} is an MS-algebra associated with the quadruple $\left(L^{00}, L^{\vee}, \varphi(L), \gamma(L)\right)$ then

$$
L \cong L_{1}
$$

5 - A construction of MS-algebras from the subvariety $\mathbf{S} \vee \mathbb{K}$

In this section we give an analogue construction of locally bounded MS-algebras from the subvariety $\mathbf{S} \vee \mathbb{K}(\mathbf{S} \vee \mathbb{K}$-algebras). The subvariety $\mathbf{S} \vee \mathbb{K}$ is the join of the variety \mathbf{S} of Stonean algebras and the variety \mathbb{K} of Kleenean algebras and is defined by the identities (4), (5) and

$$
\begin{equation*}
x \vee y^{0} \vee y^{00}=x^{00} \vee y^{0} \vee y^{00} \tag{6}
\end{equation*}
$$

Lemma 3. Let L be a locally bounded SVIK-algebra and let ($\left.L^{00}, L^{\vee}, \varphi(L), \gamma(L)\right)$ be its associated quadruple. Let $c \leq \varphi(L)(a) \leq \max [c] \gamma(L)$ for any $a \in L^{00}$, $c \in L^{\vee}$. Then

$$
c \vee \varphi(L)(d)=\varphi(L)(a) \vee \varphi(L)(d) \quad \text { for any } d \in\left(L^{00}\right)^{\vee}
$$

Proof: Let b be the smallest element of L^{\vee} and let $d=e^{0} \vee e^{00}$, where $e \in L$. By the hypothesis $c \leq a \vee b \leq c^{00}$, which implies $c^{00}=a^{00} \vee b^{00}=a \vee b^{00}$. Thus

$$
\begin{aligned}
c \vee \varphi(L)(d) & =c \vee e^{0} \vee e^{00}=c^{00} \vee e^{0} \vee e^{00}=a \vee b^{00} \vee e^{0} \vee e^{00} \\
& =a \vee e^{0} \vee e^{00}=\varphi(L)(a) \vee \varphi(L)(d)
\end{aligned}
$$

using the fact that (6) holds in L.
Definition 5. By a decomposable $\mathbf{S} \vee I K$-quadruple we mean a decomposable \mathbb{K}_{2}-quadruple (K, D, φ, γ) satisfying the following condition:

$$
\begin{array}{ll}
\text { if } & y \leq \varphi(x) \leq \max [y] \gamma \quad \text { for any } \quad x \in K, \quad y \in D, \\
\text { then } & y \vee \varphi(z)=\varphi(x) \vee \varphi(z) \quad \text { for any } z \in K^{\vee}
\end{array}
$$

Theorem 6. There exists a one-to-one correspondence between locally bounded $\mathbf{S} \vee \mathbb{K}$-algebras and decomposable $\mathbf{S} \vee \mathbb{K}$-quadruples by means of the \mathbb{K}_{2}-construction. More precisely:
i) Let (K, D, φ, γ) be a decomposable $\mathbf{S} \vee \mathbb{K}$-quadruple. Then its associated MS-algebra L is a locally bounded $\mathbf{S} \vee \mathbb{K}$-algebra and

$$
\left(L^{00}, L^{\vee}, \varphi(L), \gamma(L)\right) \cong(K, D, \varphi, \gamma)
$$

ii) Let L be a locally bounded $\mathbf{S} \vee \mathbb{K}$-algebra. Then its associated quadruple $\left(L^{00}, L^{\vee}, \varphi(L), \gamma(L)\right)$ is a decomposable $\mathbf{S} \vee \mathbb{K}$-quadruple. If L_{1} is an MS-algebra associated with $\left(L^{00}, L^{\vee}, \varphi(L), \gamma(L)\right)$ then

$$
L \cong L_{1}
$$

Proof:

i) It suffices to prove that (6) holds in L. Let $(x, y),(z, w) \in L$. Then by Definition 5

$$
y \vee \varphi\left(z^{0} \vee z^{00}\right)=\varphi(x) \vee \varphi\left(z^{0} \vee z^{00}\right)
$$

thus

$$
\begin{aligned}
(x, y) \vee(z, w)^{0} \vee(z, w)^{00} & =\left(x \vee z^{0} \vee z^{00}, y \vee \varphi\left(z^{0} \vee z^{00}\right)\right) \\
& =\left(x \vee z^{0} \vee z^{00}, \varphi(x) \vee \varphi\left(z^{0} \vee z^{00}\right)\right) \\
& =(x, y)^{00} \vee(z, w)^{0} \vee(z, w)^{00}
\end{aligned}
$$

ii) The statement follows immediately from Lemma 3 and Corollary 4.

Example 2. Let K and D be the Kleenean algebra and the distributive lattice depicted respectively on Figure 2a.

Fig. 2b

Define a homomorphism $\varphi: K \rightarrow D$ by the rule

$$
\begin{aligned}
& \varphi(0)=\varphi(a)=0_{D}, \\
& \varphi(b)=c, \quad \varphi(1)=1_{D},
\end{aligned}
$$

and a congruence γ on D having two classes $\{0, c\} \gamma$ and $\{d, 1\} \gamma$. Clearly, $\varphi\left(K^{\wedge}\right)=$ $\left\{0_{D}\right\}$, thus (K, D, φ, γ) is a \mathbb{K}_{2}-quadruple. It is easy to verify that it satisfies the conditions i), ii) from Theorem 4, where 1 and b are elements of K^{\vee} corresponding to the elements $1, d$ and $c, 0$ of D in the required correspondence between K^{\vee} and D. Hence (K, D, φ, γ) is a decomposable \mathbb{K}_{2}-quadruple. But it is not a decomposable $\mathbf{S} \vee \mathbb{K}$-quadruple, since for $x=1, y=d, z=b$ we have $y \leq \varphi(x) \leq$ $\max [y] \gamma$, but $y \vee \varphi(z) \neq \varphi(x) \vee \varphi(z)$.

By means of the \mathbb{K}_{2}-construction we get an MS-algebra L such that

$$
L=\{(0,0),(a, 0),(b, 0),(b, c),(1, d),(1,1)\}
$$

and

$$
\begin{aligned}
& (0,0)^{0}=(1,1), \\
& (a, 0)^{0}=(b, c), \\
& (b, 0)^{0}=(b, c)^{0}=(a, 0), \\
& (1, d)^{0}=(1,1)^{0}=(0,0) .
\end{aligned}
$$

The algebra L is represented on Figure 2b (we again renamed its elements). The homomorphism $\varphi(L): L^{00} \rightarrow L^{\vee}$ is defined by $\varphi(L)(x)=x \vee b$. One can verify that the algebra L is a \mathbb{K}_{2}-algebra, but it is not an $\mathbf{S} \vee \mathbb{K}$-algebra since $\delta=\delta \vee \beta^{0} \vee \beta^{00}<\delta^{00} \vee \beta^{0} \vee \beta^{00}=1$. Moreover,

$$
\left(L^{00}, L^{\vee}, \varphi(L), \gamma(L)\right) \cong(K, D, \varphi, \gamma) .
$$

ACKNOWLEDGEMENT - The author wishes to thank to Prof. J.C. Varlet for many valuable comments and suggestions.

REFERENCES

[1] Blyth, T.S. and Varlet, J.C. - On a common abstraction of De Morgan algebras and Stone algebras, Proc. Roy. Soc. Edinburgh, 94A (1983), 301-308.
[2] Blyth, T.S. and Varlet, J.C. - Subvarieties of the class of MS-algebras, Proc. Roy. Soc. Edinburgh, 94A (1983), 157-169.
[3] Blyth, T.S. and Varlet, J.C. - Sur la construction de certaines MS-algébres, Portugaliae Math., 39 (1980), 489-496.
[4] Blyth, T.S. and Varlet, J.C. - Corrigendum sur la construction de certaines MS-algébres, Portugaliae Math., 42 (1983-84), 469-471.
[5] Blyth, T.S. and Varlet, J.C. - MS-algebras definable on a distributive lattice, Bull. Soc. Roy. Liege, 54 (1985), 167-182.
[6] Chen, C.C. and Grätzer, G. - Stone Lattices I, Construction theorems, Canad. J. Math., 21 (1969), 884-894.
[7] Chen, C.C. and Grätzer, G. - Stone Lattices II, Structure theorems, Canad. J. Math., 21 (1969), 895-903.
[8] Grätzer, G. - General Lattice Theory, Birkhäuser Verlag, 1978.
[9] Katriňák, T. - Die Konstruktion der distributiven pseudokomplementären Verbände, Math. Nachrichten, 53 (1972), 85-89.
[10] Katriñák, T. and Mederly, P. - Construction of p-algebras, Algebra Universalis, 17 (1983), 288-316.
[11] Katriňák, T. and Mikula, K. - On a construction of MS-algebras, Portugaliae Math., 45 (1988), 157-163.

Miroslav Haviar,
Department of Mathematics, M. Bel University,
Tajovského 40, 97549 Banská Bystrica - SLOVAKIA,
e-mail: mhaviar@fhpv.umb.sk

[^0]: Received: July 30, 1991; Revised: December 20, 1991.

