PORTUGALIAE MATHEMATICA Vol. 51 Fasc. 1 – 1994

ON A CERTAIN CONSTRUCTION OF MS-ALGEBRAS

MIROSLAV HAVIAR

1 – Introduction

The first construction of MS-algebras from Kleene algebras and distributive lattices was presented by T.S. Blyth and J.C. Varlet in [3]. This was a construction by means of so-called "triples" which were successfully used in constructions of Stone algebras (see [6], [7]), distributive *p*-algebras (see [9]), pseudocomplemented semilattices (see [10]), etc. In [4], T.S. Blyth and J.C. Varlet improved their construction from [3] by means of "quadruples" and they showed that each MS-algebra from the subvariety \mathbf{IK}_2 (\mathbf{IK}_2 -algebra) can be constructed in this way. This was independently done by T. Katriňák and K. Mikula (in an unpublished paper), who compared then both approaches in [11].

In this paper we establish in a particular case an essential simplification of the above mentioned constructions, which is based on the observation that a \mathbb{K}_{2} algebra L in which L^{\vee} is a principal filter is completely determined by the quadruple $(L^{00}, L^{\vee}, \varphi(L), \gamma(L))$, where φ is — in contrast to the constructions mentioned above — a certain mapping from L^{00} into L^{\vee} (Section 3). Many complications involved in the previous constructions can be removed in this way. We also show that there exists a one-to-one correspondence between the mentioned class of MSalgebras and the class of so-called decomposable \mathbb{K}_2 -quadruples (Section 4). In Section 5 we establish similar results for MS-algebras from the subvariety $\mathbf{S} \vee \mathbb{K}$. Two examples illustrate the results.

2 – Preliminaries

An *MS*-algebra is an algebra $(L; \lor, \land, {}^0, 0, 1)$ of type (2, 2, 1, 0, 0) where $(L; \lor, \land, 0, 1)$ is a bounded distributive lattice and 0 is a unary operation such that for all $x, y \in L$

Received: July 30, 1991; Revised: December 20, 1991.

(1)
$$x \le x^{00}$$
;
(2) $(x \land y)^0 = x^0 \lor y^0$;
(3) $1^0 = 0$.

The class of all MS-algebras is equational. Algebras from the subvariety \mathbb{I}_{K_2} (we call them briefly \mathbb{I}_{K_2} -algebras) are described by the additional two identities:

- (4) $x \wedge x^0 = x^{00} \wedge x^0$;
- (5) $(x \wedge x^0) \lor y \lor y^0 = y \lor y^0$.

A \mathbb{K}_2 -algebra satisfying the identity

(6)
$$x = x^{00}$$

is called a *Kleene* algebra.

Let L be a \mathbb{K}_2 -algebra. Then

- i) $L^{00} = \{x \in L; x = x^{00}\}$ is a Kleene algebra;
- ii) $L^{\vee} = \{x \lor x^0; x \in L\}$ is a filter of L;
- iii) $L^{\wedge} = \{x \wedge x^0; x \in L\}$ is an ideal of L.

Further, for any MS-algebra L,

iv) The relation Φ defined by

$$x \equiv y(\Phi)$$
 iff $x^0 = y^0$

is a congruence of L such that every Φ -class $[x]\Phi$ containing x contains also the element x^{00} which is the largest element of $[x]\Phi$ and $[x]\Phi\cap L^{00} = \{x^{00}\}$.

For these and other properties of MS-algebras we refer the reader to [1], [2] and [5].

3 – The quadruple construction

The quadruple constructions mentioned above provide a complete representation of any \mathbb{K}_2 -algebra L by its quadruple $(L^{00}, L^{\vee}, \varphi(L), \gamma(L))$ where $\varphi(L)$ is a certain mapping from L^{00} into $F(L^{\vee})$, the lattice of all filters of L^{\vee} and $\gamma(L)$ is the restriction of the congruence Φ to the filter L^{\vee} . These constructions can be essentially simplified for those algebras whose filter L^{\vee} has a smallest element (e.g. finite MS-algebras) — we shall call them *locally bounded*.

First we shall present a simple method of how to construct some \mathbb{K}_2 -algebras.

Definition 1. An (abstract) triple is (K, D, φ) , where

- i) K is a Kleene algebra;
- **ii**) *D* is a bounded distributive lattice;
- iii) φ is (0,1)-lattice homomorphism from K into D.

Theorem 1. Let (K, D, φ) be a triple. Then

$$L = \left\{ (x, y); \ x \in K, \ y \in D, \ y \le \varphi(x) \right\}$$

is an MS-algebra, if we define

$$(x_1, y_1) \lor (x_2, y_2) = (x_1 \lor x_2, y_1 \lor y_2)$$
$$(x_1, y_1) \land (x_2, y_2) = (x_1 \land x_2, y_1 \land y_2)$$
$$(x, y)^0 = (x^0, \varphi(x^0))$$
$$1_L = (1, 1)$$
$$0_L = (0, 0) .$$

Moreover, $L^{00} \cong K$.

Proof: It is easy to prove that L is a sublattice of $K \times D$. Obviously $(0,0), (1,1) \in L$. Thus L is a bounded distributive lattice. Clearly,

$$(x,y) \wedge (x,y)^{00} = (x \wedge x^{00}, y \wedge \varphi(x^{00})) = (x,y) ,$$

hence (1) is satisfied in L. The identities (2) and (3) can be verified in the similar way. Now

$$L^{00} = \left\{ (x, y)^{00}; (x, y) \in L \right\} = \left\{ (x^{00}, \varphi(x^{00})); x \in K \right\}$$
$$= \left\{ (x, \varphi(x)); x \in K \right\} \text{ (by (6))}$$
$$\cong K \text{ under the isomorphism } (x, \varphi(x)) \mapsto x . \blacksquare$$

By a \mathbb{K}_2 -triple we shall mean a triple (K, D, φ) in which $\varphi(K^{\wedge}) = \{0_D\}$.

Corollary 1. Let (K, D, φ) be a \mathbb{K}_2 -triple. Then the MS-algebra L from Theorem 1 is a \mathbb{K}_2 -algebra.

Proof: We shall prove that the identities (4), (5) hold in L. We have

(4)
$$(x,y) \wedge (x,y)^0 = (x \wedge x^0, y \wedge \varphi(x^0)) = (x^{00} \wedge x^0, 0) = (x^{00} \wedge x^0, \varphi(x^{00} \wedge x^0)) = (x,y)^{00} \wedge (x,y)^0$$

using the fact that

$$y \wedge \varphi(x^0) \le \varphi(x \wedge x^0) = 0_D$$

The identity (5) can be verified in the similar way using the facts that $y = y \wedge \varphi(x)$ and (5) holds in K.

Definition 2. An (abstract) \mathbb{K}_2 -quadruple is (K, D, φ, γ) , where (K, D, φ) is a \mathbb{K}_2 -triple and γ is a monomial congruence on D, i.e. every γ -class $[y]\gamma$ has a largest element — we shall denote it by $\max[y]\gamma$.

Corollary 2. Let (K, D, φ, γ) be a \mathbb{K}_2 -quadruple. Then

$$L = \left\{ (x, y); \ x \in K, \ y \in D, \ y \le \varphi(x) \le \max[y]\gamma \right\}$$

is a \mathbb{K}_2 -algebra, if the operations are defined in the same way as in Theorem 1. Moreover, $L^{00} \cong K$.

Proof: It suffices to verify that for any $(x, y), (z, w) \in L$

$$arphi(x \lor z) \leq \max[y \lor w] \gamma \quad ext{ and } \quad arphi(x \land z) \leq \max[y \land w] \gamma$$

hold in L, but this follows from the facts that

$$\varphi(x) \le \max[y]\gamma$$
 and $\varphi(z) \le \max[w]\gamma$.

We shall say that the MS-algebra L from Corollary 2 is associated with the \mathbb{K}_2 -quadruple (K, D, φ, γ) and the construction of L described in Corollary 2 will be called a \mathbb{K}_2 -construction.

Let L be a locally bounded \mathbb{K}_2 -algebra and let b be the smallest element of L^{\vee} . Define a mapping $\varphi(L) \colon L^{00} \to L^{\vee}$ by $\varphi(L)(x) = x \lor b$. Let $\gamma(L)$ be the restriction of the congruence Φ to L^{\vee} . Obviously, $\varphi(L)$ is a (0, 1)-homomorphism and $\gamma(L)$ is a monomial congruence on L^{\vee} .

We say that $(L^{00}, L^{\vee}, \varphi(L), \gamma(L))$ is a quadruple associated with L.

Since $L^{\vee} = [b] = [c \vee c^0)$ for some $c \in L$ and (5) holds in L, we have $\varphi(a \wedge a^0) = (a \wedge a^0) \vee c \vee c^0 = c \vee c^0 = b$ for every $a \in L$. Hence the quadruple $(L^{00}, L^{\vee}, \varphi(L), \gamma(L))$ associated with L is a **IK**₂-quadruple.

The next theorem states that every locally bounded \mathbb{K}_2 -algebra can be obtained by the \mathbb{K}_2 -construction.

Theorem 2. Let L be a locally bounded \mathbb{K}_2 -algebra. Let $(L^{0,0}, L^{\vee}, \varphi(L), \gamma(L))$ be the quadruple associated with L. Then the MS-algebra L_1 associated with $(L^{0,0}, L^{\vee}, \varphi(L), \gamma(L))$ is isomorphic to L.

ON A CERTAIN CONSTRUCTION OF MS-ALGEBRAS

Proof: Let L = [b]. We shall prove that the mapping $f: L \to L_1$ defined by

$$f(a) = (a^{00}, a \lor b)$$

is the desired isomorphism. Obviously $f(a) \in L_1$, since

$$a \lor b \le a^{00} \lor b = \varphi(a^{00}) \le a^{00} \lor b^{00} = \max[a \lor b] \gamma(L)$$
.

Evidently, f is a lattice homomorphism and f(1) = (1, 1), f(0) = (0, b). Further, we get

$$(f(a))^0 = (a^{00}, a \lor b)^0 = (a^0, \varphi(a^0)) = (a^0, a^0 \lor b) = f(a^0)$$

hence f is a homomorphism of MS-algebras. Now assume $f(a_1) = f(a_2)$. Then $a_1^{00} = a_2^{00}$ and $a_1 \lor b = a_2 \lor b$. Thus $a_1^{00} \land (a_1 \lor b) = a_2^{00} \land (a_2 \lor b)$, hence $a_1 \lor (a_1^{00} \land b) = a_2 \lor (a_2^{00} \land b)$. Further, for $i \in \{1, 2\}$, we have

$$(a_i^{00} \wedge b) \wedge (a_i^0 \wedge b) = a_i^{00} \wedge a_i^0 \wedge b$$

= $a_i \wedge a_i^0 \wedge b$ (by (4))
= $(a_i \wedge b) \wedge (a_i^0 \wedge b)$.
$$(a_i^{00} \wedge b) \vee (a_i^0 \wedge b) = (a_i^{00} \vee a_i^0) \wedge b = b$$

= $(a_i \vee a_i^0) \wedge b$
= $(a_i \wedge b) \vee (a_i^0 \wedge b)$.

Since L is distributive, we obtain $a_i^{00} \wedge b = a_i \wedge b$, thus $a_i^{00} \wedge b \leq a_i$. Hence, $a_1 = a_2$ and f is injective. It remains to prove that f is an onto map. Let $(x, y) \in L_1$. Put $a = x \wedge y$. Then we have

$$f(a) = \left((x \land y)^{00}, (x \land y) \lor b \right) = \left(x^{00} \land y^{00}, (x \lor b) \land (y \lor b) \right)$$
$$= \left(x \land y^{00}, (x \lor b) \land y \right) = \left(x, \varphi(x) \land y \right) = (x, y)$$

using the facts that $x = x^{00}$ as $x \in L^{00}$, $b \leq y$ as $y \in L^{\vee}$ and $x \leq x \vee b = \varphi(x) \leq \max[y] \gamma(L) = y^{00}, y \leq \varphi(x)$ follow from rules of the **IK**₂-construction of L_1 . The proof of Theorem 2 is complete.

3 – MS-algebras from \mathbb{K}_2 and decomposable \mathbb{K}_2 -quadruples

In the previous section we presented a simple triple construction of some \mathbb{K}_2 -algebras, then its modification by quadruples (\mathbb{K}_2 -construction) and we proved that every locally bounded \mathbb{K}_2 -algebra is obtained in this way. In this

section we shall investigate a relation between the \mathbb{K}_2 -quadruples which give rise to the same (up to isomorphism) MS-algebra by \mathbb{K}_2 -construction.

Definition 3. An isomorphism of the \mathbb{K}_2 -quadruples (K, D, φ, γ) and $(K_1, D_1, \varphi_1, \gamma_1)$ is a pair (f, g), where f is an isomorphism of K and K_1, g is an isomorphism of D and D_1 such that $x \equiv y(\gamma)$ iff $g(x) \equiv g(y)(\gamma_1)$ and the diagram

$$\begin{array}{cccc} K & \stackrel{\varphi}{\longrightarrow} & D \\ f \downarrow & & \downarrow g \\ K_1 & \stackrel{\varphi_1}{\longrightarrow} & D_1 \end{array}$$

is commutative.

Lemma 1. If two \mathbb{K}_2 -algebras are isomorphic then their associated quadruples are isomorphic, too.

The proof is straightforward.

Theorem 3. Assume that the \mathbb{K}_2 -quadruples (K, D, φ, γ) and $(K_1, D_1, \varphi_1, \gamma_1)$ are isomorphic under an isomorphism (f, g) and let L and L_1 be their associated \mathbb{K}_2 -algebras, respectively. Then

$$L \cong L_1$$
,

where the isomorphism is defined by the rule

$$h((x,y)) = (f(x),g(y)) .$$

Proof: Obviously, h is a lattice homomorphism. Further, we have

$$\begin{aligned} h((x,y)^0) &= h(x^0,\varphi(x^0)) = (f(x^0),g(\varphi(x^0))) \\ &= (f(x^0),\varphi_1(f(x^0))) = (f(x)^0,\varphi_1((f(x))^0)) = (f(x),g(y))^0 = h((x,y))^0 \,. \end{aligned}$$

Obviously, h is bijective, thus h is an isomorphism.

We get immediately from Lemma 1 and Theorems 2, 3:

Corollary 3. Two locally bounded \mathbb{K}_2 -algebras are isomorphic if and only if their associated quadruples are isomorphic.

Let us now observe that the converse statement to Theorem 3 is not true, i.e. a \mathbb{K}_2 -algebra can be obtained from non-isomorphic \mathbb{K}_2 -quadruples as well. Hence,

it is not true, that every \mathbb{K}_2 -quadruple is isomorphic to a quadruple associated with some \mathbb{K}_2 -algebra. We illustrate this observation on the next example.

Example 1. Let K be a subdirectly irreducible Kleene algebra, let D be a two-element distributive lattice and let $\varphi : K \to D$ be the mapping defined by the rule

$$\varphi(0) = \varphi(a) = 0_D, \quad \varphi(1) = 1_D$$

(see Figure 1a).

Let $\gamma = D \times D$. Then (K, D, φ, γ) is a \mathbb{K}_2 -quadruple and by the \mathbb{K}_2 construction we obtain a (subdirectly irreducible) MS-algebra L, where

$$L = \left\{ (0,0), (a,0), (1,0), (1,1) \right\}$$

and

$$(a,0)^0 = (a,0), \quad (1,0)^0 = (0,0)$$

(see Figure 1b – we renamed the elements of L). Obviously,

$$(K, D, \varphi, \gamma) \not\cong (L^{00}, L^{\vee}, \varphi(L), \gamma(L))$$
,

since $L^{\vee} = \{(a, 0), (1, 0), (1, 1)\}$ is a three element chain. Hence the subdirectly irreducible \mathbb{K}_2 -algebra L is obtained from two non-isomorphic \mathbb{K}_2 -quadruples by the \mathbb{K}_2 -construction, and the \mathbb{K}_2 -quadruple (K, D, φ, γ) is not isomorphic to any associated quadruple.

Thus the class of all \mathbb{K}_2 -quadruples is "too large" for establishing a one-toone correspondence between locally bounded \mathbb{K}_2 -algebras and \mathbb{K}_2 -quadruples by means of the \mathbb{K}_2 -construction. The next theorem gives a characterization of the class of \mathbb{K}_2 -quadruples for which such a correspondence exists.

Theorem 4. A \mathbb{K}_2 -quadruple (K, D, φ, γ) is isomorphic to a quadruple associated with some \mathbb{K}_2 -algebra if and only if it satisfies the following two conditions:

i) For every $y \in D$ there exists a unique element $x_y \in K^{\vee}$ such that $y \leq \varphi(x_y) \leq \max[y]\gamma;$

ii)
$$y_1 \equiv y_2(\gamma)$$
 iff $x_{y_1}^0 = x_{y_2}^0$ for any $y_1, y_2 \in D$.

Definition 4. A \mathbb{K}_2 -quadruple (K, D, φ, γ) satisfying the conditions i), ii) from Theorem 4 will be called a *decomposable* \mathbb{K}_2 -quadruple.

Lemma 2. Let *L* be a locally bounded \mathbb{K}_2 -algebra. Then its associated quadruple $(L^{00}, L^{\vee}, \varphi(L), \gamma(L))$ is a decomposable \mathbb{K}_2 -quadruple.

Proof: We have already observed that $(L^{0,0}, L^{\vee}, \varphi(L), \gamma(L))$ is a \mathbb{K}_2 -quadruple. To prove that it satisfies the condition i), suppose $y \in L^{\vee}$, i.e., $y = a \vee a^0$ for some $a \in L$. Put $x_y = x = a^{00} \vee a^0 = y^{00}$. Obviously, $x \in (L^{00})^{\vee}$ and $y \leq \varphi(L)(x) = a^0 \vee a^{00} = \max[y] \gamma(L)$, i.e. $(x, y) \in L_1$ where L_1 is a \mathbb{K}_2 -algebra associated with $(L^{00}, L^{\vee}, \varphi(L), \gamma(L))$. To prove the uniqueness, suppose that $(x', y) \in L_1$ for an element $x' \in (L^{00})^{\vee}$. Then $y \leq x' \vee b \leq y^{00}$, hence $x'^{00} \vee b^{00} = y^{00}$. Since $x' \in (L^{00})^{\vee}$, we have $b \leq x'$ and $x' = x' \vee b^{00} = x'^{00} \vee b^{00} = y^{00} = x$. Now we shall prove ii). Let $y_1, y_2 \in L^{\vee}, y_1 = c \vee c^0, y_2 = d \vee d^0$ for some $c, d \in L$. Then $y_1 \equiv y_2(\gamma(L))$ iff $c^0 \wedge c^{00} = d^0 \wedge d^{00}$ and this is equivalent to $x_{y_1}^0 = x_{y_2}^0$.

Theorem 5. Let (K, D, φ, γ) be a decomposable \mathbb{K}_2 -quadruple. Then there exists a \mathbb{K}_2 -algebra L such that

$$(L^{00}, L^{\vee}, \varphi(L), \gamma(L)) \cong (K, D, \varphi, \gamma)$$
.

Proof: Let L be a \mathbb{K}_2 -algebra associated with (K, D, φ, γ) . By Theorem 1, the mapping $f: L^{00} \to K$ defined by the rule $f(x, \varphi(x)) = x$ is an isomorphism of Kleenean algebras. Now,

$$L^{\vee} = \left\{ (x, y) \lor (x, y^0); \ (x, y) \in L \right\} = \left\{ (x \lor x^0, y \lor \varphi(x^0)); \ (x, y) \in L \right\} \,.$$

We shall prove that the mapping $g: L^{\vee} \to D$ defined by the rule

$$g(x \lor x^0, y \lor \varphi(x^0)) = y \lor \varphi(x^0)$$

is a lattice isomorphism. Obviously, g is a lattice homomorphism. Let $y \in D$. By i) of Definition 4 there exists a unique element $x \in K^{\vee}$ such that $(x, y) \in L$. We have $x = z \vee z^0$ for some $z \in K$, hence $x^0 = z^0 \wedge z^{00}$ and $x = x \vee x^0$. Further $\varphi(x^0) = \varphi(z^{00} \wedge z^0) = 0_D$ as $\varphi(K^{\wedge}) = \{0_D\}$. Hence $y = y \vee \varphi(x^0)$. Therefore for every $y \in D$ there exists an element $x \in K$ such that $y = y \vee \varphi(x^0)$ and $(x \vee x^0, y) \in L^{\vee}$. This proves the surjectivity of g. The injectivity of g immediately follows from the condition i) of Definition 4.

ON A CERTAIN CONSTRUCTION OF MS-ALGEBRAS

Now, let $u = (x_1, y_1), v = (x_2, y_2) \in L^{\vee}$. We know that u, v can be expressed in the form

$$u = (w_1 \lor w_1^0, y_1), \quad v = (w_2 \lor w_2^0, y_2),$$

where $w_1, w_2 \in K$ and $\varphi(w_1^0) = \varphi(w_2^0) = 0_D$. Thus $u \equiv v(\gamma(L))$ iff $u^0 = v^0$, that is equivalent to $w_1^0 \wedge w_1^{00} = w_2^0 \wedge w_2^{00}$. By ii) this holds iff $y_1 \equiv y_2(\gamma)$, that is equivalent to $g(u) \equiv g(v)(\gamma)$.

It remains to prove that the following diagram

$$\begin{array}{cccc} L^{00} & \stackrel{\varphi(L)}{\longrightarrow} & L^{\vee} \\ f \downarrow & & \downarrow g \\ K & \stackrel{\varphi}{\longrightarrow} & D \end{array}$$

is commutative. Using the fact that $g: L^{\vee} \to D$ is an isomorphism we can assume that the smallest element of L^{\vee} is of the form $v = (z, 0_D)$ for some $z \in K^{\vee}$. Now, let $u \in L^{00}$. Then $u = (x, \varphi(x))$ for some $x \in K$ and we have

$$g(\varphi(L)(u)) = g\Big((x,\varphi(x)) \lor (z,0_D)\Big) = \varphi(x) = \varphi(f(x,\varphi(x))) = \varphi(f(u)) .$$

This completes the proof of Theorem 5. \blacksquare

Now we shall prove Theorem 4:

Proof of Theorem 4: Let L be a \mathbb{K}_2 -algebra such that $(L^{00}, L^{\vee}, \varphi(L), \gamma(L)) \cong (K, D, \varphi, \gamma)$ and (f, g) be the corresponding isomorphism. First we shall prove that (K, D, φ, γ) satisfies the condition i). Let $y \in D$. Using Lemma 2 for an element $y' = g^{-1}(y) \in L^{\vee}$ there exists a unique element $x_{y'} = x' \in (L^{00})^{\vee}$ such that $y' \leq \varphi(L)(x') \leq \max[y']\gamma(L)$. Put $x_y = x = f(x')$. Clearly, $x \in K^{\vee}$ and

$$y = g(y') \le g(\varphi(L)(x')) = \varphi(f(x')) = \varphi(x) ,$$

$$\varphi(x) = \varphi(f(x')) = g(\varphi(L)(x')) \le g(\max[y']\gamma(L))$$

$$= \max[g(y')]\gamma = \max[y]\gamma .$$

Thus for every $y \in D$ there exists an element $x_y \in K^{\vee}$ such that $y \leq \varphi(x_y) \leq \max[y]\gamma$. From the uniqueness of the element x_y follows the uniqueness of the element x_y . The condition ii) can be verified in the similar way.

The converse statement follows from Theorem 5. \blacksquare

Note that the \mathbb{K}_2 -quadruple (K, D, φ, γ) from Example 1 is not decomposable. Now, we summarize the previous results:

Corollary 4. There exists a one-to-one (up to isomorphism) correspondence between locally bounded \mathbb{K}_2 -algebras and decomposable \mathbb{K}_2 -quadruples by means of the \mathbb{K}_2 -construction. More precisely:

i) Let (K, D, φ, γ) be a decomposable \mathbb{K}_2 -quadruple. Then its associated MS-algebra L is a locally bounded \mathbb{K}_2 -algebra and

$$(L^{00}, L^{\vee}, \varphi(L), \gamma(L)) \cong (K, D, \varphi, \gamma)$$
.

ii) Let L be a locally bounded \mathbb{K}_2 -algebra. Then its associated quadruple $(L^{00}, L^{\vee}, \varphi(L), \gamma(L))$ is a decomposable \mathbb{K}_2 -quadruple and if L_1 is an MS-algebra associated with the quadruple $(L^{00}, L^{\vee}, \varphi(L), \gamma(L))$ then

$$L \cong L_1$$
 .

5 – A construction of MS-algebras from the subvariety S \lor K

In this section we give an analogue construction of locally bounded MS-algebras from the subvariety $\mathbf{S} \vee \mathbf{K}$ ($\mathbf{S} \vee \mathbf{K}$ -algebras). The subvariety $\mathbf{S} \vee \mathbf{K}$ is the join of the variety \mathbf{S} of Stonean algebras and the variety \mathbf{K} of Kleenean algebras and is defined by the identities (4), (5) and

(6)
$$x \vee y^0 \vee y^{00} = x^{00} \vee y^0 \vee y^{00}$$
.

Lemma 3. Let L be a locally bounded SVIK-algebra and let $(L^{0,0}L^{\vee}, \varphi(L), \gamma(L))$ be its associated quadruple. Let $c \leq \varphi(L)(a) \leq \max[c]\gamma(L)$ for any $a \in L^{00}$, $c \in L^{\vee}$. Then

$$c \lor \varphi(L)(d) = \varphi(L)(a) \lor \varphi(L)(d) \quad \text{ for any } d \in (L^{00})^{\lor}$$

Proof: Let b be the smallest element of L^{\vee} and let $d = e^0 \vee e^{00}$, where $e \in L$. By the hypothesis $c \leq a \vee b \leq c^{00}$, which implies $c^{00} = a^{00} \vee b^{00} = a \vee b^{00}$. Thus

$$c \lor \varphi(L)(d) = c \lor e^0 \lor e^{00} = c^{00} \lor e^0 \lor e^{00} = a \lor b^{00} \lor e^0 \lor e^{00}$$
$$= a \lor e^0 \lor e^{00} = \varphi(L)(a) \lor \varphi(L)(d)$$

using the fact that (6) holds in L.

Definition 5. By a decomposable $\mathbf{S} \vee \mathbf{K}$ -quadruple we mean a decomposable \mathbf{K}_2 -quadruple (K, D, φ, γ) satisfying the following condition:

$$\begin{array}{ll} \text{if} & y \leq \varphi(x) \leq \max[y]\gamma \quad \text{for any } x \in K, \ y \in D \ , \\ \text{then} & y \vee \varphi(z) = \varphi(x) \vee \varphi(z) \quad \text{for any } z \in K^{\vee} \ . \end{array}$$

Theorem 6. There exists a one-to-one correspondence between locally bounded $\mathbf{S} \vee \mathbf{K}$ -algebras and decomposable $\mathbf{S} \vee \mathbf{K}$ -quadruples by means of the \mathbf{K}_2 -construction. More precisely:

i) Let (K, D, φ, γ) be a decomposable $\mathbf{S} \vee \mathbf{K}$ -quadruple. Then its associated MS-algebra L is a locally bounded $\mathbf{S} \vee \mathbf{K}$ -algebra and

$$(L^{00}, L^{\vee}, \varphi(L), \gamma(L)) \cong (K, D, \varphi, \gamma)$$
.

ii) Let L be a locally bounded $\mathbf{S} \vee \mathbf{K}$ -algebra. Then its associated quadruple $(L^{00}, L^{\vee}, \varphi(L), \gamma(L))$ is a decomposable $\mathbf{S} \vee \mathbf{K}$ -quadruple. If L_1 is an MS-algebra associated with $(L^{00}, L^{\vee}, \varphi(L), \gamma(L))$ then

$$L \cong L_1$$
.

Proof:

i) It suffices to prove that (6) holds in L. Let $(x, y), (z, w) \in L$. Then by Definition 5

$$y \lor \varphi(z^0 \lor z^{00}) = \varphi(x) \lor \varphi(z^0 \lor z^{00})$$

thus

$$\begin{aligned} (x,y) \lor (z,w)^0 \lor (z,w)^{00} &= \left(x \lor z^0 \lor z^{00}, y \lor \varphi(z^0 \lor z^{00}) \right) \\ &= \left(x \lor z^0 \lor z^{00}, \varphi(x) \lor \varphi(z^0 \lor z^{00}) \right) \\ &= (x,y)^{00} \lor (z,w)^0 \lor (z,w)^{00} . \end{aligned}$$

ii) The statement follows immediately from Lemma 3 and Corollary 4.

Example 2. Let K and D be the Kleenean algebra and the distributive lattice depicted respectively on Figure 2a.

Fig. 2b

Define a homomorphism $\varphi \colon K \to D$ by the rule

$$\varphi(0) = \varphi(a) = 0_D ,$$

 $\varphi(b) = c , \qquad \varphi(1) = 1_D$

and a congruence γ on D having two classes $\{0, c\}\gamma$ and $\{d, 1\}\gamma$. Clearly, $\varphi(K^{\wedge}) = \{0_D\}$, thus (K, D, φ, γ) is a \mathbb{K}_2 -quadruple. It is easy to verify that it satisfies the conditions i), ii) from Theorem 4, where 1 and b are elements of K^{\vee} corresponding to the elements 1, d and c, 0 of D in the required correspondence between K^{\vee} and D. Hence (K, D, φ, γ) is a decomposable \mathbb{K}_2 -quadruple. But it is not a decomposable $\mathbb{S} \vee \mathbb{K}$ -quadruple, since for x = 1, y = d, z = b we have $y \leq \varphi(x) \leq \max[y]\gamma$, but $y \vee \varphi(z) \neq \varphi(x) \vee \varphi(z)$.

By means of the \mathbb{K}_2 -construction we get an MS-algebra L such that

$$L = \left\{ (0,0), (a,0), (b,0), (b,c), (1,d), (1,1) \right\}$$

and

$$(0,0)^0 = (1,1) ,$$

 $(a,0)^0 = (b,c) ,$
 $(b,0)^0 = (b,c)^0 = (a,0) ,$
 $(1,d)^0 = (1,1)^0 = (0,0) .$

The algebra L is represented on Figure 2b (we again renamed its elements). The homomorphism $\varphi(L): L^{00} \to L^{\vee}$ is defined by $\varphi(L)(x) = x \vee b$. One can verify that the algebra L is a \mathbb{K}_2 -algebra, but it is not an $\mathbf{S} \vee \mathbb{K}$ -algebra since $\delta = \delta \vee \beta^0 \vee \beta^{00} < \delta^{00} \vee \beta^{00} = 1$. Moreover,

$$\left(L^{00}, L^{\vee}, \varphi(L), \gamma(L)\right) \cong (K, D, \varphi, \gamma)$$

ACKNOWLEDGEMENT – The author wishes to thank to Prof. J.C. Varlet for many valuable comments and suggestions.

REFERENCES

- BLYTH, T.S. and VARLET, J.C. On a common abstraction of De Morgan algebras and Stone algebras, Proc. Roy. Soc. Edinburgh, 94A (1983), 301–308.
- [2] BLYTH, T.S. and VARLET, J.C. Subvarieties of the class of MS-algebras, Proc. Roy. Soc. Edinburgh, 94A (1983), 157–169.

- [3] BLYTH, T.S. and VARLET, J.C. Sur la construction de certaines MS-algébres, Portugaliae Math., 39 (1980), 489–496.
- [4] BLYTH, T.S. and VARLET, J.C. Corrigendum sur la construction de certaines MS-algébres, *Portugaliae Math.*, 42 (1983–84), 469–471.
- [5] BLYTH, T.S. and VARLET, J.C. MS-algebras definable on a distributive lattice, Bull. Soc. Roy. Liege, 54 (1985), 167–182.
- [6] CHEN, C.C. and GRÄTZER, G. Stone Lattices I, Construction theorems, Canad. J. Math., 21 (1969), 884–894.
- [7] CHEN, C.C. and GRÄTZER, G. Stone Lattices II, Structure theorems, Canad. J. Math., 21 (1969), 895–903.
- [8] GRÄTZER, G. General Lattice Theory, Birkhäuser Verlag, 1978.
- [9] KATRIŇÁK, T. Die Konstruktion der distributiven pseudokomplementären Verbände, Math. Nachrichten, 53 (1972), 85–89.
- [10] KATRIŇÁK, T. and MEDERLY, P. Construction of p-algebras, Algebra Universalis, 17 (1983), 288–316.
- [11] KATRIŇÁK, T. and MIKULA, K. On a construction of MS-algebras, Portugaliae Math., 45 (1988), 157–163.

Miroslav Haviar, Department of Mathematics, M. Bel University, Tajovského 40, 97549 Banská Bystrica – SLOVAKIA, e-mail: mhaviar@fhpv.umb.sk