QUASI-ORTHOGONALITY ON THE UNIT CIRCLE AND SEMI-CLASSICAL FORMS (*)

Manuel Alfaro and Leandro Moral

Abstract

In this paper we study a new concept of quasi-orthogonality on the unit circle, depending of the structure of the orthogonal polynomials on the unit circle, and we consider its relation with the semi-classical linear forms.

1 - Introduction

In several topics concerning orthogonal polynomials (O.P.) it is more convenient to use a weaker substitute of the concept of the orthogonality. One of the possible substitutes is the notion of quasi-orthogonality:

Let u be a linear form on the linear space of all real polynomials and let $\left(P_{n}\right)$ be a sequence of polynomials with $\operatorname{deg} P_{n}=n,\left(P_{n}\right)$ is quasi-orthogonal of order k with respect to u if

$$
\begin{aligned}
u\left(P_{n}(x) x^{m}\right) & =0 \\
u\left(P_{n}(x) x^{n-k}\right) & \neq 0
\end{aligned}
$$

whenever $0 \leq m \leq n-k-1$ and $n \geq k+1$.
This concept was introduced by M. Riesz for $k=1$ in relation to the moment problem ([20]). Subsequently, in papers concerning the formulas of mechanical quadrature, it was considered by Fejér ([8]) for $k=2$ and by Shohat ([22]) for any $k \in \mathbb{N}$. Several questions on quasi-orthogonal polynomials have been studied, for instance, in [4], [7], [1], [21], [3], [13], [2], [18] and [19].

[^0]The above definition can be formally generalized to the case of the orthogonality on the unit circle \mathbb{T}, as follows

Definition. Let u be an Hermitian and regular linear functional on the linear space of Laurent polynomials and let $\left(P_{n}\right)$ be a sequence of complex polynomials with $\operatorname{deg} P_{n}=n$. The sequence $\left(P_{n}\right)$ is called quasi-orthogonal of order k with respect to u if

$$
\begin{aligned}
u\left(P_{n}(z) z^{-m}\right) & =0, \\
u\left(P_{n}(z) z^{-(n-k)}\right) & \neq 0
\end{aligned}
$$

whenever $0 \leq m \leq n-k-1$ and $n \geq k+1$.

However, this concept is not so appropriate as in the real case and only the Bernstein-Szegö polynomials satisfy the above definition ([17] and [10]).

In [14], sequences of polynomials, called para-orthogonal because their orthogonality properties, have been considered. These polynomials turn out to be adequate for some applications in quadrature formulas on \mathbb{T} as well as in the trigonometric moment problem, but they are not adequate in order to develop other topics concerning the O.P. on \mathbb{T}.

Then, it seems convenient to introduce a new concept of quasi-orthogonality more depending of the structure of the O.P. on \mathbb{T}. How to do this can be derived by pointing out the relation between the orthogonal polynomials on \mathbb{T} and the orthogonal polynomials on $[-1,1]([23], \S 11.4)$ or how the trigonometric moments on \boldsymbol{T} may be transformed in moments on $[-1,1]$ ([1], p. 30 and ff.).

The aim of this paper is to study this kind of quasi-orthogonality and its relation with the semi-classical forms in a parallel way to the one developed by Maroni in the real case, as a first step to establish a classification of the O.P. on \mathbb{T} in terms of ordinary differential equations.

This paper is organized as follows. In section 2, we define this new notion and we prove that a sequence of monic orthogonal polynomials on \mathbb{T} associated with a regular linear form u is quasi-orthogonal on \mathbb{T} of order s with respect to a regular linear form $v, v \neq 0$, if and only if there exists only one polynomial A with $\operatorname{deg} A=s$, such that $v=\left[A(z)+\bar{A}\left(z^{-1}\right)\right] u$. In section 3 , we consider semiclassical forms on the unit circle and we show a characterization of these forms by using the derivation operator. In section 4, we study the relation between sequences of quasi-orthogonal polynomials on \mathbb{T} and semi-classical forms and we find a necessary and sufficient condition for a sequence of polynomials to be quasi-orthogonal with respect to a semi-classical form.

2 - Quasi-orthogonal polynomials on \mathbf{T}

Let Λ be the linear space of Laurent polynomials

$$
L(z)=\sum_{n=p}^{q} c_{n} z^{n}
$$

with $c_{n} \in \mathbb{C}$ and p, q integers, where $p \leq q, \mathcal{P}$ is the space of all complex polynomials and we denote by Λ^{\prime} the dual algebraic space of Λ and by \mathcal{H} the subspace of Λ^{\prime} of all Hermitian linear forms.

Let $u \in \mathcal{H}$. Then, the Toeplitz Hermitian matrix associated with u is

$$
M=\left(\begin{array}{cccc}
c_{0} & c_{1} & c_{2} & \cdot \\
c_{-1} & c_{0} & c_{1} & \cdot \\
c_{-2} & c_{-1} & c_{0} & \cdot \\
\cdot & \cdot & \cdot & \cdot
\end{array}\right)=\left(c_{i-j}\right)_{i, j \in \mathbb{N}}
$$

where $c_{n}=u\left(z^{n}\right)$ for every $n \in \mathbf{Z}$ and $c_{-n}=\overline{c_{n}}$. (Here, \mathbb{N} denotes the set of non-negative integer numbers $\{0,1,2, \ldots\}$ and \mathbf{Z} denotes the set of integers $\{0, \pm 1, \pm 2, \ldots\})$.

Definition 2.1. A linear form u is called regular or quasi-definite if and only if $\Delta_{n} \neq 0$ for every $n \geq 0$, where Δ_{n} denotes the $(n+1) \times(n+1)$ principal minor of M (see [5] or [19]).

It is well known (see [11] or [5]) that the regularity of u is a necessary and sufficient condition for the existence of a sequence of orthogonal polynomials on \boldsymbol{T}. In this case, if we suppose that $\left(\phi_{n}(z)\right)$ is the sequence of monic orthogonal polynomials on \mathbb{T} (SMOP), then

$$
u\left[\phi_{n}(z) \cdot z^{-k}\right]=0,
$$

for every $k=0,1, \ldots, n-1$ and

$$
u\left[\phi_{n}(z) \cdot z^{-n}\right]=e_{n}=\frac{\Delta_{n}}{\Delta_{n-1}} \neq 0 .
$$

In the other hand, the polynomials ϕ_{n} satisfy the so-called Szegö recurrence relations

$$
\begin{align*}
& \phi_{n+1}(z)=z \phi_{n}(z)+a_{n+1} \phi_{n}^{*}(z), \tag{2.1}\\
& \phi_{n+1}(z)=\left(1-\left|a_{n+1}\right|^{2}\right) z \phi_{n}(z)+a_{n+1} \phi_{n+1}^{*}(z), \tag{2.2}
\end{align*}
$$

with $a_{n}=\phi_{n}(0),\left|a_{n}\right| \neq 1$ for every $n \geq 1$ and $\phi_{n}^{*}(z)=z^{n} \overline{\phi_{n}}\left(z^{-1}\right)$. Conversely, given a sequence of monic polynomials (ϕ_{n}), with $\operatorname{deg} \phi_{n}=n$, satisfying (2.1) or (2.2) there exists only one $u \in \mathcal{H}$ (up to constant real factors) such that

$$
u\left[\phi_{n}(z) \cdot z^{-k}\right]=e_{n} \delta_{n k}
$$

with $e_{n} \neq 0$, for every $k=0,1, \ldots, n$.
Definition 2.2. Let $v \in \mathcal{H}, s \in \mathbb{N}$ and let $\left(\phi_{n}\right)$ be a sequence of monic polynomials, $\phi_{n}(z)=z^{n}+\ldots$. We say $\left(\phi_{n}\right)$ is \mathbb{T}-quasi-orthogonal of order s with respect to v provided
i) $v\left[\phi_{n}(z) \cdot z^{-k}\right]=0$, for every k with $s \leq k \leq n-s-1$ and for every $n \geq 2 s+1$;
ii) There exists $n_{0} \geq 2 s$ such that $v\left[\phi_{n_{0}}(z) \cdot z^{-n_{0}+s}\right] \neq 0$.

With the above conditions,
Definition 2.3. The sequence $\left(\phi_{n}\right)$ is strictly \mathbb{T}-quasi-orthogonal of order s with respect to v if $\left(\phi_{n}\right)$ is \mathbb{T}-quasi-orthogonal of order s and besides
iii) For every $n \geq 2 s, v\left[\phi_{n}(z) \cdot z^{-n+s}\right] \neq 0$.

Remark. When $s=0$, the usual definition of orthogonality on \mathbb{T} appears.
The above concepts are related by
Proposition 2.4. Let $u, v \in \mathcal{H}$ be with u regular and let $\left(\phi_{n}\right)$ be the SMOP associated with u. Then, $\left(\phi_{n}\right)$ is \mathbb{T}-quasi-orthogonal of order s with respect to v if and only if it is strictly \mathbf{T}-quasi-orthogonal of order s with respect to v.

Proof: Because of the \mathbb{T}-quasi-orthogonality of $\left(\phi_{n}\right)$, from (2.1) and taking into account

$$
v\left[\phi_{n}^{*}(z) \cdot z^{-n+s}\right]=v\left[\overline{\phi_{n}}\left(z^{-1}\right) \cdot z^{s}\right]=\overline{v\left[\phi_{n}(z) \cdot z^{-s}\right]}=0
$$

we get

$$
v\left[\phi_{n}(z) \cdot z^{-n+s}\right]=\left(\prod_{j=2 s+1}^{n}\left(1-\left|a_{j}\right|^{2}\right)\right) v\left[\phi_{2 s}(z) \cdot z^{-s}\right]
$$

for every $n \geq 2 s+1$. From the last relation the result follows directly.
An easy consequence is the following
Corollary 2.5. Let u, v and $\left(\phi_{n}\right)$ be as in the above proposition, then $\left(\phi_{n}\right)$ is strictly \mathbb{T}-quasi-orthogonal of order s with respect to v if and only if there exists $n_{0} \geq 2 s$ such that
a) $v\left[\phi_{n_{0}+1}(z) \cdot z^{-k}\right]=0$, for every k with $s \leq k \leq n_{0}-s$,
b) $v\left[\phi_{n_{0}}(z) \cdot z^{-n_{0}+s}\right] \neq 0$,
c) $v\left[\phi_{n}(z) \cdot z^{-s}\right]=0$, for every $n \geq n_{0}+1$,
holds.

If $u \in \mathcal{H}$, by using a standard argument, it is easy to show that there exists a sequence $\left(\phi_{n}\right)$ of \mathbb{T}-quasi-orthogonal polynomials of order s with respect to u if and only if $\Delta_{n} \neq 0$ for every $n \geq 2 s+1$. In this case, there exist infinitely many sequences of monic polynomials \mathbb{T}-quasi-orthogonal with respect to u.

Proposition 2.6. Let $w \in \mathcal{H}$, then $w=0$ if and only if there exists a SMOP $\left(\phi_{n}\right)$ and $n_{0} \in \mathbb{N}$ such that $w\left[\phi_{n}(z) \cdot z^{-k}\right]=0$ for every $n \geq n_{0}$ and $k=0,1, \ldots, n$.

Proof: If $w=0$, the result is trivial. Conversely, from (2.1) it follows that $w\left[\phi_{n}(z) \cdot z^{-k}\right]=0$ for every $n \geq 0$ and $k=0,1, \ldots, n$. As Λ is generated by the family

$$
\left\{\phi_{n}(z) \cdot z^{-k} ; n \in \mathbb{N} \text { and } k=0,1, \ldots, n\right\}
$$

we have $w(P)=0$ for every $P \in \Lambda$.
Let $u \in \Lambda^{\prime}$ and $f \in \Lambda$. We define the form $f u \in \Lambda^{\prime}$ as

$$
(f u)[g(z)]=u[f(z) g(z)]
$$

for every $g \in \Lambda$.
Now we are going to characterize the forms u such that a given $\operatorname{SMOP}\left(\phi_{n}\right)$ is \mathbb{T}-quasi-orthogonal with respect to u.

Theorem 2.7. Let $u \in \mathcal{H}$ be regular and let $\left(\phi_{n}\right)$ be the SMOP associated with u. Then, $\left(\phi_{n}\right)$ is \mathbb{T}-quasi-orthogonal of order s with respect to $v \in \mathcal{H}-\{0\}$ if and only if there exists only one polynomial $A(A \neq 0)$, with $\operatorname{deg} A=s$, such that

$$
\begin{equation*}
v=\left[A(z)+\bar{A}\left(z^{-1}\right)\right] u \tag{2.3}
\end{equation*}
$$

Proof: Uniqueness. Let A be a polynomic solution of (2.3) with $\operatorname{deg} A=s$ and let us suppose that the polynomial A_{1}, with $\operatorname{deg} A_{1}=s_{1}$, is a solution too. If we define $A_{2}=A-A_{1}$, we can write $A_{2}=\frac{\mu_{0}}{2}+\sum_{j=1}^{r} \mu_{j} z^{j}$, where $r=\max \left\{s, s_{1}\right\}$. Then the formula

$$
\left[A_{2}(z)+\overline{A_{2}}\left(z^{-1}\right)\right] u=\sum_{j=-r}^{r} \mu_{j} z^{j} u=0
$$

holds. So, for $n \geq 2 r+1$ and $k \geq 0$, we have

$$
\sum_{j=-r}^{r} \mu_{j} u\left[\phi_{n}(z) \cdot z^{-k+j}\right]=0
$$

Taking $k=n-r, \ldots, n$, we obtain a system of equations in the unknowns μ_{j} whose unique solution is $\mu_{0}=\ldots=\mu_{r}=0$. Hence, $A_{2}=A-A_{1}=0$.

Existence. If there exists a polynomial A satisfying (2.3) it is easy to verify that $\left(\phi_{n}\right)$ is \mathbb{T}-quasi-orthogonal of order $\operatorname{deg} A$ with respect to v. Conversely, let $\left(\phi_{n}\right)$ be as in the hypothesis. We define $w=v-\sum_{j=-s}^{s} \alpha_{j} z^{j} u$ with $\alpha_{j} \in \mathbb{C}$. By the orthogonality and the \mathbb{T}-quasi-orthogonality of the $\operatorname{SMOP}\left(\phi_{n}\right)$ with respect to u and v, respectively, the relation

$$
w\left[\phi_{n}(z) \cdot z^{-k}\right]=0
$$

holds for every $\alpha_{j} \in \mathbb{C}$ whenever $n \geq 2 s+1$ and $k=s, \ldots, n-s-1$.
If $k=n-s, \ldots, n$, then $w\left[\phi_{n}(z) \cdot z^{-k}\right]=0$, whenever the coefficients $\left(\alpha_{j}^{(n)}\right)_{j=-s}^{0}$ are the solutions of the system
$(2.4)_{n} \quad\left\{\begin{array}{l}v\left[\phi_{n}(z) \cdot z^{-n+s}\right]=\alpha_{-s}^{(n)} u\left[\phi_{n}(z) \cdot z^{-n}\right], \\ \cdots \cdots \cdots \cdots \cdots \\ \cdots \cdots \cdots \cdots \cdots \\ v\left[\phi_{n}(z) \cdot z^{-n}\right]=\alpha_{-s}^{(n)} u\left[\phi_{n}(z) \cdot z^{-n-s}\right]+\ldots+\alpha_{0}^{(n)} u\left[\phi_{n}(z) \cdot z^{-n}\right],\end{array}\right.$
which has a unique solution with $\alpha_{s}^{(n)} \neq 0$.
Now, let us suppose $a_{n+1} \neq 0$. Then, if $k=0, \ldots, s-1, w\left[\phi_{n}(z) \cdot z^{-k}\right]=0$ whenever the coefficients $\left(\alpha_{j}^{(n)}\right)_{j=1}^{s}$ are the solutions of the system

$$
\left\{\begin{array}{l}
v\left[\phi_{n}(z) \cdot z^{-s+1}\right]=\alpha_{s}^{(n)} u\left[\phi_{n}(z) \cdot z\right] \tag{2.5}\\
\cdots \cdots \cdots \cdots \cdots \\
\cdots \cdots \cdots \cdots \cdots \\
v\left[\phi_{n}(z)\right]=\alpha_{s}^{(n)} u\left[\phi_{n}(z) \cdot z^{s}\right]+\ldots+\alpha_{1}^{(n)} u\left[\phi_{n}(z) \cdot z\right]
\end{array}\right.
$$

As $u\left[\phi_{n}(z) \cdot z\right]=-e_{n} a_{n+1} \neq 0$, the system $(2.5)_{n}$ has a unique solution.
Let us write $\left(\alpha_{j}^{(n)}\right)_{j=-s}^{s},\left(\alpha_{j}^{(n+1)}\right)_{j=-s}^{s}$ the solutions of the systems $(2.4)_{n}$, $(2.5)_{n}$ and $(2.4)_{n+1},(2.5)_{n+1}$, respectively. Using the recurrence relations (2.1), (2.2) and an induction on j, after straightforward computations, we obtain

$$
\alpha_{j}^{(n)}=\alpha_{j}^{(n+1)}=\alpha_{j},
$$

whenever $-s \leq j \leq s$; and

$$
\alpha_{-j}=\overline{\alpha_{j}}
$$

for $1 \leq j \leq s$.
So, if $a_{n+1} \neq 0$, we have $w\left[\phi_{m}(z) \cdot z^{-k}\right]=0$ for every $m \geq n \geq 2 s+1$ and $k=0, \ldots, m$. Hence, from Proposition 2.6 it follows that $w=0$.

Otherwise, $w[1]=0$ and thus $v[1]=\sum_{j=-s}^{s} \alpha_{j} u\left[z^{j}\right] \in \mathbb{R}$; and consequently $\alpha_{0} \in \mathbb{R}$.

Therefore, there exists one and only one $A(z)=\frac{\alpha_{0}}{2}+\sum_{j=1}^{s} \alpha_{j} z^{j}$, with $\operatorname{deg} A=s$, such that $v=\left[A(z)+\bar{A}\left(z^{-1}\right)\right] u$.

Finally, if $a_{n+1}=\ldots=a_{n+l-1}=0$ and $a_{n+l} \neq 0$ for some $l \geq 2$, then $\phi_{n+l}(z)=z^{l} \phi_{n}(z)+a_{n+l} \phi_{n}^{*}(z)$ and using the systems $(2.4)_{n+l-1}$ and $(2.5)_{n+l-1}$ the above situation becomes. If $a_{n+l}=0$ for every $l \geq 1$, the coefficients in $(2.5)_{n}$ vanish and this system is verified by $\alpha_{-j}=\overline{\alpha_{j}}$, when $1 \leq j \leq s$. Because of the uniqueness of the polynomial A the result follows.

3 - Semi-classical forms

Definition 3.1. For $v \in \Lambda^{\prime}$, we define the form $\mathcal{D} v \in \Lambda^{\prime}$ as

$$
(\mathcal{D} v)[f]=-i(z v)\left[f^{\prime}\right]=-i v\left[z f^{\prime}(z)\right]
$$

for every $f \in \Lambda$.
Then, if $v \in \mathcal{H}, \mathcal{D} v \in \mathcal{H}$. Besides, if $v \in \Lambda^{\prime}$ and $f, g \in \Lambda$, then

$$
[\mathcal{D}(g v)][f]=-i[z g(z) v]\left[f^{\prime}\right]=-i v\left[z g(z) f^{\prime}(z)\right]
$$

that is, \mathcal{D} is the derivation operator with respect to θ, where $z=r e^{i \theta}$. (See [24]).
Definition 3.2. If $u \in \mathcal{H}$ is a regular form, we say that u is semi-classical if and only if there are polynomials $A \neq 0$ and B such that $\mathcal{D}(A u)=B u$.

Proposition 3.3. Let $u \in \mathcal{H}$ be a regular form. Then, u is semi-classical if and only if there are polynomials $A \neq 0$ and B such that

$$
\mathcal{D}\left[\bar{A}\left(z^{-1}\right) u\right]=\bar{B}\left(z^{-1}\right) u
$$

Proof: For every $k \in \mathbf{Z}$, we have

$$
\overline{[\mathcal{D}(A(z) u)]\left[z^{k}\right]}=\left[\mathcal{D}\left(\bar{A}\left(z^{-1}\right) u\right)\right]\left[z^{-k}\right]
$$

because $u \in \mathcal{H}$. Similarly,

$$
\overline{[B(z) u]\left[z^{k}\right]}=\left[\bar{B}\left(z^{-1}\right) u\right]\left[z^{-k}\right]
$$

Thus, the characteristic condition for a semi-classical form

$$
[\mathcal{D}(A u)]\left[z^{k}\right]=(B u)\left[z^{k}\right]
$$

is verified if and only if

$$
\left[\mathcal{D}\left(\bar{A}\left(z^{-1}\right) u\right)\right]\left[z^{j}\right]=\left[\bar{B}\left(z^{-1}\right) u\right]\left[z^{j}\right]
$$

holds for every $j \in \mathbf{Z}$.
If $v \in \Lambda^{\prime}$ and $P \in \mathcal{P}$ let us write $v^{P}=\left[P(z)+\bar{P}\left(z^{-1}\right)\right] v$. Note that, if $v \in \mathcal{H}$, then $v^{P} \in \mathcal{H}$.

Theorem 3.4. Let $u \in \mathcal{H}$ be a regular form. Then, u is semi-classical if and only if there exist polynomials $A \neq 0$ and B such that

$$
\begin{equation*}
\mathcal{D}\left[u^{A}\right]=u^{B} \tag{3.1}
\end{equation*}
$$

Proof: (\Rightarrow) It is straightforward from Proposition 3.3.
(\Leftarrow) From (3.1), the k-th moments corresponding to the forms $\mathcal{D}\left[u^{A}\right]$ and u^{B} are:

$$
\begin{aligned}
\left(\mathcal{D}\left[u^{A}\right]\right)\left[z^{k}\right] & =-i k u\left[\left(A(z)+\bar{A}\left(z^{-1}\right)\right) z^{k}\right]=-i k u\left[z^{s}\left(A(z)+\bar{A}\left(z^{-1}\right)\right) z^{k-s}\right] \\
u^{B}\left[z^{k}\right] & =u\left[\left(B(z)+\bar{B}\left(z^{-1}\right)\right) z^{k}\right]=u\left[z^{s}\left(B(z)+\bar{B}\left(z^{-1}\right)\right) z^{k-s}\right]
\end{aligned}
$$

where $s=\max \{\operatorname{deg} A, \operatorname{deg} B\}($ if $B=0$, then $s=\operatorname{deg} A$). As

$$
A_{1}(z)=z^{s}\left(A(z)+\bar{A}\left(z^{-1}\right)\right) \quad \text { and } \quad B_{1}(z)=z^{s}\left(B(z)+\bar{B}\left(z^{-1}\right)\right)
$$

belong to \mathcal{P}, and

$$
\left[\mathcal{D}\left(A_{1}(z)\right) u\right]\left[z^{j}\right]=\left[\left(B_{1}(z)+i s A_{1}(z)\right) u\right]\left[z^{j}\right]
$$

holds for every $j \in \mathbf{Z}$, with $A_{1} \neq 0$ and $B_{1}+i s A_{1} \in \mathcal{P}$, the result holds.

4 - Semi-classical forms and T-quasi-orthogonality

The main aim of this paragraph is to prove the following:
Theorem 4.1. Let $u \in \mathcal{H}$ be regular and let $\left(\phi_{n}\right)$ be the SMOP associated to u. Let us write

$$
\left\{\begin{array}{l}
\psi_{n}(z)=\frac{1}{n} z \phi_{n}^{\prime}(z) \quad(n \geq 1) \\
\psi_{0}(z)=1
\end{array}\right.
$$

The following assertions are equivalent:
i) u is a semi-classical form;
ii) There exists $\widehat{u} \in \mathcal{H}-\{0\}$ such that the sequences $\left(\phi_{n}\right)$ and $\left(\psi_{n}\right)$ are \mathbb{T}-quasi-orthogonal with respect to \widehat{u};
iii) There exists $\widehat{u} \in \mathcal{H}-\{0\}$ such that the sequence $\left(\psi_{n}\right)$ is \mathbb{T}-quasi-orthogonal with respect to \widehat{u}.

First of all, let us remember that to give a regular form $u \in \mathcal{H}$ is equivalent to known any of the following data:

1) A sequence of monic polynomials $\left(\phi_{n}\right)$, orthogonal with respect to u;
2) A sequence of complex numbers $\left(\phi_{n}(0)\right)$ with $\left|\phi_{n}(0)\right| \neq 1$ for every $n \geq 1$ (Schur parameters);
3) A quasi-definite sequence of moments $\left(c_{n}\right)_{n \in \mathbf{Z}}$, with $c_{n}=u\left(z^{n}\right)$ and $c_{-n}=\overline{c_{n}} ;$
4) A formal series $F(z)=c_{0}+2 \sum_{n=1}^{+\infty} c_{-n} z^{n}$, with $c_{n}=u\left(z^{n}\right)$. (If u is positive definite, $F(z)$ is a Carathéodory function);
5) A formal Laurent series $G(z)=\sum_{n=-\infty}^{+\infty} c_{-n} z^{n}$, with $c_{n}=u\left(z^{n}\right)$.
(For the positive definite case see [25], [12]; for the regular case see [12], [15] and [24]).

Before to prove the above theorem we need to establish some previous lemmas.
Lemma 4.2. A regular form $u \in \mathcal{H}$ is semi-classical if and only if there exist two polynomials C and $D(C \neq 0)$ such that

$$
i z C(z) G^{\prime}(z)=D(z) G(z)
$$

where $G(z)$ is the formal Laurent series associated to u.
Proof: See [24].
As an immediate consequence we obtain
Corollary 4.3. If $F(z)$ or $G(z)$ are rational functions, the form u is semiclassical.

Lemma 4.4. The $\operatorname{SMOP}\left(\varphi_{n}\right)$ and $\left(\chi_{n}\right)$ such that

$$
\varphi_{n}(0)=\frac{e^{i n \alpha}}{n+1}, \quad \chi_{n}(0)=-\frac{e^{i n \alpha}}{n+1}
$$

with $n \geq 1$ and $\alpha \in[0,2 \pi)$, are semi-classical.
Proof: From induction arguments the following relations:

$$
\begin{aligned}
& \varphi_{n}(z)=z^{n}+\frac{1}{n+1} \sum_{k=0}^{n-1}(k+1) e^{i(n-k) \alpha} z^{k} \\
& \chi_{n}(z)=z^{n}-\frac{1}{n+1} \sum_{k=0}^{n-1} e^{i(n-k) \alpha} z^{k}
\end{aligned}
$$

hold and hence,

$$
\begin{aligned}
\varphi_{n}^{*}(z) & =1+\frac{1}{n+1} \sum_{k=0}^{n-1}(k+1)\left(e^{-i \alpha} z\right)^{k} \\
\chi_{n}^{*}(z) & =1-\frac{1}{n+1} \sum_{k=0}^{n-1}\left(e^{-i \alpha} z\right)^{k}
\end{aligned}
$$

Since $\left(\chi_{n}\right)$ is the SMOP of the second kind with respect to $\left(\varphi_{n}\right)$, the Carathéodory functions $F_{1}(z)$ and $F_{2}(z)$, associated to $\left(\varphi_{n}\right)$ and $\left(\chi_{n}\right)$ respectively, satisfy

$$
\begin{equation*}
F_{1}(z)=\frac{\chi_{n}^{*}(z)}{\varphi_{n}^{*}(z)}+O\left(z^{n+1}\right), \quad F_{2}(z)=\frac{\varphi_{n}^{*}(z)}{\chi_{n}^{*}(z)}+O\left(z^{n+1}\right) \tag{4.1}
\end{equation*}
$$

(see [12], p. 11).
Thus, we get $F_{1}(z)=1-e^{-i \alpha} z$ and $F_{2}(z)=\frac{1}{1-e^{-i \alpha} z}$.
By Corollary 4.3, the $\operatorname{SMOP}\left(\varphi_{n}\right)$ and $\left(\chi_{n}\right)$ are semi-classical.
Remark. We want point out that $\varphi_{n}(z)=e^{i n \alpha} \Phi_{n}\left(e^{-i \alpha} z\right)$ where $\left(\Phi_{n}\right)$ is the SMOP satisfying $\Phi_{n}(0)=\frac{1}{n+1}$, for every $n \in \mathbb{N}$.

Lemma 4.5. Let $\left\{a_{j} ; j=1, \ldots, n_{0}\right\} \subset \mathbb{C}$ be with $\left|a_{j}\right| \neq 1$ and $\alpha, \beta \in[0,2 \pi)$. Let us consider the $\operatorname{SMOP}\left(\Phi_{n}\right)$ defined by

$$
\begin{aligned}
& \Phi_{j}(0)=a_{j}, \quad \text { if } j=1, \ldots, n_{0} \\
& \Phi_{n+n_{0}}(0)=\frac{e^{i(n \alpha+\beta)}}{n+n_{1}}, \quad \text { if } n \geq 1
\end{aligned}
$$

where $n_{1} \in \mathbb{N}$ is fixed. Then, $\left(\Phi_{n}\right)$ is associated to a semi-classical form.
Proof: The difference equation of second order

$$
\frac{1}{n+1} y_{n+1}=\left[\frac{e^{i \alpha}}{n+n_{1}+1}+\frac{z}{n+n_{1}}\right] y_{n}-\frac{e^{i \alpha}}{n+n_{1}+1}\left[1-\frac{1}{\left(n+n_{1}\right)^{2}}\right] y_{n-1}
$$

has the polynomic solutions $\left(\varphi_{n}\right)_{n>n_{1}},\left(\chi_{n}\right)_{n>n_{1}},\left(\Phi_{n}\right)_{n \geq n_{0}}$ and $\left(\Psi_{n}\right)_{n \geq n_{0}}$, where $\left(\varphi_{n}\right),\left(\chi_{n}\right)$ are as in the above lemma and $\left(\Psi_{n}\right)$ is the SMOP of the second kind associated to $\left(\Phi_{n}\right)$. Since the two first solutions are linearly independent, there exist unique polynomials $P_{1}, P_{2}, Q_{1}, Q_{2}$ such that

$$
\begin{align*}
& \Phi_{n+n_{0}}(z)=P_{1}(z) \varphi_{n+n_{1}-1}(z)+P_{2}(z) \chi_{n+n_{1}-1}(z) \\
& \Psi_{n+n_{0}}(z)=Q_{1}(z) \varphi_{n+n_{1}-1}(z)+Q_{2}(z) \chi_{n+n_{1}-1}(z) \tag{4.2}
\end{align*}
$$

for every $n \geq 1$. So, the generating function $F(z)$ associated to (Φ_{n}) satisfy

$$
F(z)=\frac{\Psi_{n+n_{0}}^{*}(z)}{\Phi_{n+n_{0}}^{*}(z)}+O\left(z^{n+n_{0}+1}\right)
$$

By substituting the values of $\Psi_{n+n_{0}}^{*}(z)$ and $\Phi_{n+n_{0}}^{*}(z)$ derived from (4.2) and taking into account (4.1) we have

$$
F(z)=\frac{Q_{1}^{* k}(z)+Q_{2}^{* k}(z) F_{1}(z)}{P_{1}^{* k}(z)+P_{2}^{* k}(z) F_{1}(z)}
$$

where $k=\max \left\{\operatorname{deg} P_{1}, \operatorname{deg} P_{2}, \operatorname{deg} Q_{1}, \operatorname{deg} Q_{2}\right\}$ and $P^{* k}(z)=z^{k} \bar{P}\left(z^{-1}\right)$ with $k \geq \operatorname{deg} P$. Since, $F_{1}(z)=1-e^{-i \alpha} z$, it follows that $F(z)$ is a rational function.

Remark. Let us note that the $\operatorname{SMOP}\left(\Phi_{n}\right)$ is a modified of the $\operatorname{SMOP}\left(\varphi_{n}\right)$ in the sense used in ([6]). So Lemma 4.5 gives an improvement of Proposition 3.1 in [9].

Proof of the theorem: The implication ii) \Rightarrow iii) is obvious. We will prove iii) \Rightarrow ii) \Leftrightarrow i).
i) \Rightarrow ii) Let u be a semi-classical form in \mathcal{H}. Then there exist $A, B \in \mathcal{P}$ with $A \neq 0$ such that $\mathcal{D}\left[u^{A}\right]=u^{B}$.

If $B \neq 0$, from Theorem 2.7, $\left(\phi_{n}\right)$ is (strictly) \mathbb{T}-quasi-orthogonal of order $p=\operatorname{deg} A$ with respect to u^{A} and (strictly) \mathbb{T}-quasi-orthogonal of order $p^{\prime}=\operatorname{deg} B$ with respect to u^{B}. Thus, we can deduce

$$
u^{A}\left[\psi_{n}(z) \cdot z^{-k}\right]=\frac{i}{n} u^{B}\left[\phi_{n}(z) \cdot z^{-k}\right]+\frac{k}{n} u^{A}\left[\phi_{n}(z) \cdot z^{-k}\right]
$$

for every $n \geq 1$. From the \mathbb{T}-quasi-orthogonality for the $\operatorname{SMOP}\left(\phi_{n}\right)$, $u^{A}\left[\psi_{n}(z) \cdot z^{-k}\right]=0$ if $r \leq k \leq n-r-1,(n \geq 2 r+1)$, where $r=\max \left\{p, p^{\prime}\right\}$.

If $B=0$, the above expression remains as $u^{A}\left[\psi_{n}(z) \cdot z^{-k}\right]=\frac{k}{n} u^{A}\left[\phi_{n}(z) \cdot z^{-k}\right]$, which vanishes for $p \leq k \leq n-p-1(n \geq 2 p+1)$. Now, we are going to show that $u^{A}\left[\psi_{n}(z) \cdot z^{-n+r}\right] \neq 0$ for some $n \geq 2 r$. If $p \neq p^{\prime}$ or $p^{\prime}=0$ or $B=0$ the proof is trivial. Let $p=p^{\prime}=r$ and let us suppose that $u^{A}\left[\psi_{n}(z) \cdot z^{-n+r}\right]=0$ for
some $n \geq 2 r$. By using the recurrence relation (2.1) and by the strict \mathbb{T}-quasiorthogonality of $\left(\phi_{n}\right)$ with respect to u^{A} we get

$$
u^{A}\left[\psi_{n+1}(z) \cdot z^{-n-1+r}\right]=\frac{1-\left|a_{n+1}\right|^{2}}{n+1} u^{A}\left[\phi_{n}(z) \cdot z^{-n+r}\right] \neq 0
$$

ii) $\Rightarrow \mathbf{i})$ Let $\left(\phi_{n}\right)$ and $\left(\psi_{n}\right)$ be \mathbb{T}-quasi-orthogonal of orders p and r, respectively, with respect to $\widehat{u} \in \mathcal{H}-\{0\}$. By Theorem 2.7, there exists $A \in \mathcal{P}-\{0\}$ such that $\widehat{u}=u^{A}$. Let $\widetilde{u} \in \mathcal{H}$ be the form defined by $\widetilde{u}=\mathcal{D}\left(u^{A}\right)$. For every $n \geq 1$ and $k \in \mathbf{Z}$ we get

$$
\begin{align*}
\widehat{u}\left[\phi_{n}(z) \cdot z^{-k}\right] & =-i u^{A}\left[z \phi_{n}^{\prime}(z) \cdot z^{-k}\right]+i k u^{A}\left[\phi_{n}(z) \cdot z^{-k}\right] \tag{4.3}\\
& =-i n u^{A}\left[\psi_{n}(z) \cdot z^{-k}\right]+i k u^{A}\left[\phi_{n}(z) \cdot z^{-k}\right],
\end{align*}
$$

which vanishes if $s \leq k \leq n-s-1,(n \geq 2 s+1)$, with $s=\max \{p, r\}$.
We distinguish two possible situations:
a) If $p \neq r$, writing the relation (4.3) for $k=n-s$ and $n \geq 2 s$ we have

$$
\widehat{u}\left[\phi_{n}(z) \cdot z^{-n+s}\right]=-i n u^{A}\left[\psi_{n}(z) \cdot z^{-n+s}\right]+i(n-s) u^{A}\left[\phi_{n}(z) \cdot z^{-n+s}\right] .
$$

Since in the above relation, at least for some $n \geq 2 s$, the right member has a term equal zero and the other term different zero, the $\operatorname{SMOP}\left(\phi_{n}\right)$ is \mathbb{T}-quasiorthogonal of order s with respect to \widehat{u} and there exists a polynomial B of degree s such that $\widehat{u}=u^{B}$. Therefore, u is a semi-classical form.
b) If $p=r=s$, let us suppose there exists $t \in \mathbb{N}$ such that

$$
\begin{aligned}
& \widehat{u}\left[\phi_{n}(z) \cdot z^{-n+t}\right]=0, \quad n \geq 2 t \\
& \widehat{u}\left[\phi_{n}(z) \cdot z^{-k}\right]=0, \quad t \leq k \leq n-t-1, \quad n \geq 2 t+1
\end{aligned}
$$

From (4.3) it follows that, if there exists a non-negative integer t verifying the above conditions, then $t \leq s$ is true. Now, using (2.2), an induction on t implies that either there exists q with $0 \leq q \leq s$ such that

$$
\widehat{u}\left[\phi_{n}(z) \cdot z^{-n+q}\right] \neq 0
$$

holds for every $n \geq 2 q$, and

$$
\widehat{u}\left[\phi_{n}(z) \cdot z^{-k}\right]=0
$$

holds for every $n \geq 2 q+1$ with $q \leq k \leq n-q-1$, or either

$$
\widehat{u}\left[\phi_{n}(z) \cdot z^{-n+t}\right]=0
$$

holds for every $n \geq 2 t$ and for every $t \in \mathbb{N}$. In the first case, the SMOP (ϕ_{n}) is \mathbb{T}-quasi-orthogonal of order q with respect to \widehat{u} and, from Theorem 2.7, there exists a polynomial B of degree s such that $\widehat{u}=u^{B}$; in the second one, $\widehat{u}=0$ and $B=0$. In both cases, $\mathcal{D}\left[u^{A}\right]=u^{B}$ with B different zero or not.
iii) \Rightarrow ii) In [16], it has been proved that

$$
\begin{equation*}
\left(\phi_{n}^{*}(z)\right)^{\prime}=\frac{n}{z}\left[\phi_{n}^{*}(z)-\psi_{n}^{*}(z)\right] . \tag{4.4}
\end{equation*}
$$

Derivating the recurrence relations (2.1) and (2.2) and taking into account (4.4) we obtain

$$
\begin{aligned}
(n+1) \psi_{n+1}(z)= & z\left[\phi_{n}(z)+n \psi_{n}(z)\right]+n a_{n+1}\left[\phi_{n}^{*}(z)-\psi_{n}^{*}(z)\right] \\
(n+1) \psi_{n+1}(z)= & \left(1-\left|a_{n+1}\right|^{2}\right) z\left[\phi_{n}(z)+n \psi_{n}(z)\right] \\
& +(n+1) a_{n+1}\left[\phi_{n+1}^{*}(z)-\psi_{n+1}^{*}(z)\right] .
\end{aligned}
$$

Let us suppose the SMOP $\left(\psi_{n}\right)$ is \mathbb{T}-quasi-orthogonal of order r with respect to \widehat{u}. If $r=0$, the only SMOP such that $\left(\psi_{n}\right)$ is orthogonal with respect to any $\widetilde{u} \in \mathcal{H}$ is $\phi_{n}(z)=z^{n}$ (see [16]). Thus, we suppose $r \geq 1$ and we do not consider the trivial case $r=0$. Then, $\widetilde{u}\left[\psi_{n}(z) \cdot z^{-k}\right]=0$ is true for every $r \leq k \leq n-r-1$ and $n \geq 2 r+1$, and besides the following

$$
\begin{align*}
& \widetilde{u}\left[\phi_{n}(z) \cdot z^{-k}\right]+n a_{n+1} \widetilde{u}\left[\phi_{n}^{*}(z) \cdot z^{-k-1}\right]=0, \\
& \left(1-\left|a_{n+1}\right|^{2}\right) \widetilde{u}\left[\phi_{n}(z) \cdot z^{-k}\right]+(n+1) a_{n+1} \widetilde{u}\left[\phi_{n+1}^{*}(z) \cdot z^{-k-1}\right]=0, \tag{4.5}
\end{align*}
$$

holds when $r \leq k \leq n-r-1$ and $n \geq 2 r+1$. By substituting in (4.5) the values of $\phi_{n}^{*}(z)$ and $\phi_{n+1}^{*}(z)$ derived from the relations (2.1) and (2.2), we have the system

$$
\begin{align*}
& \widetilde{u}\left[\phi_{n}(z) \cdot z^{-k}\right]-\frac{n}{n-1} \widetilde{u}\left[\phi_{n+1}(z) \cdot z^{-k-1}\right]=0, \\
& \left(1-\left|a_{n+1}\right|^{2}\right) \widetilde{u}\left[\phi_{n}(z) \cdot z^{-k}\right]-\frac{n+1}{n} \widetilde{u}\left[\phi_{n+1}(z) \cdot z^{-k-1}\right]=0, \tag{4.6}
\end{align*}
$$

with $r \leq k \leq n-r-1$ and $n \geq 2 r+1$, whose determinant is

$$
M_{n}=\frac{1}{n(n-1)}\left[1-\left(n\left|a_{n+1}\right|\right)^{2}\right] .
$$

If $M_{n} \neq 0$ for some $n \geq 2 r+1$, it follows directly that $\widetilde{u}\left[\phi_{m}(z) \cdot z^{-k}\right]=0$ whenever $2 r+1 \leq m \leq n$ and $r \leq k \leq m-r-1$.

Let us suppose that every $n_{0} \geq 2 r+1$ there exists $n \geq n_{0}$ such that $\left|a_{n+1}\right| \neq \frac{1}{n}$. Then, by the above argument, the relation

$$
\widetilde{u}\left[\phi_{n}(z) \cdot z^{-k}\right]=0
$$

holds for every $n \geq 2 r+1$ with $r \leq k \leq n-r-1$. Now, by using the same argument as in the first part of this proof, we can conclude that the SMOP $\left(\phi_{n}\right)$ is \mathbb{T}-quasi-orthogonal of order s (with $s \leq r$) with respect to \widetilde{u}.

Finally, let us suppose $\left|a_{n+1}\right|=\frac{1}{n}$ is true for every $n \geq n_{0} \geq 2 r+1$. Then the determinant M_{n} vanishes and the system (4.5) reduces to

$$
\begin{equation*}
\widetilde{u}\left[\phi_{n}(z) \cdot z^{-k}\right]+e^{i \theta_{n}} \overline{\widetilde{u}\left[\phi_{n}(z) \cdot z^{-n+k-1}\right]}=0, \tag{4.7}
\end{equation*}
$$

and the system (4.6) becomes

$$
\begin{equation*}
\widetilde{u}\left[\phi_{n+1}(z) \cdot z^{-k}\right]-\frac{n}{n-1} \widetilde{u}\left[\phi_{n}(z) \cdot z^{-k}\right]=0 \tag{4.8}
\end{equation*}
$$

where $\theta_{n}=\arg a_{n+1}, n \geq n_{0}$ and $r \leq k \leq n-r-1$.
Let us denote $m_{n k}=\left|\widetilde{u}\left[\phi_{n}(z) \cdot z^{-k}\right]\right|$ and $\omega_{n k}=\arg \left(\widetilde{u}\left[\phi_{n}(z) \cdot z^{-k}\right]\right)$. From (4.7) and (4.8), we get

$$
\begin{aligned}
& m_{n k} e^{i \omega_{n k}}=m_{n, n-k-1} e^{i\left(\theta_{n}-\omega_{n, n-k-1}+\pi\right)} \\
& m_{n+1, k+1} e^{i \omega_{n+1, k+1}}=\frac{n}{n-1} m_{n k} e^{i \omega_{n k}}
\end{aligned}
$$

Therefore, $m_{n k}=m_{n j}=m_{n}$ whenever $k, j \in\{r, \ldots, n-r-1\}$, and $m_{n+1}=$ $\frac{n-1}{n} m_{n}$. Moreover, $\omega_{n k}=\omega_{n+1, k+1}$ and $\omega_{n k}+\omega_{n, n-k-1}=\theta_{n}+\pi$ for every $n \geq n_{0}$, which implies the relation $\theta_{n+2}=2 \theta_{n+1}-\theta_{n}$ is true for every $n \geq n_{0}$. It follows easily that $\theta_{n_{0}+l}=l \alpha+\beta$ is true with $\alpha=\theta_{n_{0}+1}-\theta_{n_{0}}$ and $\beta=\theta_{n_{0}}$, and thus

$$
\phi_{n_{0}+l}(0)=\frac{e^{i(l \alpha+\beta)}}{n_{0}+l-1}
$$

for every $l \geq 0$. From Lemma 4.5, the $\operatorname{SMOP}\left(\phi_{n}\right)$ is associated to a semi-classical form.

Corollary 4.6. Let $u \in \mathcal{H}$ be semi-classical and let $A, B \in \mathcal{P}$ (with $A \neq 0$) such that $\mathcal{D}\left[u^{A}\right]=u^{B}$. Then, $\left(\psi_{n}\right)$ is \mathbb{T}-quasi-orthogonal of order r with respect to u^{A}, where $r=\max \{\operatorname{deg} A, \operatorname{deg} B\}$.

Corollary 4.7. Let $u \in \mathcal{H}$ be semi-classical and let us suppose that $\left|a_{n+1}\right|=\frac{1}{n}$ for some $n \geq r+1$. Then

$$
a_{n+l}=\frac{e^{i(l \alpha+\beta)}}{n+l-1}
$$

for every $l \geq 1$.

ACKNOWLEDGEMENTS - We would like to thank Professors Francisco Marcellán and Pascal Maroni for their remarks and useful suggestions.

REFERENCES

[1] Akhiezer, N.I. and Krein, M.G. - Some problems of the theory of moments, Amer. Math. Soc., Translations Math. Monograph 2, Providence, Rhode Island, 1968.
[2] Bonan, S., Lubinsky, D.S. and Nevai, P. - Orthogonal polynomials and their derivatives, SIAM J. Math. Anal., 18 (1987), 1163-1176.
[3] Brezinski, C. - Padé-type Approximation and General Orthogonal Polynomials, I.S.N.M., vol. 50, Birkhäuser-Verlag, Basel, 1980.
[4] Chimara, T.S. - On quasi-orthogonal polynomials, Proc. Amer. Math. Soc., 8 (1957), 765-767.
[5] Chihara, T.S. - An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978.
[6] Dehesa, J.S., Marcellán, F. and Ronveaux, A. - On orthogonal polynomials with perturbed recurrence relations, J. Comput. Appl. Math., 30 (1990), 203-212.
[7] Dickinson, D.J. - On quasi-orthogonal polynomials, Proc. Amer. Math. Soc., 12 (1961), 185-194.
[8] Fejér, L. - Mechanischen quadraturen mit positiven Cotesschen Zahlen, Math. Zeitschrift, 37 (1933), 287-309.
[9] García-Lázaro, P. and Moral, L. - On a family of orthogonal polynomials on the unit circle, in Proceedings of the "VI Simposio Nacional sobre Polinomios Ortogonales y Aplicaciones (Gijón, 1989)" (Arias de Velasco and al., Eds.), Gijón, 1990, 115-125.
[10] García-Lázaro, P. and Moral, L. - Quasi-orthogonality on Laurent polynomials, in IMACS Annals, Vol. 9 (1991), 267-274.
[11] Geronimus, Ya.L. - Polynomials orthogonal on a circle and their applications, in Amer. Math. Soc. Translations, Series 1, Vol. 3, Providence, Rhode Island, 1962, 1-78.
[12] Geronimus, Ya.L. - Orthogonal polynomials, Consultants Bureau, New York, 1961.
[13] Hendriksen, E. and van Rossum, H. - Semiclassical orthogonal polynomials, in (C. Brezinski and al., Eds.) Lecture Notes in Math., 1171, Springer-Verlag, Berlin, 1985, 354-361.
[14] Jones, W.B., Njastad, O. and Thron, W.J. - Moment theory, ortogonal polynomials, quadrature and continued fractions associated with the unit circle, Bull. London Math. Soc., 21 (1989), 113-152.
[15] Marcellán, F. - Orthogonal polynomials and Toeplitz matrices: some applications, in "Rational Approximation and Orthogonal Polynomials" (M. Alfaro, Ed.), Seminario Matemático "García de Galdeano", Zaragoza, 1989, 31-57.
[16] Marcellán, F. and Maroni, P. - Orthogonal polynomials on the unit circle and their derivatives, Constr. Approx., 7 (1991), 341-348.
[17] Marcellán, F. and Tasis, C. - Sobre cuasi-ortogonalidad en la circunferencia unidad. Aplicaciones, Communication to J.M.H.L., 1988, Valladolid.
[18] Maroni, P. - Une caractérisation des polynômes orthogonaux semi-classiques, C.R. Acad. Sci. Paris Sér. I Math., 301 (1985), 269-272.
[19] Maroni, P. - Prolégomènes à l'étude des polynômes orthogonaux semi-classiques, Ann. Mat. Pura ed Appl., 149 (1987), 165-184.
[20] Riesz, M. - Sur le problème des moments, III, Ark. Mat. Astr. Fys., 17(16) (1923), 1-52.
[21] Ronveaux, A. - Polynômes orthogonaux dont les polynômes dérivés sont quasiorthogonaux, C.R. Acad. Sci. Paris Sér. A, 289 (1979), 433-436.
[22] Shонат, J.A. - On mechanical quadratures, in particular, with positive coefficients, Trans. Amer. Math. Soc., 42 (1937), 461-496.
[23] SzegÖ, G. - Orthogonal Polynomials, 4th ed., Amer. Math. Soc. Colloq. Pub., 23, Providence, Rhode Island, 1975.
[24] Tasis, C. - Propiedades diferenciales de los polinomios ortogonales relativos a la circunferencia unidad, Doctoral Dissertation, Gijón, 1989.
[25] Vigil, L. - Polinomios ortogonales sobre la circunferencia unidad. El camino de ida y vuelta, Rev. Acad. Ci. Madrid, 78 (1984), 587-589.

Manuel Alfaro,
Dpto. de Matemáticas, Universidad de Zaragoza, 50009 Zaragoza - SPAIN
and
Leandro Moral,
Dpto. de Matemática Aplicada, Universidad de Zaragoza, 50009 Zaragoza - SPAIN

[^0]: Received: June 14, 1991.
 AMS Subject Classification (1991): 42C05.
 Key words: Orthogonal polynomials, quasi-orthogonal polynomials, semi-classical linear forms.
 $\left(^{*}\right)$ This research was partially supported by P.A.I. 1990 (Univ. de Zaragoza) $\mathrm{n}^{\underline{0}}$ 227-36.

