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FIN-SET: A SYNTACTICAL DEFINITION
OF FINITE SETS

Slavǐsa B. Prešić

Abstract. We state Fin-set, by which one founds the notion of finite sets in
a syntactical way. Any finite set {a1, a2, . . . , an} is defined as a well formed
term of the form S(a1 + (a2 + (· · · + (an−1 + an) · · · ))), where + is a binary
and S a unary operational symbol. Related to the operational symbol +
the term-substitutions (1) are introduced. Definition of finite sets is called
syntactical because by two algorithms Set-alg and Calc one can effectively
establish whether any given set-terms are equal or not equal.

All other notions related to finite sets, like ∈, ordered pair, Cartesian
product, relation, function, cardinal number are defined as terms as well. Each
of these definitions is recursive. For instance, ∈ is defined by

x ∈ S(a1) iff x = a1

x ∈ S(a1 + · · · + an) iff x = a1 or x ∈ S(a2 + · · · + an)

x /∈ ∅ (∅ denotes the empty set)

1. The key idea

Finite sets are usually expressed by some set-terms like {a}, {a, {b, c}}, {a1, . . . , an}.
Related to such terms there are infinite number of ‘algebraic laws’ like

(∗) {x, x} = {x}, {x, y} = {y, x}, {x, y, z} = {z, x, y}
which express various properties of finite sets. In order to state all such algebraic
laws we use the following idea: We ‘divide’ the notion of finite set into two ‘parts’.
The first one is the preset, formalized by means of a binary operational symbol +.
The second one is the set-maker, formalized by an unary operational symbol S.

For instance, using S and + the ordinary set-terms {a}, {{a, b}, c}, {a1, . . . , an}
are represented by the following (S,+)-terms

S(a), S(S(a + b) + c), S(a1 + (a2 + · · · + (an−1 + an) + · · · ))
respectively. Having in mind (∗) for + we put term-substitutions (1) (below).
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2. (+, S)−terms

Denote by Γ a collection of constant symbols, called initial elements. Symbol
∅ is also an element of Γ. Let L be a language whose elements are all elements of
Γ and also the operational symbols + and S (+ is a binary, S a unary operational
symbol). The symbols x, y, z, u, x′, y′, z′, u′, . . . are used as variables. We define
terms by the generalized inductive definition:

(i) Any element of Γ is a term.
(ii) A variable is a term.
(iii) If A,B are terms, then the words (A + B), S(A) are terms.

Next we introduce the following term-substitutions

(1)

(i) (τ1 + τ1) → τ1

(i′) τ1 → (τ1 + τ1)

(ii) (τ1 + τ2) → (τ2 + τ1)

(iii) ((τ1 + τ2) + τ3) → (τ1 + (τ2 + τ3))

(iii′) (τ1 + (τ2 + τ3)) → ((τ1 + τ2) + τ3)

(iv) τ1 → τ1

where τ1, τ2, τ3 are any terms.
Let σ1 → σ2 be a substitution. Suppose that t1 is a term which contains, at

some place1 a subterm of the form σ1. Replacing σ1 with σ2 at such a place from
t1 we obtain a new term denoted by t2. We shall say that t2 is neighbouring to
t1. For the sentence: t2 is neighbouring to t1 we shall use the following notation:
t1 → t2. For instance, let t1 be a term

S(S(x + S(a + (b + c))) + S(a + (b + c)))

and let the substitution σ1 → σ2 be of the form (τ1 + τ2) → (τ2 + τ1). In the given
term t1 there are six subterms of the form (τ1 + τ2), since the symbol + appears in
t1 just six times. Let us consider the subterm (a + (b + c)), at its first occurrence.
Then τ1 is a, and τ2 is (b + c). By applying the substitution (τ1 + τ2) → (τ2 + τ1)
from term t1 we obtain the term t2

S(S(x + S((b + c) + a)) + S(a + (b + c)))

which is neighbouring to t1. Due to (1)(iv) any term t is neighbouring to t, i.e.,
t → t. Next, we shall define a relation = (‘equality’) between two terms t1, t2.
Namely:
(2) We shall say that t1 = t2 holds iff either the word t1 is literally equal to the

word t2 or there are terms τ1, τ2, . . . , τk such that τ1 is t1, τk is t2, and each
τi (1 < i � k) is neighbouring to τi−1

In other words, t1 = t2 holds iff we have the following ‘substitutional chain’

(3′) τ1 → τ2 → τ3 → · · · → τk (τ1 is t1, τk is t2)

1Starting, say, with certain i-th letter of the word t1
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If the relation t1 = t2 holds we shall say that t1 is equal to t2. Obviously relation
= has the following properties

τ1 = τ1

If τ1 = τ2, then τ2 = τ1

If τ1 = τ2 and τ2 = τ3, then τ1 = τ3(3)

If τ1 = τ2, then S(τ1) = S(τ2)

If τ1 = τ2 and τ3 = τ4, then (τ1 + τ3) = (τ2 + τ4)

Remark 1. Relation = can be defined by equational axioms x+x = x, x+y =
y+x, (x+y)+z = x+(y+z). Namely, it can be easily proved that relation t1 = t2
holds iff formula t1 = t2 is an equational consequence of the axioms, where x, y, z
can be any (S,+)-terms.

Now we consider terms of the form

A1, (A1 + A2), ((A1 + A2) + A3), (((A1 + A2) + A3) + A4), . . .

For them we shall use the notation

A1, A1 + A2, A1 + A2 + A3, A1 + A2 + A3 + A4, . . .

respectively and call them sum-terms. Suppose that by term(+, A1, . . . , Ak) any
term is denoted which is built up from its subterms A1, . . . , Ak by use of the oper-
ational symbol + only. The order of these Ai is not important. Then the following
equality holds:

(∗1) term(+, A1, . . . , Ak) = A1 + · · · + Ak

This equality holds in virtue of substitutions (1) of the form (ii), (iii), (iii′). For
instance, the equality ((A + (C + B)) + (E + D)) = A + B + C + D + E is true.

Let A1 + · · · + Ak, B1 + · · · + Bq be any sum-terms. We define relation =S

between them:

A1 + · · · + Ap =S B1 + · · · + Bq holds iff each Ai is equal to some Bj and(4)
each Bk is equal to some Al

The relation =S has the following properties

(5) (i) A1+· · ·+Ap =S Af(1)+· · ·+Af(p), where f is any permutation of indexes
1, . . . , p.

(ii) A1 + · · ·+Ai + · · ·+Ap =S A1 + · · ·+Ai +Ai + · · ·+Ap, where the right
hand side is obtained from the left hand side by replacing Ai by Ai + Ai

(ii′) A1 + · · ·+ Ai + Ai + · · ·+ Ap =S A1 + · · ·+ Ai + · · ·+ Ap, where the left
hand side is obtained from the right hand side by replacing Ai by Ai +Ai

(iii) If A1 + · · · + Ap =S B1 + · · · + Bq, then B1 + · · · + Bq =S A1 + · · · + Ap

(iv) If A1 + · · · + Ap =S B1 + · · · + Bq and B1 + · · · + Bq =S C1 + · · · + Cr,
then A1 + · · · + Ap =S C1 + · · · + Cr

(v) A1 + · · · + Ai + · · · + Ap =S A1 + · · · + B + · · · + Ap assuming that Ai is
replaced by B and Ai = B
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Assertion (5) is an immediate consequence of definition (4). Relation =S has
also this property

(∗2) If A1 + · · · + Ap =S B1 + · · · + Bq, then A1 + · · · + Ap = B1 + · · · + Bq

which is an immediate consequence of (4) and definition of =, i.e., of (2). For
instance, A + B + C =S B + C + A + C holds. Also A + B + C = B + C + A + C
holds, which can be proved easily by substitutions (1).

Related to implication (∗2) it is important to know when the opposite impli-
cation is true too. In connection with it we introduce the notion of full sum-term.
Namely, we shall say that A1 + · · · + Ak is a full sum-term if none of Ai is of the
form (P + Q) for some P , Q. Obviously, any sum-term is equal to certain full
sum-term.

Now we shall prove

If B1 + · · · + Bq is a full sum-term, which is neighbouring to a full(∗3)
sum-term A1 + · · · + Ap, then A1 + · · · + Ap =S B1 + · · · + Bq holds.

Indeed, denote by σ a substitution of type (1) by which from A1 + · · · + Ap we
obtain B1 + · · · + Bq. We distinguish two cases:
1◦ σ is related to some subterm of A1 · · · + Ap whose + is inside one Ai.
2◦ σ is related to one of p−1 symbols + occuring in the sum-term A1+A2+· · ·+Ap

In the first case applying σ to Ai we obtain some B, such that Ai = B. Then in
virtue of (5)(v) we conclude that

A1 + · · · + Ai−1 + Ai + · · · + Ap =S A1 + · · · + Ai−1 + B + · · · + Ap

and proof is complete in the first case.
In the second case, having in mind (5)(i), (ii), (ii′) the proof completes.
Now we shall prove a generalization of (∗3)

If A1 + · · · + Ap = B1 + · · · + Bq holds, where A1 + · · · + Ap, B1 + · · · + Bq(∗4)
are full sum-terms, then also A1 + · · · + Ap =S B1 + · · · + Bq holds.

Indeed, let A1 + · · · + Ap = B1 + · · · + Bq. Then, like (3′), there is certain substi-
tutional chain

τ1 → τ2 → · · · → τk (τ1 is A1 + · · · + Ap, τk is B1 + · · · + Bq)

In virtue of (∗3) we have τ1 =S τ2, τ2 =S τ3, . . . , τk−1 =S τk. Having in mind
(5)(iv) we conclude τ1 =S τk and the proof completes.

Lemma 1. Suppose that A1 + · · ·+Ap, B1 + · · ·+Bq are full sum-terms. Then
the following equivalence is true

A1 + · · · + Ap = B1 + · · · + Bq holds iff each Ai is equal to some Bj and
each Bk is equal to some Al

Proof. Proof follows immediately from (∗3) and (4). For instance, if p = 2,
q = 2 then we have the following equivalence

(∗5) A1 + A2 = B1 + B2 iff (A1 = B1 ∧ A2 = B2) ∨ (A1 = B2 ∧ A2 = B1) �
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Lemma 2. S(A) = S(B) iff A = B.

Proof follows directly from the definition (1).
Now we define the notion of monomial. This is a term t which is not of the

form (P +Q) for some P,Q. Let t be any term. It is a monomial just in three cases:
t is an initial element or t is a variable or t has the form S(P ) for some P . Term of
the form S(P ) will be called S-monomial. An equality of the form m1 = m2, where
m1,m2 are monomials will be called a monomial equality. Such an equality will be
called a reduced monomial equality if at least one of m1,m2 is not an S-monomial.

Lemma 3. Let m1 = m2 be a reduced monomial equality. This equality holds
iff m1,m2 are equal as words.

As a matter of fact, Lemma 1, Lemma 2 and Lemma 3 describe an algorithm,
called Set-alg, by which one can decide whether any given terms t1, t2 are equal or
not. Namely, to given equality t1 = t2 we apply Lemma 1 or Lemma 2 as many
times as possible. At the end we obtain some logical expression Expr, built from
certain reduced monomial equations mi = mj using logical connectives ∧ and ∨.
Having in mind Lemma 3 we can calculate logical value of Expr. If the obtained
value is �, then the equality t1 = t2 holds. If the value is ⊥, then the equality
t1 = t2 does not hold. We shall illustrate this algorithm by some examples.

Example 1. Let a, b, c, d be some initial elements. Calculate the logical value
of a given equality:

1◦ S(a + b) = S(b + a), 2◦ S(a + b) = S(b + ∅)
3◦ S(a + S(b + c + d) + b) = S(b + a + S(d + c + b))

Solution. 1◦ We have the following equivalence-chain

S(a + b) = S(b + a)
iff a + b = b + a (By Lemma 2)
iff (a = b ∧ b = a) ∨ (a = a ∧ b = b) (By (∗5), i.e. by Lemma 1)

The answer is yes since by Lemma 3 the equalities a = a and b = b are true.

2◦ We have the following equivalence-chain

S(a + b) = S(b + ∅)
iff a + b = b + ∅ (By Lemma 2)
iff (a = b ∧ b = ∅) ∨ (a = ∅ ∧ b = b) (By (∗), i.e. by Lemma 1)

The answer is no since by Lemma 3 equalities a = b, a = ∅ and b = ∅ are false.

3◦ By Lemma 2 we see that the given equality reduces to

a + S(b + c + d) + b = b + a + S(d + c + b)

Applying Lemma 1 this equality reduces to S(b + c + d) = S(d + c + b). Applying
Lemma 2 this equality reduces to b + c + d = d + c + b. Finally applying Lemma 1
and Lemma 3 we conclude that the answer is yes.
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Remark 2. Here, in brief, we describe an algorithm, called Calc, which is
simpler than Set-alg. Let a term S1 have the form S(p1 + p2 + · · · + pm), where
pi are some initial elements. We shall say that such a term is countable. Term S1

can be equal to certain other countable term, say S(q1 + q2 + · · · + qn), where qj

are some initial elements. In such case each element pi must be the same as some
qj and also each qk must be the same as some pr. For instance, if a, b, c are initial
elements we have equality

S(a + b + a + b + c) = S(c + b + a + a)

Suppose now that a term t1 has certain countable subterm S1, and that a ‘list’
S1, S2, . . . Sp contains all countable subterms of t, which are equal to S1. Suppose
that t1 equals t2. Then like (3′) we have the following substitutional chain

(σ1) τ1 → τ2 → τ3 → · · · → τs (τ1 is t1, τs is t2)

In the first step τ1 → τ2 of this chain, any Si remains unchanged or transforms
to some countable term S′

i, which is equal to Si. The same holds for other steps.
Denote by S1, . . . Sp, . . . SP all terms occurring in (σ1) which are equal to S1.

Let C be an initial element not occurring in the chain (σ1). In this chain replace
all S1, . . . Sp, . . . SP by C. If t is any term, by t〈C〉 we denote the term obtained by
that replacement. In such a way from (σ1) we obtain the following ‘formal chain’

(σ2) τ1〈C〉 → τ2〈C〉 → τ3〈C〉 → · · · → τs〈C〉
Obviously τ1〈C〉, . . . τs〈C〉 are well-formed (S,+)-terms and in addition to that (σ2)
is a valid substitutional chain. So we conclude the following

If t1 = t2, then t1〈C〉 = t2〈C〉.
Now suppose that in (σ2) every C is replaced by any terms S1, . . . Sp, . . . SP .

Then from (σ2) we shall obtain a chain which can be easily extended to a valid
substitutional chain2. So, we conclude also

If t1〈C〉 = t2〈C〉, then t1 = t2.

The mentioned algorithm Calc is based on the equivalence

(Cal) t1 = t2 iff t1〈C〉 = t2〈C〉
We illustrate Calc by two examples. First one is: prove or disprove the equality

S(a + S(S(a) + b) + S(b + S(a)) + c) = S(a + c + S(b + S(a)))

Using (Cal) we have the following equivalence-chain

S(a + S(S(a) + b) + S(b + S(a)) + c) = S(a + c + S(b + S(a)))

iff S(a + S(p + b) + S(b + p) + c) = S(a + c + S(b + p)) (S(a) is replaced by p)

iff S(a + q + q + c) = S(a + c + q) (S(p + b), S(b + p) are replaced by q)

iff r = r (S(a + q + q + c), S(a + c + q) are replaced by r)

2For instance, if in the chain S(a + C) → S(C + a) we replace the first C by S(p + q) and
the second by S(q + p) we obtain S(a + S(p + q)) → S(S(q + p) + a), which can be extended to
this valid substitutional chain S(a + S(p + q)) → S(S(p + q) + a) → S(S(q + p) + a).



SYNTACTICAL DEFINITION OF FINITE SETS 161

So, the given equality is proven. Here p, q, r are initial elements.
The second example is: prove or disprove the equality

S(a + S(S(b)) + c) = S(c + a + S(S(b) + d))

Using (Cal) we have the following equivalence-chain

S(a + S(S(b)) + c) = S(c + a + S(S(b) + d))

iff S(a + S(p) + c) = S(c + a + S(p + d)) (S(b) is replaced by p)

iff S(a + q + c) = S(c + a + S(p + d)) (S(p) is replaced by q.)

As a matter of fact, because S(p) does not appear on the right hand side we conclude
that the last equality is false. Consequently the given equality is false.

Notice that the name Calc is related to the fact that this algorithm in some
sense ‘calculates’ the given terms. Terms of the form S(p1 + p2 + · · · + pm), where
pi are some initial elements, are called countable, since the algorithm Calc is ‘able
to calculate just them’.

3. Definition of finite sets

A ground term is a term not containing variables. Now we define the notion of
a finite set:

A finite set is either ∅ (called the empty set) or a ground term(6)

of the form S(A) (called a non-empty set).

According to Lemma 1 any set A can be expressed in one of the forms

(∗6) 1◦ : ∅, 2◦ : S(A1 + · · · + An)

where n = 1, 2, . . . and A1 + · · ·+An is a full sum-term. One may suppose that Ai

are pairwise different terms. These forms are called the canonical forms for set A.
By virtue of Lemma 1 the form (∗6) 2◦ is unique up to the order of A1, A2, . . . , An.
In the sequel we always assume that finite sets are given in a canonical form.

Example 2. Let 1, 2, 3 be initial elements. Then the ground term S((1 + 3) +
(2+3)) is a finite set. One of its canonical forms is S(1+2+3). Besides this there
are also 5 others canonical forms

S(1 + 3 + 2), S(2 + 1 + 3), S(2 + 3 + 1), S(3 + 1 + 2), S(3 + 2 + 1)

which differ only in the order of 1, 2, 3.

Concerning the given definition (6) of a finite set we point out that a finite set
is defined as a well defined term. Consequently, we can produce various recursive
definitions for them.

First, we define the relation ∈:

x ∈ S(A) iff x = A(7)

x ∈ S(A1 + A2 + · · · + An) iff x = A1 or x ∈ S(A2 + · · · + An) (n > 1)

x /∈ ∅
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For instance, 2 ∈ S(1 + 2 + 3). Indeed:

2 ∈ S(1 + 2 + 3) iff 2 = 1 or 2 ∈ S(2 + 3)

iff 2 ∈ S(2 + 3) (Since 2 = 1 is false)

iff 2 = 2 or 2 ∈ S(3)

iff 2 = 2 (Since 2 = 2 is true)

So, it is true that 2 ∈ S(1 + 2 + 3). But, for instance 2 /∈ S(1 + 3). Indeed:

2 ∈ S(1 + 3) iff 2 = 1 or 2 ∈ S(3)

iff 2 ∈ S(3) (Since 2 = 1 is false)
iff 2 = 3

Since the equality 2 = 3 is false we conclude that 2 ∈ S(1 + 3) is false too.
Notice that in general if A1, . . . , An are some given ground terms then S(A1 +

· · · + An) is the set whose all elements are A1,. . . ,An.
Bearing in mind Lemma 1 and the definition (7) one can easily prove the

following well known equivalence (Extensionality axiom in ZF set theory)

A = B ↔ (∀x)(x ∈ A ↔ x ∈ B)

where A,B are any finite sets and the variable x ranges over ground terms only.
The next step is to define |A|–the cardinal number of the set A. By use of the

‘ordinary’ notion of natural number we have the inductive definition

|∅| = 0, |S(A)| = 1, |S(A1 + A2 + · · · + An)| = 1 + |S(A2 + · · · + An)|.
Now we give several definitions, and each of them will be syntactical; in other

words for each of them we can make a corresponding decision algorithm.

(Relation ⊆) A ⊆ B iff (∀x)(x ∈ A ⇒ x ∈ B)
(Operation ∪) ∅ ∪ x = x (x is any finite set)

S(A1) ∪ S(B1 + · · · + Bm) is S(A1 + B1 + · · · + Bm)
S(A1+· · ·+An)∪S(B1+· · ·+Bm) is S(A2+· · ·+An)∪S(B1+· · ·+Bm)
if A1 ∈ S(B1 + · · · + Bm),
otherwise it is S(A1) ∪ (S(A2 + · · · + An) ∪ S(B1 + · · · + Bm))

(Operation ∩) ∅ ∩ x = ∅ (x is any finite set)
S(A1+· · ·+An)∩S(B1+· · ·+Bm) is S(A2+· · ·+An)∩S(B1+· · ·+Bm)
if A1 /∈ S(B1 + · · · + Bm),
otherwise it is S(A1) ∪

(
S(A2 + · · · + An) ∩ S(B1 + · · · + Bm)

)

(Operation �) ∅ � x = ∅ (x is any finite set)
S(A1+· · ·+An)�S(B1+· · ·+Bm) is S(A2+· · ·+An)�S(B1+· · ·+Bm)
if A1 ∈ S(B1 + · · · + Bm),
otherwise it is S(A1) ∪

(
S(A2 + · · · + An) � S(B1 + · · · + Bm)

)

Now we shall define the ordered pair of two member terms x, y, in symbols
Π(x, y). There are two ways to do this: one is to extend Ω by a new binary
operational symbol Π and to add no new axiom concerning Π, and to regard term
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Π(x, y) as the ordered pair of x and y. The alternative way is to adopt Wiener–
Kuratowski idea, i.e., to introduce the following definition

Π(x, y) = S(S(x) + S(x + y))

Further, we can in the usual way define cartesian product X × Y of two sets, of
more sets, a binary, ternary,. . . relation, a function f : X → Y , etc. Again and
again each of such notions is determined by some ground term.

Example 3. Let A = S(1 + 2 + 3), B = S(a + b). Then

A × B = S(Π(1, a) + Π(1, b) + Π(2, a) + Π(2, b) + Π(3, a) + Π(3, b))

The term S(Π(1, a) + Π(2, b) + Π(3, a)) determines a function f : A → B such that
f(1) = a, f(2) = b, f(3) = a.

We have already mentioned that the finite sets defined by (6) satisfy Exten-
sionality axiom of ZF set theory. It is not difficult to see that, in Fin-set, except
Axiom of infinity, all other axioms of ZF theory can be proved in a simple way.
Moreover, if some axioms say that there exist some sets x, y, . . . , then one can make
‘algorithmic proof’, which effectively construct such sets x, y, . . .

We illustrate this idea by considering Subset axioms. So, let t = S(a1+· · ·+an)
be a given set and φ(x) any given formula, condition containing x as a free variable.
Suppose that for each ai we can determine whether φ(ai) is true or false. We should
prove that there exists a set T such that: x ∈ T iff x ∈ t ∧ φ(x).

Denote by b1, . . . , bk all of those ai for which φ(ai) is true. If k = 0, then T = ∅,
otherwise T = S(b1 + · · · + bk). The proof is complete.

Example 4. Let t = S(1+2+3+4+5) and let φ(x) be the following condition
x ∈ S(1 + 4 + 8 + 9). Then T = S(1 + 4). However, suppose that we extend the
language Ω by a relation symbol ev (‘to be even’) and also add the following new
axioms ev(2), ev(4), ev(6). Let φ(x) be the formula ev(x). Then the corresponding
T is S(2 + 4).
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