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BOOLEAN ALGEBRAS
IN ALGEBRAIC TOPOLOGY

Zoran Petrović

Abstract. The appearance of the complete Heyting algebra in the realm of
Algebraic Topology is the main topic of the paper.

1. Introduction

Actually, the title of this paper is misleading. We are really interested in
the concrete complete Heyting algebra which appears in Algebraic Topology and
Boolean algebras from the title are only subalgebras of this one. How is it that
complete Heyting algebras enter Algebraic Topology? The answer is presented
in this short paper. Briefly, in order to investigate important topological spaces,
topologists introduce homology theories. To simplify matters, they look not at
the category of spaces, but rather to the stable category of spectra and they even
localize these new objects with respect to some numbers or even to some theories.
It turns out that spectra and homology theories are tied together in the not such a
great unification. By further identifying certain spectra one comes to the structure
of distributive lattice which turns out to be a complete Heyting algebra.

Since it is a useless task to try to show the complete structure in the short or
even very long paper, we have tried to present some basic ideas and notions so that
the diligent reader can at least get some feeling for this extremely technical, but
also interesting and important subject.

2. Spaces

Topologists study topological spaces. All of them? Well, yes, but not all
topologists stydy all topological spaces at the same time. It depends on what area
of Topology you are in. The most important classes of spaces algebraic topologist
is interested in are: manifolds, CW-complexes and loop spaces. That is a little
simplified view but it will do for our purpose.
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First of all, manifolds are important not only to topogists, but also to geome-
ters, analysts, physicists. . . We have all kinds of manifolds — smooth manifolds,
piecewise-linear, complex, symplectic. . . And they are all important.

CW-complexes may not be that well known among non-topologists. But, they
are all around us. Every CW-complex is built in the following way. Start with a
bunch of isolated points and add 1-cells (which are 1-dimensional discs) to them.
So, we join some of them, maybe form a circle around some etc. We next proceed
to the dimension 2 and glue 2-cells to the previous space. This means, that we
identify points on the boundary of 2-discs with some points in the previous space
and we get a new one. We can glue 1, 2, any finite number or, even, infinitely many
2-cells. Next we glue 3-cells etc. If we only glue cells up to the certain dimension,
we get a finite dimensional CW-complex and if we glue only finitely many cells we
get a finite CW complex which is necessarily compact. One gets many important
spaces like this. All polytopes are CW-complexes. It is a theorem in Morse theory
that any compact smooth manifold has a homotopy type of a CW-complex.

Loop spaces are also not too well known among other mathematicians. But
they are important for Algebraic Topology (in what follows we use AT for short).
First of all, in AT we very often work with pointed topological spaces, namely
spaces in which one point is selected as a base point, and pointed maps. A loop on
a space X is nothing but the map (by a map we mean a continuous map) from the
circle S1 to X which sends 1 to x0, where x0 is the base point of X (as you can see,
for the base point on S1 we choose 1). All loops on X form a space of loops ΩX.

One very important construction one can perform on a topological space is
that of a suspension. We form a quotient space ΣX := X × I/ ∼, where we
identify all points in X × {0} and all points in X × {1} (so if you imagine X × I
as a cylinder with base X, then you get ΣX by squeezing both the top and the
bottom of this cylinder). If our space X is a space with base point x0, we get
the reduced suspension by additional identification of all points in {x0} × I. The
relation between suspension and loop space construction is explained by

[X,ΩY ]←→ [ΣX,Y ],

where [A,B] stands for all homotopy classes of maps (with respect to the base
point) between spaces A and B. So, we see that the functors Σ and Ω (these
constructions are functorial, of course) are adjoint. By taking a suspension of a
space we slightly simplify it in some way. For example, we have that

Σ(S1 × S1) ∼= Σ(S1 ∨ S1 ∨ S2),

but the original spaces were not homotopy equivalent (if X and Y are pointed
spaces, then X ∨ Y stands for a pointed union — we take the ordinary union and
then identify base points; that is the coproduct in the category of pointed spaces).

3. Spectra

A CW-spectrum E consists of a sequence (En, εn) (n ∈ N) of spaces En and
celular maps εn : ΣEn → En+1. These maps can be turned into CW-embeddings
so some authors include that in the definition of a spectrum. In the case where the
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adjoint maps ε′ : En → ΩEn+1 are weak homotopy equivalences (so they induce
isomorphisms on homotopy groups) we say that E is an Ω-spectrum. Let us give a
few examples.

Example 1. If X is a space (CW complex here), we can form the so-called
suspension spectrum Σ∞X: (Σ∞X)n := ΣnX, εn : ΣΣnX ≈ Σn+1X. If X is a
sphere S0, then we call the resulting spectrum the sphere spectrum and denote it
by S.

Example 2. The Eilenberg–Mac Lane spaces K(π, n) are uniquely defined (up
to homotopy) by the condition

πk(K(π, n)) =

{
0, k �= n

π, k = n

They form an Ω-spectrum since ΩK(π, n + 1) � K(π, n).

Example 3. A complex n-dimensional vector bundle is a map p : E → B such
that every fibre Eb := p−1(b) (for b ∈ B) is a vector space over C of dimension
n. In addition to that, the map is locally trivial which means that we can find
an open covering of B such that p−1(U) ≈ U × Cn for every open set U in that
covering (we skip some details in this definition). It turns out that there is the
universal vector bundle γC

n such that one can get any vector bundle from this one
using a standard pull-back construction. One can introduce a Hermitian metric
on a vector bundle ξ and so one defines disc and sphere bundles: D(ξ) and S(ξ)
(in the disc bundle we gather all vectors in all fibres whose norm is at most 1,
while in the sphere bundle we put all of them with norm 1). The Thom space of
ξ is defined as T (ξ) := D(ξ)/S(ξ). One can extend standard operations on vector
spaces to vector bundles and it turns out that T (ξ⊕ε1) � Σ2T (ξ) (by ε1 we denote
the trivial 1-dimensional bundle). The Thom space T (γC

n ) of the universal bundle
is denoted by MU(n). Using the previous results and the fact that γC

n ⊕ ε1 is an
(n + 1)-bundle and so one can get it from γC

n+1, we can construct the spectrum
MU as follows: MU2n := MU(n), MU2n+1 := ΣMU(n). The map ε2n is the
obvious homeomorphism, while the map ε2n+1 one gets from the previous remark
concerning the bundle γC

n ⊕ ε1. This spectrum is of central importance in modern
AT.

The most important constructions one can perform on spectra are the wedge of
two (or more spectra) X ∨Y , the smash product X ∧Y and the function spectrum
F (X,Y ). While the wedge product is easy to define ((X ∨ Y )n := Xn ∨ Yn) and
it corresponds to the direct sum in the category of modules, the smash product is
much harder. It is much more complicated than, e. g. (X∧Y )2n := Xn∧Yn or some
similar attempt (let us recall that for spaces X and Y the smash X ∧ Y is defined
by X ∧ Y := X × Y/X ∨ Y ). The function spectrum is given by the condition
[W ∧ X,Y ] ∼= [W,F (X,Y )] (recall the corresponding relation in the category of
modules). The existence of this and many other spectra is established by the
Brown representability theorem.
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4. Homology theories

Homology theories are functors from the category of (pointed) topological
spaces to the category of graded Abelian groups which satisfy the Eilenberg – Steen-
rod axioms. To be short, they are required to be homotopy invariant and to induce
certain short exact sequences. Depending of whether we speak of reduced or unre-
duced theories these sequences are somewhat different. One also defines cohomology
theories in the same way (they are contravariant functors of course). The group of
coefficients of the given theory is the homology of the one-point space (or of the
zero-dimensional sphere in case of reduced theories). Ordinary homology is char-
acterized by the fact that the homology of the point is rather simple — it is Z (or
some other Abelian group) in dimension 0 and 0 in all other dimensions. But in case
of other theories these coefficients may become rather complicated, for example in
case of complex cobordisms the ring of coefficients is given by MU∗ = Z[x1, x2, . . .],
where the degree of xi is 2i. We say the ring of coefficients because this is an ex-
ample of the multiplicative theory, so we also have multiplication (in addition to
addition!).

How one goes about constructing homology theories? Well, some of them come
from some geometric constructions (and they are only later recognized as homology
theories) and others come from spectra — for a spectrum E we define a homology
theory by E∗(X) := π∗(E ∧X). It turns out that Brown representability theorem
shows that actually all homology theories come from spectra and, more, they come
from Ω-spectra. In case we work with ring spectra we get multiplicative theories.
Ring spectrum E comes with the additional structure: multiplication µ : E∧E → E
and the unit η : S → E, which have to satisfy some natural conditions.

5. Bousfield equivalence

One uses homology theories and therefore spectra in the attempt to solve topo-
logical and geometric problems algebraically. But what we get by looking at the
class of all spectra from the point of view of homology theories? The notion of
Bousfield equivalence is very useful here. We say that the spectrum X is acyclic
with respect to certain theory E if E∧X is contractible. Two spectra are Bousfield
equivalent if they have the same acyclic spectra:

E ∼ F iff for all spectra X : E ∧X � pt⇔ F ∧X � pt.

We denote the Bousfield class of the spectrum E by 〈E〉. It is the result of Ohkawa
that Bousfield classes form a set of cardinality at most �2. One can define partial
ordering on this set by

〈E〉 � 〈F 〉 iff for all X : E ∧X � pt⇒ F ∧X � pt.

Bousfield classes form a complete lattice. The join is given by the wedge ∨ but the
meet is not given by the smash ∧. Actually, this poset has the smallest element 〈pt〉
and the largest element 〈S〉. The meet � is given by the join of all lower bounds.
But, this meet does not distribute over infinite joins and the smash does. So, it is
interesting to consider a structure where the meet coincides with the smash. By
DL we denote all elements 〈E〉 in the Bousfield lattice such that 〈E〉 ∧ 〈E〉 = 〈E〉
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(of course, we take 〈E〉∧〈F 〉 := 〈E∧F 〉). In this way we get the distributive lattice
and actually, this lattice turns out to be a complete Heyting algebra. Bousfield has
considered this lattice even before it was known that Bousfield classes form a set.
All ring spectra and all finite spectra are in DL but not all interesting spectra are
there. For example the Brown–Comenetz dual of the p-local sphere I is not there.
Namely, I ∧ I � pt.

As we know, in the complete Heyting algebra we have three operations ∧, ∨
and⇒ where a⇒ b is the greatest x such that a∧x � b. Not much is known about
this lattice. Much more is known about the Boolean algebra which is contained
in it and which consists of all 〈E〉 for which the pseudocomplement 〈E〉 ⇒ 〈pt〉
is really the complement. If we denote this Boolean algebra by BA and by FBA
we denote the subalgebra of all finite p-local spectra then it is known that FBA is
isomorphic to the Boolean algebra of finite and co-finite subsets of N.

We conclude this short paper with the following message to logicians. The
structure of the DL is of great importance in modern AT. There are very few known
facts and a lot of conjectures. Maybe the logic can show the way to investigate this
complete Heyting algebra, and maybe it can also be of some interest to logic as an
interesting and highly nontrivial example of this important structure.
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