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ANALYTIC TABLEAUX AND INTERPOLATION

Miodrag Kapetanović
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Abstract. A tableau system for the predicate logic with countable conjunc-
tions and disjunctions is presented and the completeness of the set of rules
proved. These tableaux are used to prove a slightly more general form of the
Malitz interpolation theorem.

1. Introduction

The logic Lω1ω, obtained from first order logic by allowing countable conjunc-
tions and disjunctions, has been extensively studied and used in model theory ([3]
is a standard reference). Although Gentzen systems for this logic also exist (see
[4] but also [1] for a more recent treatment), the corresponding tableau system(s)
do not seem to be used in practice. For that reason a tableau system for Lω1ω

is presented in some detail, followed by a completeness proof. Included are minor
novelties in the inductive definition of tableau with possible technical advantages.

In order to simplify exposition all structures are assumed to have at least one
constant. Lω1ω-formulas are defined as in the first order logic with the additional
clause: if Φ = {φi | i < ω} is at most countable set of formulas, then both

∧
Φ

and
∨

Φ are formulas written also as
∧

i<ω φi,
∨

i<ω φi respectively. Hereafter a
formula (sentence) will always mean an Lω1ω-formula (sentence). Writing ϕ as ϕcy
we emphasize that all constants in ϕ are among c = {c0, c1, . . .} and that all free
variables in ϕ are among y = {y0, y1, . . .} and similarly for sets of formulas.

2. A tableau system for Lω1ω

Since Lω1ω is an extension of first order logic we could simply make use of
the well known uniform notation of Smullyan [6], treating

∧
Φ as α,

∨
Φ as β,

etc. Another approach is used instead, that seems simple and illustrative enough:
only sentences in negation normal form, i.e., those which are built up from atomic
formulas and their negations using ∧, ∨, ∀ and ∃ are treated. There is no loss of
generality since every formula is equivalent to a formula in such form, and ϕ ∧ ψ,
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ϕ ∨ ψ and ϕ → ψ are defined as
∧{ϕ,ψ}, ∨{ϕ,ψ} and

∨{¬ϕ,ψ} respectively.
Hence the following rules are needed:

(∧)
∧

Φ
Φ

(∨)
∨

i<ω ϕi

ϕ0 | ϕ1 | . . . | ϕi | . . . (∀)
∀xϕ
ϕxt

(∃)
∃xϕ
ϕxc

Here t is any ground term and c is a new constant, which should be under-
stood in the following sense. The set L(ϕ) of all relational and functional symbols
(including symbols of constants) occurring in ϕ is the language of ϕ, and LC(ϕ) is
the expansion of L(ϕ) by a countable set C of new constants, i.e., L(ϕ) and C are
disjoint, whereas by ϕ-term we mean any ground term generated by the constants
from LC(ϕ). More explicitly, if f is an n-ary functional symbol from LC(ϕ) and
t0, . . . , tn−1 a sequence of ϕ-terms, then ft0 . . . tn−1 is a ϕ-term.

Tableaux are defined as rooted trees whose nodes have at most countably many
immediate successors and each node is labelled with a set of sentences. Nodes are
denoted by σ, τ, . . . and τ0, τ1, . . . are immediate successors of τ . In the following
definition T denotes a tableau for a given sentence ϕ1 and lTσ is the label of the
node σ from the underlying tree of T.

Definition 2.1. (1) A tree whose only node is labelled by {ϕ} is a
tableau for ϕ.

(2) If
∧

Φ ∈ lTσ , then T′ obtained from T by setting lT
′

σ = lTσ ∪Φ is a tableau
for ϕ.

(3) If ∀xψ ∈ lTσ , t is a ϕ-term and if T′ is obtained from T by setting lT
′

σ =
lTσ ∪ {ψx(t)}, then T′ is a tableau for ϕ.

(4) If ∃yψ ∈ lTσ and c ∈ C is new for T, then T′ is obtained from T by setting
lT

′
σ = lTσ ∪ {ψyc} is a tableau for ϕ.

(5) Let τ be a leaf of a branch containing σ. If
∨

i<ω ϕi ∈ lTσ and T′ stems
from T by expanding the domain of T by {τi | i < ω} and by setting
lT

′
τi = {ϕi} for all i < ω then T′ (based on the new domain) is a tableau
for ϕ.

For every leaf τ of the domain of T the set B =
⋃{lTσ | σ is a predecessor of τ}

is a branch of T. A branch is closed if it contains a pair of complementary closed
literals and a tableau is closed if all its branches are closed. It is easily checked
that the rules are correct : if a tableau for ϕ closes, then ϕ has no model.

Since Hintikka sets play the central role in completeness proofs we recall the
definition and sketch the proof of the main lemma.

Definition 2.2. A set H of sentences is a Hintikka set if it satisfies the following
conditions:

(H0) for all atomic sentences φ from L(H), {φ,¬φ} � H;
(H∧) if

∧
Φ ∈ H, then Φ ⊆ H;

(H∨) if
∨

Φ ∈ H, then Φ ∩ H 
= ∅;
1There is no harm in speaking about tableaux for (at most) countable sets of sentences since

any such set Φ can be replaced by
∧

Φ, or even about a tableau for a set of sets of sentences,
where the intended meaning for {Φi | i < ω} is

∨{∧ Φi | i < ω}.
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(H∀) if ∀xϕ ∈ H, then ϕxt ∈ H for all ground terms from L(H);
(H∃) if ∃xϕ ∈ H, then ϕxt for some ground term t from L(H).

The connection is established by calling a closed non-literal used up on a branch
if it satisfies the appropriate condition from the above definition. For instance

∧
Φ

is used up on B if Φ ⊆ B etc.

Lemma 2.1 (Hintikka’s Lemma). Every Hintikka set possesses a term model.

Proof. Let A = (A, . . . , fA, . . . , . . . , RA, . . .), where A = {t | t is a ground
term of L(H)} and fA(t0, . . . , tn−1)

def= ft0 . . . tn−1 for all n-ary function symbols
from L(H), n ∈ ω. We stipulate A � φ ⇔ φ ∈ H for all atomic sentences from
L(H) and the proof of A � H by induction on the complexity of sentences from
H is straightforward. For instance if φ ∈ H is atomic then A � φ by definition of
A and if ¬φ ∈ H, then φ /∈ H by (H0), so A � φ again by the definition of A.
Further if

∧
Φ ∈ H, then Φ ⊆ H, so A � Φ by induction hypothesis, hence A �

∧
Φ

and similarly for
∨

Φ ∈ H, where A � Φ ∩ H, again using induction hypothesis. If
∃yψ ∈ H, then ψyt ∈ H for some ground t. By induction hypothesis A � ψyt, so
A � ∃yψ. Finally if ∀xψ ∈ H, then ψxt ∈ H for all ground terms t, so A satisfies
each of ψxt by induction hypothesis and we may conclude A � ∀xψ since A is a
term structure. �

A set Γ of sentences is consistent if there is no closed tableau for
∧

Γ.

Lemma 2.2. If {ϕ} is consistent, then there is a Hintikka set containing ϕ.

Proof. We shall define a sequence T0,T1, . . . of tableaux for ϕ together with
the sequence B0 ⊆ B1 ⊆ . . . of respective consistent branches. Notice first that
L(ϕ) is countable for every sentence ϕ and so is the set of all ϕ-terms as well as
the set of all subsentences of ϕ and only these occur in a tableau for ϕ. This alto-
gether guarantees the countability of all sets of sentences appearing in the tableau
construction. With this in mind we can easily devise a particular enumeration of
all LC(ϕ)-sentences which ensures that the rule (∀) is applied to every (occurrence
of a) sentence of the form ∀xψ unboundedly many times2. Starting with B0 = {ϕ}
and using the fact that the rules are correct, we can show that, given consistent Bi

from Ti, any application of a rule must result in a Ti+1 with at least one consistent
branch Bi+1 ⊇ Bi. As an illustration let ∃yψ ∈ Bi and let Bi+1 = Bi∪{ψyc} (c new
for Ti). If Bi+1 was inconsistent, then (by correctness) it would have no model,
in other words Bi � ¬ψyc and, since c is new, Bi � ∀y¬ψ, a contradiction since
∃yψ ∈ Bi. Other cases are similar so there are two possibilities: we either stop at
some stage i since all of Bi is used up or proceed generating a sequence {Bi | i < ω}.
In the first case Bi is obviously a Hintikka set,otherwise let B =

⋃
i<ω Bi. Notice

first that {φ,¬φ} � B, since it would be included in some Bi which is impossible.
Next, all sentences in B are obviously used up at some stage except universal ones.
But given any such ∀xψ and any ground t, ψxt must appear in some Bi, since we
kept visiting ∀xψ thus ensuring that all terms are attended to. �

2It is understood that each time ψ is instantiated by a term not used before for that occurrence
of ψ.
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Reformulating the statement we get the main theorem.

Theorem 2.1 (Completeness Theorem). If � ϕ, then there is a closed tableau
for ϕ.

3. Interpolation

By AA we mean the structure A enriched with all elements of A as constants
and its signature is denoted by La(A), where a is the list of names of all elements
of A. Recall that diag(A) = {θa | θa is a closed literal and AA � θa} is the diagram
of A.

Theorem 3.1. Given a sentence σ and a formula ϕz, suppose that for all
A,B � σ and all a ⊆ A, if A ⊆ B and B � ϕa, then A � ϕa. Then there is a
universal formula ψz such that σ � ∀z(ϕz ↔ ψz)3.

Proof. Enrich L with a set c = {c0, c1, . . .} of new constants in 1–1 corre-
spondence with z. If ψzc ≡ ∧{χzc | χz is an L(ϕ)-formula of the form ∀x∨

Φxz,
where Φ is a set of literals and σ, ϕc � χc}, then we shall prove that ψz is the
desired universal formula. Obviously σ � ϕc → ψc and if the reverse is true we get
σ � ϕc ↔ ψc, hence σ � ∀z(ϕz ↔ ψz) with ψ universal q.e.d.

Given A � σ ∧ ψc, it suffices to find B ⊇ A such that B � σ ∧ ϕc, since by
the theorem assumption A � ϕc. By the downward Löwenheim–Skolem theorem
we may assume A countable, so enrich Lc(ϕ) with (the list of the names of) all
elements of A and let φ− = ¬φ and (¬φ)− = φ, for all atomic sentences φ of the
expanded language. We claim that any tableau T for σ ∧ϕc (in this language) has
a branch on which there is no literal φac such that a ⊂ A and φ−ac ∈ diag(A).
Suppose not and let Φac = {φBac | B is a branch of T, φBac ∈ B and φ−B ac ∈
diag(A)}. Then a tableau for σ ∧ ϕc ∧ ∧{φ−ac | φac ∈ Φac} closes. This implies
σ ∧ ϕc � ¬∧{φ−ac | φ ∈ Φ}, i.e., σ ∧ ϕc �

∨
Φac. Notice that a is finite and

constants from a are new for σ ∧ ϕc, so σ ∧ ϕc � ∀x∨
Φxc. Since A � σ ∧ ψc, it

follows that A � ∀x∨
Φxc, hence A �

∨
Φac, so A � φac for some φac ∈ Φac,

contradiction since φ−ac ∈ diag(A). Together this implies that σ∧ϕc∧∧
diag(A)

is consistent, therefore has a model B. As B � diag(A) we are done. �
The above result is presented relative to a given sentence σ in order to gain

some generality. If we drop that condition we get the well known preservation
theorem of Malitz [5], although he had it for universal sentences only. In fact
somewhat more general result holds as well, one that resembles so called Malitz
interpolation theorem, also proved in [5] (and again for sentences only).

Theorem 3.2. Given a sentence σ and formulas ϕz, θz suppose that for all
A,B � σ and all a ⊆ A, if A ⊆ B and B � ϕa, then A � θa. Then there is a
universal formula ψz such that σ � ∀z(ϕz → ψz) ∧ ∀z(ψz → θz).

Proof. Define ψ as above and repeat the whole argument, only that this time
we conclude A � θc, so that σ � ψc → θc and we are done. �

3It is fairly obvious that the condition is necessary as well.
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4. Conclusion and future prospects

We have presented a tableau system for the predicate logic Lω1ω resembling
Gentzen systems and applicable in model theory. Beside completeness proof a
kind of interpolation theorem is proved that generalizes a result of Malitz using
only a simple notion of diagram. It seems that a refined version of the infinitary
case of the omitting types theorem can be obtained in the same manner. On the
effective side, we can go back to the first order case and look for more effective
constructions, leading possibly to automated treatment, since the form of the main
results is retained.
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