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A FUNCTION DEFINED ON
AN EVEN-DIMENSIONAL REAL SUBMANIFOLD
OF A HERMITIAN MANIFOLD
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ABSTRACT. On an even-dimensional real submanifold of a Hermitian manifold,
making use of the fundamental 2-form of the ambient manifold, we define a
function. In this paper, we investigate the function in detail in some special
submanifold.

1. Introduction

Let M be an even-dimensional real submanifold of a Hermitian manifold M.
Then, making use of the fundamental 2-form of the ambient manifold, we can define
a function f on M. In [4], the present author and Y. Kubo defined the function and
using this function, proved that an even-dimensional extrinsic sphere a of Kéhler
manifold is isometric with a sphere. Even though the final result in [4] is correct,
there are some mistakes. In this paper, we correct these as well as investigate more
properties of the function.

In Section 2 we recall some general preliminary facts on real submanifold of a
Hermitian manifold and in Section 3 we define the function f and give a concrete
form of the function. In Section 4 we discuss the function on some kind of real
submanifolds and show that in these cases it takes much simple form.

In Section 5 we consider the function on a totally umbilical submanifold and
give a differential equation which the function should satisfy, from which we con-
clude that if the totally umbilical submanifold has parallel mean curvature vector
field, the gradient of the function defines an infinitesimal concircular transforma-
tion. From this, together with the theorem of Obata [2], we prove that the subman-
ifold M is isometric with a sphere in Euclidean (n+1)-space. This is the correction
of the paper [4]. Finally in Section 6 we consider the case that the totally um-
bilical submanifold is a submanifold of codimension 2 of complex submanifold and
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give a concrete form of the second covariant derivative of the function which is a
generalization of the result in [3].

The author wishes to thank the referee who read the manuscript carefully and
pointed out the author’s many careless mistakes.

2. Even dimensional submanifold of a Hermitian manifold

Let M be a real (n+2p)-dimensional Hermitian manifold with Hermitian struc-
ture (J,g), that is, J is the almost complex structure of M and g the Riemannian
metric of M satisfying the Hermitian condition g(JX,JY) = g(X,Y) for any
X,Y € T(M). Let M be an n-dimensional real submanifold of M and ¢ be the
immersion. Then the tangent bundle T'(M) is identified with a subbundle of T'(M)
and the induced Riemannian metric g of M is defined by g(X,Y) = g(+X,Y) for
X,Y € T(M), where we use the same ¢ for the differential map of the immersion .
The normal bundle T (M) is the subbundle of T(M) consisting of all X € T(M)
which are orthogonal to T'(M) with respect to g. At each point of M, we choose or-
thonormal local vector fields &1, ..., &, in such a way that they belong to T (M).
For any X € T(M) and for &, (a = 1,...,2p) the transforms J:X and J¢, are
respectively written in the following forms:

2p
(2.1) JIX =1FX + 3 u(X)&,
a=1
2p
(2-2) Jga = —Uq + Zpabfb,
b=1

where F, pap, U, and u® define respectively an endomorphism of T'(M), that of
T+(M), local tangent vector fields and local 1-forms on M. They satisfy the
relations u®(X) = g(Ug, X) and pap = —ppa. If Uy, a = 1,. .., 2p vanish identically,
the tangent space of M is invariant under J and in this case the submanifold is a
complex manifold with induced almost complex structure.

Applying J to both side members of (2.1) and (2.2), we find

2p
(2.3) FPX =-X+Y u(X)U,,
a=1
2p 2p
(2.4) u(FX)=— Zpbaub(X), FU, = — ZpabUb, a=1,...,2p,
b=1 b=1
2p
(2.5) Zpacpcb = —0ap + ub(Ua)a a,b=1,...,2p.
c=1

We denote by V and V the Riemannian connection of M and M respectively and
by D the induced normal connection from V to T (M). Then they are related by
the following equations [1]:
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(2.6) V.xtY =.VxY +h(X,Y),
2p

(2.7)  Vixéa=—14,X + Dx&. Dx&a=> sa(X)&%. a=1,...2p,
b=1

where h is the second fundamental form and A, is a symimetric linear transformation
of T(M), which is called the shape operator with respect to &. The last two

equations show that h(X,Y) = S22 | g(A, X, Y)&,.
The mean curvature vector field u of M is defined by

2p

(2.8) w= % Z(trace Ay,

a=1

and it is well-known that u is independent of the choice of orthonormal normals
&1,.--,&p- The length of the mean curvature vector field is called the mean cur-
vature of the submanifold and it is given by

2p

(2.9) Il = %{ S (trace AG)Q}W.

a=1

Differentiating (2.8) covariantly, we get

2p 2p
nDxp = Z {X(trace A, + Z(trace Aa)sab(X)fb},
a=1

b=1

from which we know that the mean curvature vector field is parallel with respect
to the normal connection if and only if

2p
(2.10) X(trace Ag) = _(trace Ap)sqp(X),
b=1

because of the fact that su, = —Spq.

3. A function defined by the fundamental 2-form of M

Let © be the fundamental 2-form of the Hermitian manifold M, that is, Q is
defined by

for X,Y € T(M). We put
(31) f:Qp(§Ia§2a"'7€2p)a
where QP denotes p-times exterior product of 2. Then we have

LEMMA 3.1. f is independent of the choice of mutually orthonormal normals

El;' .. 7521)'
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PRrROOF. Let n1,...,m2, be another choice of mutually orthonormal normals to
M. Then we have
2p
(3.2) Na =Y 10,
b=1

for some orthogonal matrix (7%) € O(2p). Denoting by S(2p) the symmetric group
of order 2p, we have from (3.2)

f/ = Qp(nla e 7772;0) = Z 11101,11202 o 'TQC;pr(éclagcza e 75021,)

C1,..-,C2p
(1) o(2 o (2
= Z Tl ( )TZ @ T2p( p)QP(£U(1)7£U(2)7 e 750(210))
o€S(2p)
= > mWO® . 1 senoQr (61,6, Ey)
oe€S(2p)
= det(T2)OP (&1, ..., Eop) = f.
This shows that f is independent of the choice of normals. O

Now we discuss the function f more concretely. The number A of the terms in
the expansion of f as a sum of product Q(&a, . as)2(Eass ar) =+ Qany 15 Eas,) 18

2p\ /2p — 2 4\ 2y (2p)!
(2)( 2 )(2)(2) oo
and the number B of different factorization of (&, ,&a;)’s is (2p—1)(2p—3) - - - 5-3-1.
Hence, in the expansion, there are A/B = p! like terms. Hence we can write

(3.3) F=p> U ban) - Uaspor Sany )
where Y means the sum of all such combinations of ag;—1, ag; € {1,2,...,2p} that
az;—1 < azy.

-2
4. Complex submanifolds, CR submanifolds of CR dimension nT

Let M be a complex submanifold of a Hermitian manifold M. Since the normal
space T;-(M) of x € M is J-invariant subspace of T,(M) as well as the tangent
space Ty (M), we can choose an orthonormal basis of T;-(M) in such a way that
(&20)z = J(§2a—=1)z; a = 1,...,p and extend them to local fields &1, ..., &2p. Then
we have

D(&2a-1,&0-1) = G(J&a—1,&2-1) = G(&2a,26-1) = O,
Q(€2a-1,820) = G(J€2a-1,&20) = G(&2a,E20) = Oap-
Thus in (3.3), Q(&a,,&as) = QEas, 1+ &as,) = 0, except

Q(&1,€2) &3, €a) - - QU&op—1,&2p) = 1.
Hence, from (3.3) f = p!. Thus we have

PROPOSITION 4.1. For a complex submanifold M we have f = pl.
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Now we consider a CR submanifold M of CR dimension (n—2)/2 in a Hermitian
manifold M. By definition, at each point € M, the real dimension of the holomor-
phic tangent space H, (M) = JT,(M)NT,(M) is n—2. We choose an orthonormal
basis e1, ea,...,e, of T,(M) in such a way that e1,es,...,e, o € Hy(M). Then
Juej € Ty(M), (j=1,...,n—2) and

(4.1) Jie, 1= Me, +m1, Jie, = —Aie,_1 + 19,

where 17 and 72 denote the normal part of Jie, 1 and Jte, respectively. We note
that n; and 72 never vanish. In fact, if, for example, 7; vanishes at a point z € M,
from the first equation of (4.1) it follows that Jie,—1 € T, (M). This shows that
the real dimension of H,(M) at x is greater than n — 2. This is a contradiction.

We choose orthonormal normal vectors {1, &2,...,£2, to M in such a way that
& and & are in the direction of 7 and 7y respectively, that is, & = n1/|m],
& = 1m2/|n2|- Then we have for a = 3,... 2p,

E(Jga,LX) = 7?(5(15 JLX) =0,
9(J6as61) = —g(&as J&1) = 0,
g(Jgaa£2) = _g(éaa J£2) = O-,

because of (4.1). These equations show that the subspace span{¢s,...,&p} of
T+(M) is J-invariant and therefore we choose such an orthonormal basis of span{¢z,

., &op} that &g = J€aq—1, a = 2,...,p. By choosing these orthonormal normals,
it follows that, for a,b > 2:

Q(gzafla 521)71)
Qé2a-1,82)

=9(J&a—1,%0-1) = §(&2a:&26-1) = 0,
= g(‘]gQa*lv §2b) = §(£2aa £2b) = 6aba
and for a > 3:

Q(ghga) = E(J€1a§a> = 07 9(527&1) = ?(t]f%ga) =0.

Hence in (3.3), only the term Q(&1,£2)Q(&3,&4) - - - Q(€2p—1, &2p) does not vanish and
consequently we have

PROPOSITION 4.2. For a CR submanifold M of CR dimension (n — 2)/2 we
have f = plQ2(&1, &a).

Next let M be a real submanifold of codimension 2 of a complex submanifold
M’ of a Hermitian manifold M. We choose orthonormal normals to M in M in
such a way that &1, & € T(M') and &,....&p € TH(M'). As M’ is a complex
submanifold, T+ (M’) is J-invariant. Hence, in entirely the same argument as in
the case that M is CR submanifold of CR dimension (n — 2)/2, we have

PROPOSITION 4.3. For a real submanifold of codimension 2 of a complex sub-
manifold of a Hermitian manifold we have f = plQ(&1,&2).
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5. Totally umbilical submanifold of a Kidhler manifold

Let M be a submanifold of M. If at each point of M there exist differentiable
functions p,, a = 1,2, ..., 2p, satisfying

(5.1) A X = paX
for any X € T(M), we call the submanifold a totally umbilical submanifold. In
this case p, = (trace A,)/n, that is,

(5.2) A X = l(trauce Al X.
n

First we consider the function f on a typical example of a totally umbilical sub-
manifold.

EXAMPLE 1. Let M be a complex space Cc /2 with complex coordinates
A= 4/ ~1yr, (A=1,...,qg = (n+2)/2). An n-dimensional sphere S™ defined
by

st ={ | é{(ﬁf £V =140 =0}

is a totally umbilical submanifold of codimension 2 of C("*2)/2, We choose mutually
orthonormal vector fields &; and &2 to S™ as

1 ) ) )
6= (P tv'gn) L= gy

A=1

Then J& = —0/0xz%. Since codimension is 2, the function f = Q(&,&) =
—g(&1,J&) = z9. Thus, in this case, f is the level function of the last real co-
ordinate.

From now on we assume that the ambient manifold M is a Kéhler manifold.
Then J is covariant constant and therefore Vx € = 0. So, from (2.7):

2p
g(gradfa Y) = Y(Qp(£17 s 7£2P)) = Z Qp(glv R ;gaflavLYgaaétH*l; R 5£2p)
2p ! 2p
(53) = Z Qp (51: e agafla 7LA¢1Y + Z Sab(Y)gba §a+17 e a€2p>
a=1 b=1

2p
= Z Qp(é'h cee aga—la LAa}/a ga-‘rla e 752}))7
=1

because QP is a 2p-form and sg;, are skew-symmetric with respect to @ and b. Then
it follows that

9(Vx gradf,Y) = X(g(gradf,Y)) — g(gradf, VxY)

2p
=-X (Z QP(EM e 7£a717 LAaY7 £a+1a e 7£2p)> 7g(gradf7 va)
a=1
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a—1 2p

- *Zzgp(gla---avLnga'"aga—laLAa}/aga-‘rla"'apr)

b=1a=1

2p
—ZQP(gl,...,ga 1 VixtAaY, €agrs -5 E2p)

2p
- Z ZQp 517"'7§a717[’AaY'7§a+17"')vagbv"'7€2p)

b=a+1a=1
—g(gradf, VxY).
Substituting (2.7) into the above equation and making use of the fact that

ggradf, VxY) = Zﬂp51,...,5a71,LAavXY,§a+l,...,gzp),

we have
a—1 2p

g(Vxgradf,Y) =Y "> " 0P(&r, .t X, a1, tAaY Eagrs s Eap)
b=1a=1

a—1
72 Z 9bc 617 'afb—lagc,gb—&-la'"a[‘AaYa"'a€2p)

b=1 a,c=1

2p
- Z Qp(gla e ;gafla L<VXA¢1)Y7 €a+17 e a£2p)

- Z (ApAaY, X)0P(Er, o a1, €ps Eats - ap)
a,b=1

P P
+ Z ng(gla“'75(1717['14(1}/750,4*17‘"aLAbX7"‘752[))

b—a+1a*1
2p

- Z Zsbc 1 aga laLA Ya )5()71’5675174’17"'7521})
b=a+1la,c=1

a—1 2p

:Zzgp(fla"'7LAbXa'"7£a—1aLAaK£a+la"'a§2p)

b=1a=1
a—1 2p

_Zzsba Qp 517"‘75b715€a7€b+15“'aLAaK"ngp)
b=1a=1
2p 2p

D TP a1, UV X AQ)Y Lot E2p) — D g(AZY, X)f
a=1 a=1

P P
+ D P, ba 1 tAaY agas s ALK L o)

b=a+1a=1
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- Z Zsba 51: cel a"'7£b—1a£aa§b+la"'7£2p)
b=a+1a=1

a—1 2p

:ZZQP(SD"'7LAbXa'"7§a717LAaYv7§a+la"'552;0)

b=1a=1
a—1 2p

+Zzsba Qp 517'"7§b717LAaYa£b+17"'a€a7"'7§2p>
b=1a=1
2p 2p

D TP a1, UV x AQ)Y Lot E2p) — D g(AZY X f
a=1 a=1

P P

+ Z Zﬂp(éla"'7£a717LAaYv7£a+17"'7LAbX7"'7£2p)
b=a+1a=1

+ Z Zsba QP 515'"Jé-aa'"7£b71aLAaYa€b+17---a£2p)-
b=a+1a=1

If M is a totally umbilical submanifold, by (5.1), it follows that

(54) g(gradfa Z Pa 517 .. agafla L}/a €a+17 ey §2p)
and
a—1 2p
9(Vxgradf,Y) => "> papp@ 1y oyt X, o ba1,tY gty oo Eap)
b=1a=1
a—1 2p
+ Z Zpasba(X)Qp(glv ce 75()717 [’1/7 £b+17 LR £2p)
b=1a=1

—Z Xﬂa 517 v€a1,LY, Eag1y ey £2p (Zpa>

+ Z Zpaprp(£17"'7£a*17LYa£a+17"'aLXa"' 5521))

b=a+1a=1

+ Z Zpasba 517"'7617715['}/76174*17“'a€2p)

b=a+1a=1

:_Z Xpa 517- agaflyLY'ag(H»la- a€2p <Zpa)ng Y)
a=1

b12p

+Zzpbsab Qp £1a---7£a7171’}/7£a+17'"a£2p)

a=1b=1
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+ Z Zpbsab Q;D 515"'7£a—1aLK§a+1a"'a€2p)

a=b+1 b=1
:Z XPa) (&1 a1, a1y e Eap) — (Zpa)ng Y)
2p 2p
+Zzpbsab Q;D 51;'--7£a71;LK€a+17---;521))7
a=1b=1

because of sy, = 0. Thus we have

9(Vx gradf,Y) = (Zpa)ngY)

(55) — Z (Xpa - Z prab(X)> Qp(gl; cee agafla LK £a+17 s ;£2p)
a=1 b=1

Hence we obtain

THEOREM 5.1. In an even dimensional totally umbilical submanifold M of a
Kdhler manifold, the function f satisfies (5.5). Moreover, if the mean curvature
vector field is parallel with respect to the normal connection, f satisfies

(5.6) 9(Vx gradf,Y (Z pa) f9(X,Y).

In connection with the function which satisfies (5.6), Obata [2] proved that in
an n-dimensional complete, connected Riemannian manifold M, if there exists a
function f satisfying

9(Vx gradf,Y) = —k*fg(X,Y),

for some constant k, M is isometric with a sphere of radius 1/k in the Euclidean
(n + 1)-space. Further, it can be easily proved that if the mean curvature vector
field is parallel with respect to the normal connection, then |u| is constant and since

S p2 = |ul?, it follows:

THEOREM 5.2. [4] Let M be an even dimensional complete, connected totally
umbilical submanifold of a Kdahler manifold. If the mean curvature vector field is

parallel with respect to the normal connection, then M is isometric with a sphere
of radius 1/|p|.

6. Totally umbilical submanifold which is a submanifold of
codimension 2 of a complex submanifold

Here, let M be a submanifold of codimension 2 of a complex submanifold M !
of a Kéhler manifold M. Then, in entirely the same argument which we used to
get Proposition 4.3, it follows that

(61) Qp(LK£2,§3,...,£2p) 'Q(LY 52) Qp(él,LY,gg,...,égp) :p!Q(fl,LY)



94 OKUMURA

(62) QP(£17£27 () fafla LK £a+17 e 7£2p> = 07 (a' = 3) ey 2p))
where we have chosen orthonormal normals &;,...,52, to M in such a way that
&1,6 € T(M') and &s,. .. ,&2p are normal to M.

Since the tangent space of a complex submanifold M’ is J-invariant, for £&; and
&2, we have

(6.3) J& = —1Uyp + Mo, J&o = —1Uy — Ny, A= Q(&1,&),

(6.4)  g(U1,U1) = g(Us,Us) =1~ X2, g(Uy,Uz) =0, Uy =0 (a=3,...,2p),
(6.5) JiX = 1FX +ut(X)& 4+ u?(X)&s,

(6.6) QY &) = g(U2,Y),Q(&1,0Y) = —g(Ur,Y).

Now we assume that M is totally umbilical in M. Then, from (6.1), (6.2) and (6.6),

(5.5) becomes

(6.7) 9(Vxgradf,Y) = [’ fg(X,Y) = p{(Dxp1)g(U2,Y) — (Dxp2)g(Ur,Y)}

where Dxp; = Xp1 — pas12(X) and Dxps = Xpa — p1821(X). Since the left-hand

member of (6.7) is symmetric with respect to X, Y, it follows that
(Dxp1)g(U2.Y) = (Dx p2)g(Ur,Y) = (Dyp1)g(Uz, X) — (Dy p2)g(Ur, X).

Substituting Y in the last equation for U; and making use of (6.4), we have

(1= X*)Dxp1 = (Du,p1)g(Us, X) — (D, p2)g(Us, X).

Similarly, we have

(1—=X*)Dxpz = (Du,p2)9(U1, X) = (Du, p1)g(Uz, X).

Hence (6.7) becomes

2
(6.8)  g(Vxgradf,Y) = —|ul*fg(X,Y)+ > aijg(Ui, X)g(U;,Y),

i,j=1
for some functions a;; such that they vanish when the mean curvature vector field
is parallel with respect to the normal connection. Thus we have a generalization of
the result in [3]:

THEOREM 6.1. Let M be a submanifold of codimension 2 of a complex subman-
ifold M’ of a Kdhler manifold M. If M is totally umbilical as a submanifold of M,
the function f satisfies (6.8) for some a;;, i,j = 1,2, where a;; are such functions
that they vanish when the mean curvature vector field is parallel with respect to the
normal connection.
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