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ABSTRACT. We investigate Akivis—Goldberg type metrics satisfying some ad-
ditional assumptions.

1. Introduction

Let M be a manifold of dimension n = pq, and let SC(p, q) be a differentiable
field of Segre cones SC,(p,q) C T, M, x € M. The pair (M, SC(p,q)) is called an
almost Grassmann structure and is denoted by AG(p—1,p+ ¢ — 1). The manifold
M endowed with such structure is said to be an almost Grassmann manifold (e.g.,
see [1, Definition 1.1]). Some additional conditions lead to so-called semiintegrable
almost Grassmann structures [1, Definition 1.2]. The latter were studied in [1] and
examples of such structures, mainly 4-dimensional, are presented there. Certain
semi-Riemannian metrics are related to these structures (see Examples 3.5-3.16 of
[1]). These metrics are called Akivis Goldberg, in short AG-metrics [20]. Manifolds
admitting AG-metrics will be called AG-manifolds. Curvature properties and, in
particular, curvature properties of pseudosymmetry type of AG-manifolds were
obtained in [20]. For instance, on such manifolds we have [20]

(1.1) rank S < 2,
(1.2) (i) S*=0, (i) k=0, (iii) S-C =0.

For precise definitions of the symbols used, we refer to Section 2 of this paper. We
note that (1.2)(iii), by making use of (1.2)(i), (1.2)(ii) and the identity

(13) S C=S§ R+——54—2 grs2- 2 rg,
n—2 n—2 (n—=2)(n—1)
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turns into S+ R = _ﬁﬁ_ Moreover, on every AG-manifold (M, g) the following
condition of pseudosymmetry type is satisfied [20]

(1.4) R-R—Q(S,R) = LcQ(9,C),

where L¢ is some function on Uo = {x € M | C # 0 at z}. With respect to
the above presentation of curvature properties of AG-manifolds we can define the
following extension of this class of manifolds.

Let (M, g), n > 4, be a semi-Riemannian manifold such that Us N Ugs C M is
a nonempty set, where Us = {z € M | § — %g # 0 at 2}. The metric g will be
called an Akivis—Goldberg type metric, in short an AG type metric if on Ug N Ug
the following three conditions are fulfilled: (1.4),

(15) S'R:L1§+L29AS+L3G,
(16) 82 == L4S + L5g,
where Lq,...,Ls are some functions on Us N Ug. A manifold admitting an AG

type metric will be called an Akivis—Goldberg type manifold, in short an AG type
manifold. Evidently, every AG manifold is an AG type manifold. The converse
statement is not true. In Section 3 we present examples of AG type manifolds. In
particular, we state that every semi-Riemannian manifold satisfying the Roter type
equation [9] is an AG type manifold. Some AG type manifolds satisfy also (1.1). In
Section 2 we prove (see Corollary 2.1) that if an AG type manifold (M, g) satisfies
on Uo NUg C M the condition

(1.7) rank S = 2
then (1.6) reduces on Us NUg to

1. 2 _Fg
(1.8) §* =358

In Remark 3.1 (v) and (vi) we present examples of AG type manifolds satisfying
(1.7). These manifolds can be locally realized as hypersurfaces of semi-Euclidean
spaces. In the last section we consider hypersurfaces M in semi-Riemannian spaces
of constant curvature N?1(c) with signature (s,n+1—s), n > 4, or in particular,
in semi-Euclidean spaces E?™!, with nonempty set Uc N Us C M, satisfying on
this set (1.4), (1.5) and (1.6). It means that the metric g induced on M from
the metric of the ambient space is an AG type metric. Hypersurfaces M, with
nonempty set Uc N Ug C M, satisfying on this set (1.4), (1.5) and (1.6) will be
called Akivis Goldberg type hypersurfaces, in short AG type hypersurfaces.

Let M be a hypersurface in N?*1(c), n > 4. We denote by Up the set of all
points of M at which the tensor H? is not a linear combination of H and g. Using
(2.18) and Theorem 4.1 of [19] we can deduce that Uy C Uc NUg C M. AG type
hypersurfaces in N**1(c), n > 4, are also investigated in [22] and [23]. Among
others things in [22] it was shown that (1.4), (1.5) and (1.6) hold on Uc NUs — Uy.
Therefore we restrict our considerations on AG type hypersurfaces M in N*1(c) to
the set Ug C M. We mention that an extension of the class of AG type manifolds
was introduced in [22] (see also [23]).
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Our main result states (see Theorem 4.1) that if M is an AG type hypersurface
in E**L, n > 5, the set Uy C M is nonempty, and (1.7) holds on Uy, then the
conditions R+ R = 0 and R-S = 0 are equivalent at all points of Uy at which
Kk # 0. An example of a semisymmetric AG type hypersurface, with k # 0, is given
in Section 3 (see Remark 3.1(v)). That hypersurface satisfies

2__
(1.9) R==5.

2. Preliminaries

Throughout this paper all manifolds are assumed to be connected paracompact
manifolds of class C*°. Let (M, g) be an n-dimensional, n > 3, semi-Riemannian
manifold. We denote by V, R, C, S and k the Levi-Civita connection, the Riemann-
Christoffel curvature tensor, the Weyl conformal curvature tensor, the Ricci tensor
and the scalar curvature of (M, g), respectively. The Ricci operator S is defined by
g(SX,Y) = S(X,Y), where X,Y € E(M), E(M) being the Lie algebra of vector
fields on M. We define the endomorphisms X A4 Y, R(X,Y) and C(X,Y) of E(M)
by

(XMaY)VZ=AY,2)X — AX,2),Y
R(X,Y)Z = [Vx,Vy|Z =V xy|Z,
1
n—2
respectively, where X,Y,7 € E(M) and A is a symmetric (0, 2)-tensor. Now the

Riemann-Christoffel curvature tensor R, the Weyl conformal curvature tensor C
and the (0,4)-tensor G of (M, g) are defined by

R<X17X25X37X4) = g(R(XlaXQ)X37X4)7
C(X1, X2, X3, X4) = g(C(X1, X2) X3, X4),
G(X1, X2, X3, Xy) = g((X1 Ny X2) X3, Xy),

respectively, where X,Y, Z, X1, Xa,... € Z(M). Let B(X,Y) be a skew-symmetric
endomorphism of Z(M) and let B be a (0,4)-tensor associated with B(X,Y") by

(2.1) B(X1, X2, X3, Xy) = g(B(X1, X2) X3, Xy).

CX.Y)=R(X,Y) — (X/\gSY—kSX/\ng%X/\g Y),

The tensor B is said to be a generalized curvature tensor if
B(X1, X2, X3, X4) + B(X2, X3, X1, X4) + B(X3, X1, X2,X4) =0,
B(X1;X27X37X4) = B(X37X47X17X2)-

For a generalized curvature tensor B we denote by Ric(B), Weyl(B) and x(B) the
Ricci tensor, the Weyl tensor and the scalar curvature of B, respectively. The sub-
sets Up, Uric(p) and Uweyi(p) are defined in the same way as the subsets Ur, Usg
and Ug, respectively. Clearly, the tensors R, C' and G are generalized curvature
tensors. For symmetric (0, 2)-tensors E and F we denote by E A F' their Kulkarni—
Nomizu product. The tensor E A F' is also a generalized curvature tensor. For a
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symmetric (0, 2)-tensor E we define the (0,4)-tensor E by E = 1E A E. In partic-
ular, we have g = G = %g Ag. Let B(X,Y) be a skew-symmetric endomorphism
of (M) and let B be the tensor defined by (2.1). We extend the endomorphism
B(X,Y) to derivation B(X,Y)- of the algebra of tensor fields on M, assuming that
it commutes with contractions and B(X,Y) - f = 0 for any smooth function on
M. Now for a (0, k)-tensor field T', k > 1, and a symmetric (0, 2)-tensor A we can
define the (0, k + 2)-tensors B -T and Q(A,T) and the (0, k)-tensor A -T. For the
definition of these tensors we refer, for instance, to [2] or [13]. Setting T' = R,
T=CorT=5and A=gor A=S5 we obtain the tensors: S-R, S-C, R- R,
R- C7 C- R7 C- Ca R- Sa C- Sa Q(ng)) Q(gac)a Q<Q7S)7 Q(57 R)7 and Q(Sv C)
The tensors C' - R, C'- C' and C - S are defined in the same manner as the tensors
R- R and R - S, respectively.

A semi-Riemannian manifold (M, g), n > 3, is called a quasi-Einstein manifold
if its Ricci tensor S has the form

(2.2) S=ag+ew®w, €= =1,

for some function a and l-form w on M. We refer to [2] for a review of re-
sults on quasi-Einstein manifolds. AG type quasi-Einstein hypersurfaces in semi-
Riemannian spaces of constant curvature are investigated in [23].

A semi-Riemannian manifold (M, g), n > 3, is said to be pseudosymmetric if
at every point of M the tensors R - R and Q(g, R) are linearly dependent. This is
equivalent to

(2.3) R-R=LrQ(g,R)

onUg ={z € M | R — *75,G # 0 at x}, where L is some function on Ur. We
note that Us C Ur and Ug C M. The class of pseudosymmetric manifolds is an
extension of the class of semisymmetric manifolds (R- R = 0). A semi-Riemannian
manifold (M, g), n > 3, is said to be Ricci-pseudosymmetric if at every point of M
the tensors R - S and (g, S) are linearly dependent. This is equivalent to

(2.4) R-S=1LsQ(g,5)

on Usg, where Lg is some function on Ug. We say that (2.3) and (2.4) are certain
conditions of pseudosymmetry type [2], [12]. The class of Ricci-pseudosymmetric
manifolds is an extension of the class of Ricci-semisymmetric manifolds (R -S = 0)
as well as of the class of pseudosymmetric manifolds. Some geometrical considera-
tions show that (2.3), resp., (2.4), is a more natural curvature condition than the
condition R- R = 0, resp. R-S = 0. For a presentation of facts related to these
statements and, in general, on pseudosymmetry type conditions we refer to [2] and
[12].

LEMMA 2.1. Let (M,g), n = 3, be a semi-Riemannian manifold and let A be
a nonzero symmetric (0,2)-tensor at x € M.

(i) If
(2.5) rank A = 2
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at x, then at x we have

tr(4%) — (tr(4)? |

(2.6) A® = tr(A)A% +
Moreover, if
(2.7) A2=—aA+fBg,  aBeER,

at x, then at x we have

tr(A
(2.8) A? = r(2 ),
(i1) If rank A < 2 and
(2.9) A=ag+ew®w, aeR, e=+1, weT;M,

at © and w is nonzero, then at x we have rank A = 1.

PRrOOF. (i) It is clear that (2.5) is equivalent to
A (AnkAjm — AnmAji) + Aji(Aik Anm — Aim Ank) + Ani(Ajr A — AigAjm) = 0.
Contracting this with ¢"* and ¢7* we obtain
(2.10)  tr(A)(AudAjm — AinAji) + A AL, + Aim A — Ay A% — Ajn A7 =0
and (2.6), respectively. Further, substituting (2.7) into (2.10) we get

(2.11) (tr(A) —20)AN A =20g N A.
We suppose that tr(A) — 2« # 0 at z. Now (2.11) yields
20
2.12 ANA= —F——gNA
(2.12) tr(A) — 207

We note that from (2.5) it follows that A is not proportional to g. Thus (2.12),
in view of Lemma 3.1 of [21], implies 3 = 0 and, in a consequence, rank A = 1, a
contradiction. Therefore 2o = tr(A). Now (2.11) reduces to Bg A A = 0 whence
B(A— %g) =0, and in a consequence, (3 = 0, completing the proof of (i).

(ii) We suppose that (2.5) holds at z. From (2.9) we have

(2.13) Aij = agij + ewjw;,

(2.14) Afj = ad;; + ew" Ay wj, w" = g " ws.

(2.14) yields w" Ay;w; = w” Ay jw; whence

(2.15) w" Ay = Aw;, A eR.

Now (2.14) turns into AF; = aA;; + eAw;w;, which by making use of (2.8) and (2.9)

gives (a+ A — %)A = aAg. This implies a + X = w and o\ = 0. We suppose

that o # 0. Now the last two relations yield
(2.16) (a) A=0, (b) a=tr(4)/2.

Evidently, (2.15) by (2.16)(a) reduces to w"A,; = 0. Now, contracting (2.13)
with ¢ and transvecting with w7, respectively, and using (2.16)(b) we obtain
"T_z’ tr(A) + ew"w, = 0 and tr(A) + ew"w, = 0, respectively. These relations imply
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tr(A) = 0, which by (2.16)(b) yields &« = 0, a contradiction. Since o = 0, (2.9)
reduces to A = ew ® w, completing the proof. O

COROLLARY 2.1. Let (M,g), n >4, be a semi-Riemannian manifold.
(2) If (1.6) and (1.7) are satisfied on Us C M, then (1.8) holds on this set.
(#) If (1.1) and (2.2) are satisfied at every point of Us C M, then rank S =1 on
this set.

Let M, n > 3, be a connected hypersurface isometrically immersed in a semi-
Riemannian manifold (N, ¢"). We denote by g the metric tensor induced on M
from the metric tensor gV. Further, we denote by V and V¥ the Levi-Civita
connections corresponding to the metric tensors g and ¢”, respectively. Let ¢ be
a local unit normal vector field on M in N and let ¢ = g™V (£,€) = £1. We can
present the Gauss formula and the Weingarten formula of (M, g) in (N, g%V) in the
form: VY = VxY + cH(X,Y)¢ and Vxé = —AX, respectively, where X,Y
are vector fields tangent to M, H is the second fundamental tensor of (M, g) in
(N,g"), A is the shape operator and H*(X,Y) = g(A*X,Y), k > 1, H' = H
and A! = A. We denote by R and RY the Riemann-Christoffel curvature tensors
of (M, g) and (N, g"), respectively. The Gauss equation of (M, g) in (N, g"V) has
the form R(X1,...,X4) = RN(Xy,...,X4)+eH(X1,...,X4), where H = $HANH
and X1,..., Xy are vector fields tangent to M. Let the equations z” = z7(y")
be the local parametric expression of (M, g) in (N, g"), where y* and 2" are the
local coordinates of M and N, respectively, and a,b, h,i,7,k,l,m € {1,2,...,n}
and p,r,t,u € {1,2,...,n+ 1}.

Let M be a hypersurface in N**1(c), n > 4, ¢ = m, where 7 denote the
scalar curvature of the ambient space. Now the Gauss reads (see e.g. [14])
— T
2.17 Riuiik = eHpiin + ————Ghiin,
( ) hijk = € hjk+n(n+1) hijk

where Rhijk, Ghijr, Hpr and ﬁhijk = HpiH;; — Hp;H;p, denote the local compo-
nents of the tensors R, G, H and H, respectively. Contracting (2.17) with g* we
obtain

(n—1)7

(2.18) S = e (te(H) Hu — Hiye) + oy

9hk,

where tr(H) = g™ Hp,). and Sy, are the local components of the Ricci tensor S of
M. From (2.18) we easily get

2(n —1)er

Shr = 9" SniSkj = Hyyy, — 2te(H) Hyy + ((tx(H))? — W)H}%k
2e(n — 1)Ttr(H) (n—1)7\2
2.1 H O —— .
(2.19) * n(n+ 1) Jr<n(n—|—1)) Ink
Further, on every hypersurface M in N*1(c), n > 4, we have [19]
n—2)t
(220) R-R-Q(s.R) =~ .0

3
3
+
=
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Thus (1.4) is satisfied on every hypersurface in N?*1(c), n > 4. Evidently, if
x € Ur — Ug, then at x we have H? = aH + 3¢, o, 3 € R. The last relation leads
o (cf. [17, Proposition 3.1(ii)])

(2.21) R-R= (ﬁ - 6ﬁ>Q(9, R).

Thus (2.3) holds on Ur — Ug. Further, if M is a pseudosymmetric hypersurface in
NY(e), n > 3, then on Uy C M we have [8, Theorem 3.1]

-
2.22 R-R=——— R).

(222) Q)

It is also known [7, eq. (3.8)] that if M is a pseudosymmetric hypersurface in
NF1(c), n > 3, then on Us C M we have

(n—2)7 T
2.2 O Gl W e\ B
(2.23) Q<S ( R+n(n+1))g’R n(n+1)G> 0
In particular, applying (2.22) into (2.23) we get on Uy C Ug
(n—1r T _
Q(s - w9 R ,(n+1)G)_0'
From this, in view of Lemma 3.4 of [1

T 10) (n—1)r (n—1)T
- G==(S———""—g) AN [S— —-=
nin+1) 2 ( n(n+1)g) ( n(n—i—l)g)’
on the set V' of all points of Uy at which S has no a decomposition of the form

(2.2) and ¢ is some function on V.

5] it follows that

3. Examples

Let (M,g), n > 4, be a semi-Riemannian manifold, with nonempty set Us N
Us C M, and let its curvature tensor R satisfies on Uo N Ug
(3.1) R=¢S+ugAS+nG,

where ¢, u and 7 are some functions on Ugs N Ug. According to [9], (3.1) is called
the Roter type equation. We mention that above decomposition of R on Uz N Ug
is unique [16, Lemma 3.2]. From (3.1) we have [15, Theorem 4.2]: (2.3), with

Lp=(n=2)(5(u—755) —n),

R-R=Q(S.R) = (Ln +5)Q(6.0).

n—2u—1 uk + (n—1)n
;)T

Further, as it was shown in [15], (3.1) implies

@]
SmBriji = (4 (1) (SmrSij — Sy Sik) + (f + 77) (9ijSmk — GikSmj)

52:(n+(

(3.2) + B(gmrSij — gmjSik) + %

Grijks
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where a = ¢k — 1+ (n — 2)p, B = puk + (n — 1)n. Now (3.2) leads to (1.5), where

L1:74(a+1u')7 L2:*2(% +n+ﬂ>, ng—%.

Thus we have

THEOREM 3.1. Every semi-Riemannian manifold (M, g), n > 4, satisfying the
Roter type equation is an AG type manifold.

REMARK 3.1. (i) Semi-Riemannian manifolds satisfying R = ¢S, i.e. the spe-
cial case of (3.1), were investigated in [24] (see also references therein).

(ii) Examples of warped products satisfying (3.1) are given in [18]. In Example
5.1 of that paper a warped product fulfilling (3.1) is given. That warped product
can be locally realized on a hypersurface in a semi-Riemannian space of constant
curvature.

(iii) Applying Lemma 3.4 of [15] to (2.23) we conclude that the curvature tensor
R of a pseudosymmetric hypersurface M in N?*1(c), n > 4, is of the form (3.1) at
all points of Us N Uec C M at which its Ricci tensor is not of the form (2.2).

(iv) Let My xp My, p =n—1 = dimM; > 3, dim My = 1, be the warped
product defined in [13, Example 4.1]. This manifold satisfies (1.2) and rank S = 1.
Furthermore, applying the two last relations to (1.3) we get S-R = 0. The manifold
My xXp M, satisfies R - R = Q(S,R), i.e. (1.4) with L = 0. Thus we see
that the warped product M; xp My is an AG type manifold. This manifold is
locally isometric to a hypersurface in a semi-Euclidean space [13, Example 5.1].
We mention that warped products satisfying (1.4) were investigated in [5]. For
instance, in [5] it was shown that any warped product My xp Ms, dim M; = 1,
dim M, = 3, satisfies (1.4).

(v) Let My x p My, p=dim My > 3, n—p = dim My > 1, be the warped product
defined in Section 4 of [4]. This manifold satisfies R - R = Q(S, R), i.e. (1.4) with
Le =0, and rank S > n — p + 1. Further, if we assume that n — p = 1 and the
constant /¢y, defined in Section 4 of [4], is nonzero, then rank S = 2. Moreover,
from (44) of [4] it follows that in this case the scalar curvature x of M; x g My is a
nonzero constant and (1.7) and (1.8) are satisfied. On such manifolds we also have
(1.9) [26, Example 3.1]. Thus, in view of Theorem 3.1, My x g Ms is an AG type
manifold. In addition, this warped product is locally isometric to a hypersurface
in a semi-Euclidean space ( [4]; see also [26, Example 4.2]).

(vi) Let (M,g) be a non-flat 2-dimensional Riemannian manifold. It is easy to
check that the product manifold M x E"~2, n > 4, satisfies (1.7), (1.8) and (1.9).

Moreover, the manifold M x E"~2, n > 4, can be realized as a hypersurface in
EntL,

Let (M, g), n > 4, be a semi-Riemannian manifold. We define on UcNUs C M
the tensor W(R) by
W(R)=R— ¢S —ugAS—nG,
where ¢, 1 and 5 are some functions on UsNUg. The tensor W (R) will be called the
Roter type tensor. Manifolds satisfying pseudosymmetry type curvature conditions
related to the Roter type tensor will be investigated in subsequent papers.
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We present now an extension of the above definition. Namely, for a generalized
curvature tensors B and symmetric (0, 2)-tensors A and D we define on Uric(B) N
Uweyi(y C M the (0,4)-tensor W (B, A, D) by

W(B,A,D)=B — ¢A — pAAND —nD,

where ¢, p and 7 are some functions on Uric(s) N Uweyi(B)- The tensor W(B, A, D)
will be also called a Roter type tensor. For instance, we have the following Roter
type tensors

W(B,A,g) = B—¢A—pnghA—1G,
W (B) = W(B,Ric(B), g) = B — ¢Ric(B) — pg A Rie(B) — 5G.
Some results on Roter type tensors W (B, A, g) and W (B, Ric(B),g) are given in
[12] and [25]. For instance, we have

PROPOSITION 3.1. [25] Let (M,g), n > 4, be a semi-Riemannian manifold
admitting a generalized curvature tensor B satisfying W (B, A, g) = 0 on Ugie) N
Uweyi(y C M. Then on this set we have

2
: 1
BB - Q(Ric(B), B) = LQ(9, Weyl(B)), L= (n-2) (3 - n)-
Moreover, if A = Ric(B) on Ugic(g) N Uweyi(), then on this set we have
1 [
B-B=1LgpQ(g,B), Lp=(n— 2)(— fn) R
¢ ¢
PROPOSITION 3.2. [12] Let (M, g), n > 4, be a semi-Riemannian manifold ad-
mitting a generalized curvature tensor B and let the conditions B-B = Q(Ric(B), B)
+ LQ(g, Weyl(B)) and B - B = LpQ(g, B) be satisfied on Ugic(gy N Uweyi(By C M.
Then on this set we have

Q(Ric(B) ~(Lp—L)g,B— %G) —0.

PRroOPOSITION 3.3. [2, Corollary 6.1] Let (M, g), n > 4, be a semi-Riemannian
manifold admitting a generalized curvature tensor B and let

Q(Ric(B) — L2g, B— L1G) =0

be satisfied on U = UgicB) N Uweyigy € M. Then W(B) = ¢Ric(B) + pg A
Ric(B) +nG on the subset V.C U of all points at which the tensor Ric(B) has no
a decomposition in a metrical term and in a term of rank one, where ¢, p and n
are some functions on V.

4. AG type hypersurfaces satisfying rank S = 2

Let now M be a hypersurface in N"™1(c), n > 4, We set [14, eq. (13)]
ek

H.
n—1

(4.1) A=H?—tr(H)H? +
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Further, let B be a (0, 2)-tensor with the local components By, defined by By =
g% Hp; Syj. Using (2.17), (2.18) and (4.1) we obtain

o (n—1)T K
(4.2) B= sA+<n(n+1)+n_1)H,
27

respectively. Substituting (4.2) into (4.3) and using (2.17) we get

(4.4) S-R:2H/\A4<7(Z(Ln_:)1; +nfl)(R—mG) —n(nZ—L)gAS-

Let now M be a Ricci-pseudosymmetric hypersurface in N**1(¢), n > 4. On
Ung C M we have [3, Theorem 3.1 and Proposition 3.2]

(4.5) R-S= m@(gas)-

It is known (see Proposition 3.2 and Theorem 3.1 of [3]) that (4.5) is equivalent on
Uy to

(4.6) H3 =tr(H)H? + \H,

where A is some function on Ugy. Now (4.1) turns into
ER

4.7 A= (A ).

(4.7) +

Applying (2.17) and (4.7) in (4.4) we obtain (cf. [11, Theorem 3.1])

(4.8) S-R—4(€/\(n1)7)(Rn(T G)fn(ZT gAS.

n(n+1) n+1) n+1)
If the ambient space is EPT1, then (2.20) reduces to
(4.9) R-R=Q(S,R).

Similarly, in this case, (2.17) reduces to
(4.10) Rhuiji = eHpiji-

PROPOSITION 4.1. Let M be a hypersurface in KT, n > 4. If at © € U N
Us — Uy C M we have R-S =0, then R- R=0 at x.

Proor. Evidently, (2.21) reduces to R-R = —£8Q(g, R), which implies R-S =
—e06Q(yg,S), and in a consequence, 5 = 0 at z. This completes the proof. O

It is clear that every semisymmetric manifold is Ricci-semisymmetric. The
converse statement is not true. Under some additional assumptions both conditions
are equivalent to each other. This problem, named the problem of P.J. Ryan, was
considered by several authors, see [6], [10] and [11] and references therein. Among
other things, in [6] it was proved that the conditions R- R =0 and R-S = 0 are
equivalent on hypersurfaces in N2 (c).
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PROPOSITION 4.2. Let M be a Ricci-semisymmetric an AG type hypersurface
in EtY, n > 5, and let the set Uy C M be nonempty. In addition, let (1.7) be
satisfied on Ug.

(¢) The condition R- R = 0 is satisfied at all points of Ug at which k # 0.
Moreover, (1.9) holds at such points.

(ii) The condition R - R # 0 is satisfied at all points of Uy at which k = 0.

PROOF. Let € Uy. From (2.19), in view of Corollary 2.1(i) and (4.6), we get
(4.11) HY = (2(tr(H))2 - %)HQ + (2A + %) tr(H)H.
Furthermore, from (4.6) we get
(4.12) H* = ((tr(H))* + \)H? + A tr(H)H.
Comparing the right-hand sides of (4.11) and (4.12) we obtain
(/\ + %’i - tr(H)>H2 + (/\+ 57”) tr(H)H =0,

whence A + & = tr(H) and (A + 5) tr(H) = 0. These relations yield

(4.13) (@) A= 5 (b) tr(H)=0.
Now (4.6) and (4.8) turn into
 e(n—3)k
(4.14) A= o)
(4.15) S R= —gR.

respectively. Since M is an AG type manifold, (1.5) holds on Ug. Now (4.15), by
(1.5), leads to

K
_ERhijk = L1(ShiSij — ShjSik) + L3(9nk9i; — 9h;Gik)
(4.16) + L2(gij Sk + 9niSij — GnjSik — GikShj)-

If k # 0 at z, then from (4.16), in view of Theorem 4.2 of [15], it follows that (2.3)
holds at z. Evidently, (2.3) implies (2.4), and in a consequence, we obtain Lr = 0
and R- R = 0 at z. Further, contracting (4.16) with S} and using (1.8) we obtain

*gSlhijk = (Lz + %Ll)glijk + (La + %LQ) (9i5 St — 9ikS15)-
Symmetrizing this in [ and ¢ and using the relation R - S = 0 we get (L3 +
"‘TLz)Q(g, S) =0, whence

kLo
-
On the other hand, contracting (4.16) with ¢* and using (1.8) we find

(4.17) Ly =

(54" 4 (0 9)Ls)S = (kLo + (0~ 1)Ls)g,
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whence

KR KLl
From (4.17) and (4.18)(a) we get Ly = 0. Now (4.17) reduces to Ly = 0. Applying
this to (4.18)(b) we obtain x(L; + 1) = 0, whence L; = —1. Now (4.16) reduces to
(1.9). But this completes the proof of (i).

Let now k = 0 at © € Uy. Thus (4.14) turns into A = 0. This, together with
(4.13)(b), reduces (2.18) and (4.2) to

(4.18) (@) kLo=—(n—1)Ls,  (b)

(4.19) Sjk =—eH},  Bux=HjSj=H% =0,
respectively. We suppose that R- R =0 at . Now (4.9) yields

SniBmijk + Sulnmjk + SjiBuimk + SkiBhijm
— ShmBiije — Sim Bhijk — SimBhitk — SkmBniji = 0.

This, by transvection with H! and H} and making use of (4.10) and (4.19), leads
(4.20) Sim (S Stk — SprS15) + Sit(SpjSkm — SekSjm) = 0.

We set Yy = Xijk, where X7 and Y7 are the local components of vectors X,Y €
T, M such that Y2 +---+Y,2 > 0, where Y, = g;,Y”7. Transvecting now (4.20) with
X! and X™ we obtain Yi(YiSpj — Y;Ser) = 0, whence it follows that rank .S =1 at
x, a contradiction. Thus if Kk =0 at z € Uy, then R- R # 0 at x. Our proposition
is thus proved. O

The last proposition implies

THEOREM 4.1. Let M be an AG type hypersurface in EPTY, n > 5, satisfying
(1.7) on nonempty Uy C M. The conditions R- R =0 and R-S = 0 are equivalent
on the subset of Uy of all points at which k # 0.
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