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ASYMPTOTIC ESTIMATES ON
FINITE ABELIAN GROUPS

C. Calderén

Communicated by Aleksandar Ivié

ABSTRACT. By using Ivié’s methods for general divisor problem and count-
ing function of abelian finite groups, we obtain results related to several
arithmetic functions.

1. Finite abelian groups and semisimple rings

Certain common algebraic structures have enumerating functions whose Dirich-
let series have a simple product representation involving the Riemann zeta-function.
This fact establishes an analytic approach towards the study of these functions, and
provides an application of zeta-function theory.

It is a well-known fact that every finite Abelian group can be represented as a
direct product of cyclic groups of prime power order, moreover, the representation
is unique except for possible rearrangements of the factors.

Let the arithmetical function a(n) denote the number on nonisomorphic Abel-
ian groups with n elements. It is well known that a(n) is a positive, integer-valued
multiplicative function, with the property that a(p*) = P(k) for every prime p and
every integer k > 1 (here and later p, p1,pa, ... denote primes), where P(k) is the
number of unrestricted partitions of k (see [29, pp. 7 and 204]). Thus a(p*) does
not depend on p but only on k, so that a(n) is a “prime independent” function,
and moreover a(p) = 1 for every prime p.

W. Schwarz and E. Wirsing [35] showed that

loga(n) < logh-m(A) + O((logn)?), 0= (log121)/log125 < 0.994

with A ~ (1/4)logn. They also show that there are infinitely many integers n for
which loga(n) = log5-m(A). These results sharpen a result of E. Kratzel [18], who
showed that limsup,,_, . {loga(n) - (loglogn/logn)} = (1/4)log5.
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For |z| < 1 we have 1+ Y P(k)z* = ] (1 — ™) 1. Then, by the properties
k=1 n=1

of Dirichlet series, it follows that

= a(n = P(k
ay e :H(H; e

n=1

>:H((ks), oc=Res>1
k=1

where ((s) is the Riemann zeta function, thereby revealing the important analytic
connection between a(n) and ((s). From the values of P(k) we obtain

a(l) =1, a(p) =1, a(pQ) =2, a(p3) =3,
(1.2) ap') =5, a@P’) =7, a@’) =11, a(p’) =15,
a(p®) =22, a(p®) = 30, a(p'®) = 42.
All the necessary results on ((s) are to be found in [9], [12] and [36]. Let A(z)
denote the number of distinct Abelian groups of order < z. The problem of the

estimating the asymptotic formula for A(z) was considered for the first time for P.
Erdés and G. Szekeres [5], proving that

(1.3) A(z) = a(n) = Crz + O(z'/?).

The first essential progress of (1.3) was made by Kendall and Rankin [16] who
proved, by applying a theorem of Landau, that

A(z) = Z a(n) = Ciz + Coz'/? + O(2'/*log 2).
n<x

H.-E. Richert was the first to estimate the error term by sums involving the
function ¢(x) = 2 — [#] — 1/2. He obtained a third main term of order x!/3 and an
error term of order less than z!/3, that is

(1.4) Az) = O + Cyz'/? 4 Cyz'/? 4+ A(x)
where A(z) = O(2%/010g”*° z) and Cj =101, C(0/4), 7 =1,2,3. Latter, all
the order following improvements lead to (1.4) with the error term of type

A(z) < 2% log™

with 1/3 > k > 1/4. Richert’s method was latter refined by W. Schwarz.
The estimates of (k,\) in A(z) < zFlog™ z are as follows:

A(z) < 213 log? x, [16] Kendall-Rankin
A(z) < 23/1010g10 4, [28] H. -E. Richert
A(z) < x20/69 10g21/23 x, [34] W. Schwarz
A(z) < x34/123+e, [31] P.G. Schmidt
A(z) < 27?7 1og? z, [32] P.G. Schmidt
A(z) < 297/38110g% 1, [17]  G. Kolesnik
A(r) < 10/159Fe [20] H.Q. Liu

A(z) < x50/199+e [20] supplement
A(z) < 2°5/219 1og" z, [30] Sargos and Wu.
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This value differ enough from the conjectured value A(z) < /6. In [13] A.
Ivié¢ proved that flx A?(x)dz = Q(X*/31og X) where

9 9
A(z) = A(z) — ZReSs:U]’ F(S)xssfl = A(x) — Z ijl/j_
Jj=1 j=1

Moreover, Ivié deduced as corollary that A(z) = Q(z'/6log'/?z). Thus, it is
known, on the one hand, that A(z) < 2°5/21%(log )7, and the other

(1.5) A(x) = Cra + Cox/? + Cya/® 4 Cyat/* + Cyat/® + Q(aY/ O log!/? 1)

(see also Balasubramanian and K. Ramachandra [1]).

So from (1.5), A(z) < z"t¢ with K < 1/6 cannot hold, but W. Schwarz
[34], assuming the Riemann Hypothesis, obtained the following € theorem with
Q(21/67¢) for every ¢ > 0. Sums with F(a(n)) were investigated by A. Ivi¢ in [7]
and [8] for a large class of functions F, in particular the functions a(a(n)), d(a(n)),
w(a(n)), Qa(n)).

As is customary, e denotes positive numbers which may be arbitrarily small,
but are not necessarily the same ones at each occurrence.

Another counting function related to algebraic structures is S(n) which denotes
the number of nonisomorphic semisimple rings with n elements. We know that

oo 1 oo .
m=1 k=1

where P*(k) is the number of partitions of k into parts which are square. Now, for
every prime p, let x = p~"%, then we can write the identity

o

(1.6) H{1 + ZP*(k)p’“”} => W
k=1

as
r=1 a=0 P

and the Dirichlet series of S(n) is

Z Sr(z?) = H C(rm?s), o> 1.

n=1 rzlm21

Now, from (1.6), we can obtain the values of S(p%*). For o = 0,1,2,3 we have
S(p%) = a(p®) = a, but S(p*) =6, S(p°) =8, S(P°) =13, S(p7) =18---.

THEOREM 1.1. For the summatory function of S(n) we have the following
estimate

> S(n) = C1Byx + CyBaa'/? + C3 Bsa/? + O(2”/*9 log" 1)

n<x

where Cy,Ca, C are the constant of (1.4), and B; = T] [I ¢(rm?/j), j=1,2,3.

r>lm>2

Proof. Ts a consequence of Theorem 2 of [2] and the result of Sargos and Wu.
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2. Direct factors and unitary factors

For positive integers n, let 7(n) denote the number of divisors of n, and let
t(n) denote the number of decompositions of n into two relative prime factors. In
[4] E. Cohen has established analogues for the finite abelian groups of the classical
results of Dirichlet and Mertens, that is, on the average order of 7(n) and t(n). It
is known (see E. Cohen [4] or E. Krétzel [19]) that T'(x) = > 71(n) where 71(n) is
a multiplicative function defined by nsz

¢*(ks), Res> 1.

8

(2.1) Z Tl(:l) _

n

k=1

E. Cohen, proved the representation
(2.2) T(z) = crz(logx + 2y — 1) + cow + R(x)

7 denotes Euler’s constant, and R(z) < v/Zlog?z. In 1988, E. Kratzel [19], im-
proved this result and show that

(2.3) R(x) = e/ (5 log + 27 — 1) + ea/7 + A, (2)

with the new remainder term A, (z) satisfying A, (z) < 2%/2log*z. In (2.2),
(2.3) ¢;, 1 < i < 4, are effective constants. The result of Krétzel has been improved
by many authors. A detailed history is as follows.

The exponent 5/12 was improved to 83/201, 45/109, 2/5, 3/8, 7/19, 4/11,
21/58, 47/130 by the authors:

A, (x) < 283/200+e, [24] Menzer
A, (z) < 245/109Fe [25] Menzer and Seibol
AL (x) < 2?/5Fe [21] Liu
AL (z) < a3/8te, [6] Yu Gang
A, (z) < x7/19%Fe [22] Liu
A, () < zt/11Fe [43] W. Zhai and X. Cao
A, (z) < ?!/58Fe [
[

]
|

23] Liu and Wu
| Jie Wu.
)

(see [14])which guaranteed the conjecture.

Analogously, a similar situation takes place when we consider the unitary
factors of G in X. Let ¢(G) denote the numbers of unitary factors of G and
T*(z) = > t(G) where again the summation is extended over all abelian finite
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groups of order not exceeding z. It is known (see Lemma 4.2 of [4] or Lemma 1 of
[19]) that T*(x) = > t1(n) where t;(n) is defined by the Dirichlet series

n{x

(2.4) F(s) = Z tl

Here, Cohen [4] proved that

(o)
H ((2k — 1)s)((2ks), Res> 1.
k=1

Ty (z) = diz(logx + 2y — 1) + daz + Ri(x), Ri(z) < /xlogz.

As in the previous case, E. Kritzel improved the above estimates and obtained
Ry(x) = d3/T + Ay, () being Ay, (z) < 21/??log? . Later, the error term was
improved as follows

Ay, (7) < 231/82+e [26] H. Menzer

Ay, (7) < 23/3+e, [33] Schmidt

Ay, (z) < 277/208%¢ [21] Liu

Ay, () < 29725+, [43] W. Zhai and X. Cao
Ay, () < 229/80Fe, [22] Liu

Ay, (z) < 24T/ [38]  Jie W

W. Zhai [46] sharpens the exponent to 0.354. .. using the method of exponent
pairs. In [3] we have given bounds for the integral of an error term

A; =17 (x ZRess 1; F -1

by using the Mellin inversion formula in conjunction with a certain smoothing
function. Thus, for every € > 0,

/ Af (r)dr < g t3/20+e

3. Asymptotic estimates

From (1.1) and (2.1) it follows that for any integer n > 1, 7y is the Dirichlet
convolution 71 (n) = (a * a)(n). Thus for any prime p and integer o > 1

«

ni(p®) =Y a(P*)a(p* ")

k=0
and from (1.2) we obtain the following values for 7 (p*), 1 < o < 10
1 (p?) = 71 (p*) = 10,

1, 2, (p
(3.1) 7'1( ) = 20, Tl( °y=36, m(p°) =65 mn(p") =110,
1 =300, 71(p'%) = 481.
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From (2.1), (1.1) and (2.4) it follows that

ooTln > a(n ootln
Z TES):ZTEZS)Z 753)

then 7 7 7
(3.2) n(n) = a(d)ty (%)
&2n

where the sum is over all divisors d|n such that d?|n. From (3.2), (3.1) and (1.2)
we deduce the following particular values for ¢1(p®)

tl(l) = 17 tl(p) = 25 tl(pz) = 47 tl(pB) = 8;
(3.3) ti(pt) =14, t1(p°) =24, t,(p%) =40, t1(p") =64,
t1(p®) = 100, t1(p?) = 154, t;(p*°) = 232.

A. Ivi¢ [13] considered the powers functions 7(n) and obtained asymptotic
formula for the summatory functions >, . #(n), k > 2 and D onca T1(17)-
H. Menzer [27] considered the convolutions w(n) = (a * a xa)(n) = (11 * a)(n).

Thus from (3.1) and (1.2)

w(l) =1 w(p) =3, w(pQ) =9, ,w(p3) = 22,
(3.4) w(pt) =68, w(p®) =108, w(p®) =221, w(p’) =429,
w(p®) = 810, w(p®) = 1479, w(p'®) = 2640.

H. Menzer, applying results of three-dimensional exponential sums and two
special divisors problems, proved that

W(z) =Y w(n) = zPy(logz) + z'/*Qa(log x) + O(x"** log® z)

nT

Ps(log x), Q2 (log z) being polynomial of degree 2 in log =, whose coefficients may be
explicitly evaluated. In [45] W. Zhai, improves the error term to O(z%%/116+€) for
any € > 0. Jie Wu remarked that using (3.13) of your paper [39], he could deduce
the following result A(1,1,1,2,2,2;z) < x%°log” z, where A(1,1,1,2,2,2; ) is
the error term in the asymptotic formula for divisor problem D(1,1,1,2,2,2;z).
This improves Zhais’s exponent 53/116 to 4/9.

Now we study some asymptotic formulas for the power functions of w(n) and
tl (n) .

A classical result of A.E. Ingham states an asymptotic formula related to fourth-
moment of the zeta function for o = 1/2. Ingham proved this estimation by means
of the functional equation for ¢?(s) Ingham’s results has been improved in 1979 by
D.R. Heath-Brown (see [36]) to give
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LEMMA 3.1. In the critical line o = 1/2 the following estimate hold

T 4
(3.5) / /2 +it)*dt =TS exlogh T+ O(T7/5+).
1 k=0

where cqy = (272)7! and c3 = 2{4y — 1 — log(27) — 12¢'(2)7 2 }n 2.

The proof requires an asymptotic formula for >, . 7(n)7(n +7) with a good
error term, uniform in r. These estimates are obtained by Heath-Brown applying
Weil’s bound for the Kloosterman sum. But in 1986, N.I. Zavorotnyi [42] improved
Heath-Brown’s exponent 7/8 to 2/3.

For the following theorems, all the necessary results on ((s) are to be found in
[9] and [36].

THEOREM 3.1. For any given € > 0

(3.6) Z w?(n) = xPg(logz) + O(x?/3+¢).

n<x

Proof. As a(n) < nf, and 71 (n) < n¢, their convolution is w(n) < n¢. By the
properties of Dirichlet series, the multiplicativity of w(n) and using (3.4) we have
inRes=0>1

205

» p

(3.7) =) [[it—p P+ 9 +81p > 4}
P
= (*(5)C™(25)¢ " (3s) Ha (s)
where H(s) represents a Dirichlet series which converges absolutely for o > 1/4.

By the truncated Perron’s inversion formula (see Appendix of [9] or [36]) with
b=1+41/logz, (x > z9 > 1), « =9 and ¥(n) = n*, we obtain

1 b+iT 75
St =5 [ @) 35) () s
n<x -t
zlog’ x xlte
(3.8) +0( = )+O(T,)

In s =1 the subintegral function has a pole of ninth-order and the residue is

xS

Res,—1 ¢?(5)¢3%(25)¢75(3s) Hy (5)? = zPs(log x).
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Moving the line of integration to o = 35/54 and by the residue theorem, we
obtain

1 b+1iT s
orr ¢9(5)C38(25)C 5 (35) Hy (s) —ds = I + I + I5 + 2 Ps(log z)
T Jo—iT S
bein
& 1 35/54+iT 8
L == ¢(5)¢35(25)¢5(38)Hy(s)—ds
27 J (35 /54)—iT s
1 b+iT s
L= ¢(5)¢35(25)¢75(3s) Hy(s)—ds
T J(35/54)+iT S
1 (35/54)—iT . iy . -
I3 = Gy C7(5)C°°(28)¢°(3s)Hq(s)—ds.
T Jp—iT S

For the integrals I, I3 we have

b

I+ 13 < /
(35/54)

(o + D) |20 + 2T ¢ 3o+ D)o +17)
We know that ¢(o +it) < (|t|1=9)/3 4 1)log|t| if 1/2 < 0 < 2, and we also
know that

(3.9) C(L+it) < log?3t], t>to

(see Theorem 6.3 of [9]). Then

1 b
L+13< — |C(o +iT) P27 do
(35/54)

1 b
(3.10) < = (T3 11)°log® Tz do
T J(35/54)
log? T [ x35/54719/18 | 4 ,
< 3 + ) .
T log(z/T?)

<
For the integral I, we use Theorem 8.4 [9] with m = 9, that is
Ty 135 9
(3.11) / (55 +it)| at < T
. "5

then we obtain

T 35/54
35 9 735 36 x
1<z + . ¢ 54—}—1 ¢ 27—|—2 35/50 1 i)
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From (3.11) and using an integration by parts, it follows that

9dt T o't
/ (g “@ / P gy < 1
1 t
where ®(t f1 |¢(35/54 + iu)|?du. From this estimation we can deduce
(3.12) I < /54,

By (3.11) and (3.12) obtain that (3.8) is

Zw ) = 2Ps(logx) + O(z' T 1)
n<x
log? T [ £35/54719/18 ,
9] 19) 35/54T6 .
+0 (5 (g ) + 0T

Choosing T = (z/e)/3 we obtain (3.6).

THEOREM 3.2. We have the estimation

(3.13) Z t3(n) = zPs(log z) + O(z'/? log” z).

n<T

Proof. By using the multiplicativity of t2(n) and (3.3), we have for Res = o > 1

gtiw =H(1+§tifff))

(3.14) =) [ -p ¥ 1 +4p 7 +16p > + -}

= C4(8)C6(28)C20(33)Hg(s),

where Hs(s) represents a Dirichlet series which converges absolutely for o > 1/4.
By the inversion formula for Dirichlet series (see Appendix of [9] or [36]) with
b=1+41/logz, and t1(n) < nf, we obtain

b++iT

Z e 2:7L” / C4(S)<6(23)<20(33)H2(5)%Sds + O(ztrer1).
n<w b—iT

By the residue theorem, moving the integrating line to o = 1/2 and using (3.5),
we have that

> t3(n) = aPs(logz) + O I+ L + L+ I3

nx
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with Iy = I} + I} + I, where I] = fl//;_ﬁg, I = fl/; gf and I, surrounded the

pole s = 1/2. So, the integral I, < x'/2Ps(logz). In fact, we denote G(s) =
¢*(s)¢?°(3s)Ha(s)s™t. Then I, = fcp ¢%(2s)G(s)z*ds and let C, = {s = 1/2 +
pe® a € [-7/2,7/2],0 < p < 1/2}, then G(s) is an analytic function on C, for
all 0 <p<1/2.

Consider p =1/logz and = > €2, for (5(2s) we can write

6(2s) = — B 4.4 OOc s — "
¢8(2s) eI +(871/2)+;n( 1/2)

and for the integral I, we have

6
Co— J s
j= Cp Cp n=0
21/2 21/2
< M, |c6|7r— —|—M57r\05\— + -+ Myley|mzt/? + Myma/?p
PP

en(s —1/2)"G(s)x’ds

1/2
< M6|ce;|7r:1:1/2 log°z+---+ ]Wl|cl|7rx1/2 + JWOWIT)E < z'/? log® z.

The others integrals are

T 1/2
B [ Izl o+ 20000 [0 (/2 4 ) [Ha (12 4 i8)] e
p [1/2 + it|
ast =2 p>0
C(1 +2it)[* < (log®* 1)® =Tlog* ¢
we obtain

T
I < x1/210g4T/ ‘C ﬂ
p

1
t
:x1/210g4T</ ‘C / ‘C +zt t) < z?1og® T
p

1
/ ¢ (1/2 +it)|* e
) t

since

and the same estimate holds for I/, Thus I < z'/2P;(logz) + /2 1og® T
For the integrals I, Is we have

b o

L+l < / [ Do+ 3(o +iT)) Halo “’T)'i\aimd"



ASYMPTOTIC ESTIMATES ON FINITE ABELIAN GROUPS 67

By (3.9), as 20 > 1 we have |[¢5(20 + 2iT)| < log* T, then

b (7
I+ I3 <K / ¢(o +4T)|* log" T
1o lo+ zT|
1 4T b
< 0g / (T(lff")/i’: + 1)4]og4 Tz do
T )i
logST

1/2)72/3
<<—Tlog(m/T4/3)(I+x |T%/7).

Therefore

Z t3(n) = zPs(log ) + O(x*/2Ps(log x)) + O(z* T 1)

n<x
log® T

1/21 9
+ 0@ log"z) + O(Tlog(ac/T‘l/Ii)

($ + $1/2T2/3)).

Choosing T' = (z/e)?/* we deduce the formula (3.13).

THEOREM 3.3. For any given € > 0

(3.15) Z t3(n) = xP;(log ) + O(z>/3+°).

nLx

Proof. For Res = o > 1 holds

oo .3 n X 3.k
(3.16) s H(l +>4 )) — (3(5)C (25) Hy ),
n=1 p k=1

where Hj(s) represents a Dirichlet series which converges absolutely for o > 1/3.
By the inversion formula for Dirchlet series (see Appendix of [9] or [36]), with
a(n) < nf a=8,b=1+4 ¢ we deduce

3 1 b 8 28 z® 1+ep—1
(3.17) ;t =5 / . C¥(5)C*(25) Hy () —ds + Oz T 1),

Moving the line of integration to o = 5/8 and by Theorem 8.4 [9], we deduce

T
/ 1C(5/8 + it)|Bdt < TV,
1

hence

(3.18) I, < z°/87¢,
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Moreover, the integrals I, I3 satisfy

b o
L+ 1y < / 1o+ iT)[FIC (20 + 20T) 23| Hy (0 +iT)| — " dor
5/8 lo + iT|
b o 8 5/8
. T logT ([ x4+ x°/°T
3.19 ) d e ).
@19) < [ Ko Hinl o < B (ogtarzers ™)

Now from (3.17), (3.18), (3.19) we have

> #(n) = aPr(logz) + O(x'T~1) + O(z"/°T)

n<x
8
L0 log® T [ x+2°8T L plte
T log(x/T8/3)

thus by choosing 7" = (2/e)?/® we deduce the estimation (3.15).

In the asymptotic formulas (3.6), (3.13) and (3.15), we observe that in their
product representation (3.7), (3.14) and (3.16) respectively, the Dirichlet series have
a power of ((2s) as factor. This hints at the existence of a second main term in
each case of the form z'/2Ps5(logz), z'/?Ps(logz), x'/2Py;(logz) respectively,
and we expect to obtain an error term of order 0(:1:1/2)7 as ¢ — oo. Also, it is
possible that the error terms A2 (z) < 2°7¢, Ap(z) < 277¢, Ap(z) < 277,
with o < 4/9, 8 < 3/8, v < 7/16 respectively, cannot hold.

In the next theorem we obtain (2-estimates for the mean square of the error
terms.

THEOREM 3.4. The following Q-estimates hold

X

(3.20) A2, (z)de = Q(XIH8/9),
1
X
(3.21) AR (w)de = Q(XTY),
1
X
(3.22) A (w)de = Q(XTTE).

1

Proof. Tt is a consequence of Theorem 3 of [11]. For the function w?(n), the

Theorem may be applied with a; =as =--- =ag =1, a;9g =2, r =9 then
r—1 4 4 1
= = argr == < =, A=0.
g 2(ar +as+---+ar) 9 rIr =935

In the case of function t2(n), the Theorem may be applied with a; = ay = a3z =
ag=1,a5 =2, r =4 and

r—1
g= =35 Qrgr =

, L A=0.
2(a; +as+---+a,) 8

<

| w
N | =
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If the function is t3(n), we take a; = ay = --- = ag = 1, ag = 2, r = 8, and
then 1 7 71
r
= = —, =—<=, A=0.
2ar+az+-+a) 16 T 162

Then (3.20), (3.21) and (3.22) holds.

Acknowledgement. I am grateful to the referee for his comments and careful

revision.
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